Skip to main content

Angular momentum cycle in planet earth

  • Reference work entry
Encyclopedia of Planetary Science

Part of the book series: Encyclopedia of Earth Science ((EESS))

The angular momentum budget of the Earth represents a beautiful and simple example of how the various climatic elements (atmosphere, oceans and solid Earth) work together and are united through a basic physical conservation law, despite enormous differences in their space and time scales and in their masses.

The angular momentum is a vector quantity that is the product of the moment of inertia and the angular velocity. Here we will consider only the component of the angular momentum vector that is parallel to the Earth's polar axis. In the case of the atmosphere it has two components, one connected with the solid rotation of the Earth, the Ω-angular momentum, and the other with the zonal component of the air flow with respect to the rotating Earth, the relative angular momentum: M = M Ω + M r (see Figure A9). Most of the temporal variability is found in the relative angular momentum.

Figure A9
figure 1_1-4020-4520-4_11

Schematic diagram of the atmospheric angular momentum around the Earth's axis of rotation, M...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Boer, G. J. (1990) Earth—atmosphere exchange of angular momentum simulated in a general circulation model and implications for the length of day. J. Geophys. Res., 95(D5), 5511–31.

    Google Scholar 

  • Courtillot, V., LeMouel, J. L., Ducruix, J. and Cazenave, A. (1982) Geomagnetic secular variation as a precursor of climatic change. Nature, 297, 386–7.

    Google Scholar 

  • Hasselmann, K. (1976) Stochastic climate models, Part I. Theory. Tellus, 28, 473–85.

    Google Scholar 

  • Jeffreys, H. (1926) On the dynamics of geostrophic winds. Quart. J. Roy. Meteorol. Soc., 52, 85–104.

    Article  Google Scholar 

  • Levitus, S. and Oort, A. H. (1977) Global analysis of oceanographic data. Bull. Am. Meteorol. Soc., 58, 1270–84.

    Google Scholar 

  • Lorenz, E. N. (1967) The Nature and Theory of the General Circulation of the Atmosphere. WMO Publ. No. 218, T.P. 115, World Meteorological Organization, Geneva, Switzerland.

    Google Scholar 

  • McCarthy, D. D. and Babcock, A. K. (1986) The length of day since 1656. Phys. Earth Planet. Inter., 44, 281–92.

    Google Scholar 

  • Newton, C. W. (1971) Mountain torques in the global angular momentum balance. J. Atmos. Sci., 28, 623–8.

    Google Scholar 

  • Oort, A. H. (1985) Balance conditions in the Earth's climate system. Adv. Geophys., 28A, 75–98.

    Google Scholar 

  • Oort, A. H. (1989) Angular momentum cycle in the atmosphere—ocean—solid Earth system. Bull. Am. Meteor. Soc., 70, 1231–242.

    Google Scholar 

  • Oort, A. H. and Peixoto, J. P. (1983) Global angular momentum and energy balance requirements from observations. Adv. Geophys., 25, 355–490.

    Google Scholar 

  • Rosen, R. D. (1988) Recent developments in the study of the Earth—atmosphere angular momentum budget. Contribution No. 51, Institut d'Astronomie et de Géophysique, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.

    Google Scholar 

  • Rosen, R. D., Salstein, D. A. and Wood, T. M. (1991) Zonal contributions to global momentum variations on intraseasonal through interannual time scales. J. Geophys. Res., 96(D3), 5145–51.

    Google Scholar 

  • Salstein, D. A. and Rosen, R. D. (1986) Earth rotation as a proxy for interannual variability in atmospheric circulation, 1860-present. J. Climate Appl. Meteorol., 25, 1870–7.

    Google Scholar 

  • Starr, V. P. (1948) An essay on the general circulation of the Earth's atmosphere. J. Meteor., 5, 39–43.

    Google Scholar 

  • Starr, V. P. (1953) Note concerning the nature of the large-scale eddies in the atmosphere. Tellus, 5, 494–8.

    Google Scholar 

  • Starr, V. P. (1968) Physics of Negative Viscosity Phenomena. New York City: McGraw-Hill Book Co.

    Google Scholar 

  • Swinbank, R. (1985) The global atmospheric angular momentum balance inferred from analyses made during the FGGE. Quart. J. Roy. Meteorol. Soc., 111, 977–92.

    Google Scholar 

  • Taylor, H. A., Jr, Mayr, H. G. and Kramer, L. (1985) Contributions of high-altitude winds and atmospheric moment of inertia to the atmospheric angular momentum—earth rotation relationship. J. Geophys. Res., 90, 2889–96.

    Google Scholar 

  • Wahr, J. M. and Oort, A. H. (1984) Friction and mountain-torque estimates from global atmospheric data. J. Atmos. Sci., 41, 190–204.

    Google Scholar 

  • White, R. M. (1949) The role of the mountains in the angular momentum balance of the atmosphere. J. Meteorol., 6, 353–5.

    Google Scholar 

Cross references

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this entry

Cite this entry

Oort, A.H. (1997). Angular momentum cycle in planet earth . In: Encyclopedia of Planetary Science. Encyclopedia of Earth Science. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4520-4_11

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4520-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-06951-2

  • Online ISBN: 978-1-4020-4520-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics