Skip to main content

Abstract

Superconductors superconductor are characterized by an anomalous temperature dependence of the electrical resistivity. Below a critical temperature T c, their resistivity drops by more than a factor of 1010. In superconductors the magnetic flux density B = μ r B a induced by an externally applied field H a is zero, like in ideal diamagnets with μ r = 0 (Meißner–Ochsenfeld effect). If H a exceeds a critical value H c the superconductor becomes normal conducting. But the magnetic induction B decreases from B a at the free surface to B = 0 in the interior through a layer of finite thickness characterized by the Landau penetration depth λ. The critical field varies with temperature as H c(T) = H c(0)[1 − (T/T c)2], where H c(0) = H c(T = 0 K). According to the isothermal field dependence of the magnetization I(H a) =− μ 0 H a, two types of superconductors may be differentiated, as shown in Fig. 4.2-1:

  • Type I superconductors such as Pb with a sudden drop of − I, at H c; all pure metallic elements and their dilute solid solutions belong to this group;

  • Type II superconductors such as Pb–In15 which are characterized by a lower critical field H c1 at which the drop of − I sets in and an upper critical field H c2 at which − I reaches 0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

CVD:

chemical vapour deposition

HTSC:

high-temperature superconductor

LPE:

liquid phase epitaxy

PLD:

pulsed laser deposition

SQUIDS:

superconducting quantum interference devices

TAFF:

thermally activated flux flow

References

  1. O. Henkel, E. M. Sawitzkij (Eds.): Supraleitende Werkstoffe (VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1982) (in German)

    Google Scholar 

  2. R. Flükiger, W. Klose (Eds.): Superconductors, Landolt–Börnstein, New Series http://www.springerlink.com/link.asp?id=t4wrml3m7w3d (Springer, Berlin, Heidelberg 1997)

    Google Scholar 

  3. J. Evetts (Ed.): Concise Encyclopedia of Magnetic & Superconducting Materials (Pergamon Press, Oxford, New York, Seoul, Tokyo 1992)

    Google Scholar 

  4. H. Hillmann: Superconductor Materials Science. In: Metallurgy, Fabrication, Applications, ed. by S. Foner, B. B. Schwartz (Plenum, New York 1981)

    Google Scholar 

  5. D. C. Larbalastier: Superconductor Materials Science. In: Metallurgy, Fabrication, Applications, ed. by S. Foner, B. B. Schwartz (Plenum, New York, London 1981)

    Google Scholar 

  6. E. W. Collings (Ed.): A Source Book of Titanium Alloy Superconductivity (Plenum, New York 1983)

    Google Scholar 

  7. K. Osamura (Ed.): Composite Superconductors (Marcel Dekker, Basel, New York, Hong Kong 1994)

    Google Scholar 

  8. H. Krauth: Conductors for d.c. Applications, Handbook of Applied Superconductivity, ed. by B. Seeber (Institute of Physics Publishing, Bristol, Philadelphia 1998)

    Google Scholar 

  9. C. Li, D. C. Larbalastier: Development of high critical current densities in niobium 46.5 %wt. titanium, Cryogenics 27, 171 (1987)

    Article  Google Scholar 

  10. J. Ekin: Materials at Low Temperature, ed. by P. R. Reed, F. C. Clark (American Society for Metals, Metals Park OH 1983)

    Google Scholar 

  11. R. Flükiger, W. Klose (Eds.): Superconductors, Landolt–Börnstein, New Series http://www.springerlink.com/link.asp?id=t4wrml3m7w3d (Springer, Berlin, Heidelberg 1997) pp. 1–11

    Google Scholar 

  12. J. G. Bednorz, K. A. Müller: Possible high-T c superconductivity in the Ba–La–Cu–0 system, Z. Phys. B 64, 189 (1986)

    Article  ADS  Google Scholar 

  13. R. Hott: High Temperature Superconductivity, 1: Materials, ed. by A. V. Narlikar (Springer, Berlin, Heidelberg, New York 2004) p. 1

    Google Scholar 

  14. B. Raveau: In: High-T c superconductivity: Ten Years after the Discovery, NATO ASI Ser. E: Applied Sciences, Vol. 343, ed. by E. Kaldis, E. Liarokapis, K. A. Müller (Kluwer 1997) p. 109

    Google Scholar 

  15. D. R. Harshman, A. P. Mills Jr.: Concerning the nature of high-T c superconductivity: Survey of experimental properties and implications for interlayer coupling, Phys. Rev. B 45, 10684 (1992)

    ADS  Google Scholar 

  16. C. N. R. Rao, R. Nagarajan, R. Vijayaraghavan: Synthesis of cuprate superconductors, Supercond. Sci. Technol. 6, 1 (1993)

    Article  MATH  ADS  Google Scholar 

  17. N. M. Plakida: High-Temperature Superconductivity (Springer, Berlin, Heidelberg 1995)

    Google Scholar 

  18. M. Tinkham: Theory of Superconductivity (McGraw-Hill, New York 1975)

    Google Scholar 

  19. G. Blatter, M. V. Feigelmann, V. B. Geschkenbein, A. I. Larkin, V. M. Vinokur: Vortices in high-T c superconductors, Rev. Mod. Phys. 66, 1125 (1994)

    Article  ADS  Google Scholar 

  20. K. H. Fischer: Vortices in high-T c superconductors, Superconductivity Rev. 1, 153 (1995)

    Google Scholar 

  21. H. Hilgenkamp, J. Mannhart: Grain boundaries in high-T c superconductors, Rev. Mod. Phys. 74, 485 (2002)2

    Article  ADS  Google Scholar 

  22. D. Larbalestier, A. Gurevich, D. M. Feldmann, A. Polyanskii: High-T c superconducting materials for electric power applications, Nature 414, 368 (2001)

    Article  ADS  Google Scholar 

  23. B. Seeber (Ed.): Handbook of Applied Superconductivity, Vol. 2 (Institut of Physics Publishing, Bristol, Philadelphia 1998)

    Google Scholar 

  24. J. J. Capponi, C. Chaillout, A. W. Hewat, P. Lejay, M. Marezio, N. Nguyen, B. Raveau, J. L. Soubeyroux, J. L. Tholence, R. Tournier: Structure of the 100 K superconductor Ba2YCu3O7 between (5–300) K by neutron powder diffraction, Europhys. Lett. 3, 1301–1307 (1987)

    Google Scholar 

  25. M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, C. W. Chu: Superconductivity at 93 K in a new mixed-phase Y–Ba–Cu–O compound system at ambient pressure, Phys. Rev. Lett. 58, 908–910 (1987)

    Article  ADS  Google Scholar 

  26. N. L. Ross, R. J. Angel, L. W. Finger, R. M. Hazen, C. T. Prewitt: Oxygen-defect perovskites and the -93 K superconductor, American Chemical Society: Symposium Series 351, Chemistry of high-temperature superconductors, New Orleans 1987, ed. by E. D. Nelson, M. S. Wittingham, T. F. George (American Chemical Society, New Orleans 1987) 164–172

    Google Scholar 

  27. M. François, A. Junod, K. Yvon, A. W. Hewat, J. J. Capponi, P. Strobel, M. Marezio, P. Fischer: A study of the Cu–O chains in the high T c superconductor YBa2Cu3O7 by high resolution neutron powder diffraction, Solid State Comm. 66, 1117–1125 (1988)

    Article  ADS  Google Scholar 

  28. J. D. Jorgensen, B. W. Veal, A. P. Paulikas, L. J. Nowicki, G. W. Crabtree, H. Claus, W. K. Kwok: Structural properties of oxygen-deficient YBa2Cu3O7-δ , Phys. Rev. B 41, 1863–1877 (1990)

    Article  ADS  Google Scholar 

  29. E. Kaldis: Oxygen nonstoichiometry and lattice effects in YBa2Cu3O x . In: Handbook on the Physics and Chemistry of Rare Earths, High-Temperature Superconductors II., Vol. 31, ed. by K. A. Gschneidner Jr., L. Eyring, M. B. Maple (Elsevier, Amsterdam, London, New York, Oxford, Paris, Shannon, Tokyo 2001) Chap. 195, pp. 1–186

    Google Scholar 

  30. R. J. Cava, A. W. Hewat, E. A. Hewat, B. Batlogg, M. Marezio, K. M. Rabe, J. J. Krajewski, W. F. Peck Jr., L. W. Rupp Jr.: Structural anomalies, oxygen ordering and superconductivity in oxygen deficient Ba2YCu3O x , Physica C 165, 419–433 (1990)

    Article  ADS  Google Scholar 

  31. J. M. S. Shakle: Crystal chemical substitution and doping of YBa2Cu3O x and related superconductors, Mat. Sci. Engineering R 23, 1–40 (1998)

    Article  Google Scholar 

  32. M. Guillaume, P. Allenspach, W. Henggeler, J. Mesot, B. Roessli, U. Staub, P. Fischer, A. Furrer, V. Trounov: A systematic low-temperature neutron diffraction study of the RBa2Cu3O x (R = yttrium and rare earths; x=6 and 7) compounds, J. Phys.: Condens. Matter 6, 7963–7976 (1994)

    Article  ADS  Google Scholar 

  33. Y. Nakabayashi, Y. Kubo, T. Manato, J. Tabuchi, A. Ochi, K. Utsumi, H. Igarashi, M. Yonezawa: The orthorhombic-tetragonal phase transformation an doxygen deficiency in LnBa2Cu3P7-δ , Jpn. J. Appl. Phys. 27, L64–L66 (1988)

    Article  ADS  Google Scholar 

  34. R. D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A 32, 751–767 (1976)

    Article  ADS  Google Scholar 

  35. L. J. Masur, J. Kellers, C. M. Pegrum, D. A. Cardwell: Fundamentals of superconductivity: Applied properties of superconducting materials. In: Handbook of Superconducting Materials, Superconductivity, Materials and Processes, Vol. I, ed. by D. A. Cardwell, D. S. Ginley (IOP Publishing, Bristol, Philadelphia 2003) pp. 27–52

    Google Scholar 

  36. M. Murakami: Processing of bulk YBaCuO, Supercond. Sci. Technol. 5, 185–203 (1992)

    Article  ADS  Google Scholar 

  37. P. Diko: Characterization techniques: Optical microscopy. In: Handbook of Superconducting Materials, Characterization, Applications and Cryogenics, Vol. II, ed. by D. A. Cardwell, D. S. Ginley (IOP Publishing, Bristol 2003) pp. 1147–1175

    Google Scholar 

  38. C. Meingast, O. Kraut, T. Wolf, H. Wühl, A. Erb, G. Müller-Vogt: Large a-b anisotropy of the expansivity anomaly at T c in untwinned YBa2Cu3O7-δ , Phys. Rev. Lett. 67, 1634–1637 (1991)

    Article  ADS  Google Scholar 

  39. P. Nagel, V. Pasler, C. Meingast, A. I. Rykov, S. Tajima: Anomalously large oxygen-ordering contribution to the thermal expansion of untwinned YBa2Cu3O6.95 single crystals: A glasslike transition near room temperature, Phys. Rev. Lett. 85, 2376–2379 (2000)

    Article  ADS  Google Scholar 

  40. D. Dimos, D. R. Clarke: Surfaces, Inferfaces of Ceramic Materials, NATO ASI series: E173, Proceedings of the NATO Advanced Study Institute on Surfaces and Interfaces of Ceramic Materials, CAES-CNRS, Ile d'Oléron, France 1988, ed. by L. C. Dufour, others (Kluwer Academic, Dordrecht 1989) 301–318

    Google Scholar 

  41. T. A. Friedmann, M. W. Rabin, J. Giapintzakis, J. P. Rice, D. M. Ginsberg: Direct measurement of the anisotropy of the resistivity in the a-b plane of twin-free single-crystal, superconducting YBa2Cu3O7-δ , Phys. Rev. B 42, 6217–6221 (1990)

    Article  ADS  Google Scholar 

  42. J. R. Cooper, S. D. Obertelli, A. Carrington, J. W. Loram: Effect of oxygen depletion on th etransport properties of YBa2Cu3O7-δ , Phys. Rev. B 44, 12086–10289 (1991)

    Article  ADS  Google Scholar 

  43. A. Carrington, D. J. C. Walker, A. P. Mackenzie, J. R. Cooper: Hall effect and resistivity of oxygen-deficient YBa2Cu3O7-δ thin films, Phys. Rev. B 48, 13051–13059 (1993)

    Article  ADS  Google Scholar 

  44. D. T. Verebelyi, D. K. Christen, R. Feenstra, C. Cantoni, A. Goyal, D. F. Lee, M. Paranthaman, P. N. Arendt, R. F. DePaula, J. R. Groves, C. Prouteau: Low angle grain boundary transport in YBa2Cu307-δ coated conductors, Appl. Phys. Lett. 76, 1755–1757 (2000)

    Article  ADS  Google Scholar 

  45. B. Holzapfel, D. Verebelyi, C. Cantoni, M. Paranthaman, B. Sales, R. Feenstra, D. Christen, D. P. Norton: Low angle grain boundary transport properties of undoped and doped Y123 thin film bicrystals, Physica C 341, 1431–1434 (2000)

    Article  ADS  Google Scholar 

  46. K. Takenaka, K. Mizuhashi, H. Takagi, S. Uchida: Interplane charge transport in YBa2Cu3O7-y : Spin-gab effect on in-plane and out-of-plane resistivity, Phys. Rev. B 50, 6534–6537 (1994)

    Article  ADS  Google Scholar 

  47. M. D. Nunez Regueiro, D. Castello: Thermal conductivity of high temperature superconductors, Int. J. Mod. Phys. B 5, 2003–2035 (1991)

    ADS  Google Scholar 

  48. W.-H. Li, J. W. Lynn, Z. Fisk: Magnetic order of the Cu planes and chains in RBa2Cu3O7+x , Phys. Rev. B 41, 4098–4111 (1990)

    Article  ADS  Google Scholar 

  49. J. S. Abell, T. W. Button: Processing: Sintering techniques for YBCO. In: Handbook of Superconducting Materials, Superconductivity, Materials and Processes, Vol. I, ed. by D. A. Cardwell, D. S. Ginley (IOP Publishing, Bristol 2003) pp. 251–258

    Google Scholar 

  50. M. Hikita, Y. Tajima, A. Katsui, Y. Hidaka, S. Iwata, S. Tsurumi: Electrical properties of high-T c superconducting single-crystal Eu1Ba2Cu3O-y, Phys. Rev. B 36, 7199–7202 (1987)

    Article  ADS  Google Scholar 

  51. W. J. Gallagher: Studies at IBM on anisotropy in single crystals of the high-temperature oxide superconductor Y1Ba2Cu3O7-δ , J. Appl. Phys. 63, 4216–4219 (1988), invited

    Article  ADS  Google Scholar 

  52. T. K. Worthington, W. J. Gallagher, T. R. Dinger: Anisotropic nature of high-temperature superconductivity in single-crystal Y1Ba2Cu3O7-δ , Phys. Rev. Lett. 59, 1160–1163 (1987)

    Article  ADS  Google Scholar 

  53. D. Feinberg, C. Villard: Intrinsic pinning and lock-in transition of flux lines in layered type-II superconductors, Phys. Rev. Lett. 65, 919–922 (1990)

    Article  ADS  Google Scholar 

  54. A. Koblischka-Veneva, N. Sakai, S. Tajima, M. Murakami: High temperature superconductors: YBCO, Superconductivity, Materials and Processes, Vol. I, ed. by D. A. Cardwell, D. S. Ginley (IOP Publishing, Bristol, Philadelphia 2003) pp. 893–945

    Google Scholar 

  55. T. R. Dinger, T. K. Worthington, W. J. Gallagher, R. L. Sandstrom: Direct observation of electronic anisotropy in single-crystal Y1Ba2Cu3O7-x , Phys. Rev. Lett. 58, 2687–2690 (1987)

    Article  ADS  Google Scholar 

  56. G. Böttger, I. Mangelschots, E. Kaldis, P. Fischer, C. Krüger, F. Fauth: The influence of Ca doping on the crystal structure and superconductivity of orthorhombic YBa2Cu3O7-δ , J. Phys.: Condens. Matter 8, 8889–8905 (1996)

    Google Scholar 

  57. J. R. Grasmeder, M. T. Weller, P. C. Lanchester, C. E. Meats: Superconductivity in the Y–La–Ba–Cu–O system, Solid State Ionics 32/33, 1115–1124 (1989)

    Article  Google Scholar 

  58. F. Licci, A. Gauzzi, M. Marezio, G. P. Radaelli, R. Masini, C. Chaillout-Bougerol: Structural and electronic effects of Sr substitution for Ba in Y(Ba1-x Sr x )Cu3O w , Phys. Rev. B 58, 15208–15217 (1998)

    Article  ADS  Google Scholar 

  59. E. Kim, I.-S. Yang: Structural analysis of Y–Zn 123 superconductor using X-ray powder diffraction, New Physics (Korean Physical Society) 32, 839–846 (1992)

    Google Scholar 

  60. N. L. Saini, K. B. Garg, H. Rajagopal, A. Sequeira: Neutron diffraction and Hall effect measurements on Y–Ba–Cu(Mn)–O, Solid State Comm. 82, 895–899 (1992)

    Article  ADS  Google Scholar 

  61. B. Roas, L. Schultz, G. Saemann-Ischenko: Anisotropy of the critical current density in epitaxial YBa2Cu3O x films, Phys. Rev. Lett. 64, 479–482 (1990)

    Article  ADS  Google Scholar 

  62. V. Breit, P. Schweiss, R. Hauff, H. Wühl, H. Claus, H. Rietschel, A. Erb, G. Müller-Vogt: Evidence for chain superconductivity in near-stoichiometric YBa2Cu3O x single crystals, Phys. Rev. B 52, R15727–R15730 (1995)

    Google Scholar 

  63. P. Schweiss, W. Reichardt, M. Braden, G. Collin, G. Heger, H. Claus, A. Erb: Static and dynamic displacement in RBa2Cu3O7-δ (R=Y, Ho; δ=0.05, 0.5): A neutron-diffraction study on single crystals, Phys. Rev. B 49, 1387–1396 (1994)

    Article  ADS  Google Scholar 

  64. H. Claus, M. Braun, A. Erb, K. Röhberg, B. Runtsch, H. Wühl, G. Bräuchle, P. Schweib, G. Müller-Vogt, H. v. Löhneysen: The “90 K” plateau of oxygen deficient of YBa2Cu3O7-δ single crystals, Physica C 198, 42–46 (1992)

    Article  ADS  Google Scholar 

  65. H. Claus, U. Gebhard, G. Linker, K. Röhberg, S. Riedling, J. Franz, T. Ishida, A. Erb, G. Müller-Vogt, H. Wühl: Phase separation in YBa2Cu3O7-δ single crystals near δ=0, Physica C 200, 271–276 (1992)

    Article  ADS  Google Scholar 

  66. D.-H. Wu, S. Sridhar: Pinning forces and lower critical fields in YBa2Cu3O y crystals: Temperature dependence and anisotropy, Phys. Rev. Lett. 65, 2074–2077 (1990)

    Article  ADS  Google Scholar 

  67. U. Welp, W. K. Kwok, G. W. Crabtree, K. G. Vandervoort, J. Z. Liu: Magnetic measurements of the upper critical field of YBa2Cu3O7-δ single crystals, Phys. Rev. Lett. 62, 1908–1911 (1989)

    Article  ADS  Google Scholar 

  68. P. Majewski: Phase diagram studies in the system Bi–Pb–Sr–Ca–Cu–O–Ag, Supercond. Sci. Technol. 10, 453 (1997)

    Article  ADS  Google Scholar 

  69. Y. Yamada, Y. Shiohara: Progress of high-T c wires and its application. In: High Temperature Superconductivity, 1: Materials, ed. by A. V. Narlikar (Springer, Berlin, Heidelberg, New York 2004) pp. 291–337

    Google Scholar 

  70. D. L. Feng, A. Damascelli, K. M. Chen, N. Motoyama, D. H. Lu, H. Eisaki, K. Shimizu, J. Shimoyama, K. Kishio, N. Kaneko, M. Greven, G. D. Gu, X. J. Zhou, C. Kim, F. Ronning, N. P. Armitage, Z.-X. Shen: Electronic structure of the trilayer cuprate superconductor Bi2Sr2Ca2Cu3O10+δ , Phys. Rev. Lett. 88, 107001–1 (2002)

    Article  ADS  Google Scholar 

  71. A. Maeda, T. Shibauchi, N. Kondo, K. Uchinokura, M. Kobayashi: Magnetic-field penetration depth and lower critical field of quasi-two-dimensional superconductor Bi2Sr2Ca2Cu2O y , Phys. Rev. B 46, 14234 (1992)

    Article  ADS  Google Scholar 

  72. L. Miu, P. Wagner, U. Frey, A. Hadish, D. Miu, H. Adrian: Vortex unbinding and layer decoupling in epitaxial Bi2Sr2Ca2Cu3O10+δ films, Phys. Rev. B. 52, 4553 (1995)

    Article  ADS  Google Scholar 

  73. I. Matsubara, R. Funahashi, K. Ueno, H. Yamashita, T. Kawai: Lower critical field and reversible magnetization of (Bi,Pb)2Sr2Ca2Cu3O x superconducting whiskers, Physica C 256, 33 (1996)

    Article  ADS  Google Scholar 

  74. S. I. Vedeneev, A. G. M. Jansen, E. Haanappel, P. Wyder: Temperature dependence of the upper critical field of Bi2Sr2CuO x single crystals, Phys. Rev. B 60, 12467 (1999)

    Article  ADS  Google Scholar 

  75. M. Akamatsu, L. X. Chen, H. Ikeda, R. Yoshizaki: Physica C 235-240, 1619 (1994)

    Article  ADS  Google Scholar 

  76. D. C. Johnston, J. H. Cho: Magnetic-susceptibility anisotropy of single-crystal Bi2Sr2CaCu2O8, Phys. Rev. B 42, 8710 (1990)

    Article  ADS  Google Scholar 

  77. T. T. M. Palstra, B. Batlogg, L. F. Scheemeyer, R. B. van Dover, J. Waszczak: Angular dependence of the upper critical field of Bi2.2Sr2Ca0.8Cu2O8+δ , Phys. Rev. B 38, 5102 (1988)

    Article  ADS  Google Scholar 

  78. I. Matsubara, H. Tanigawa, T. Ogura, H. Yamashita, M. Kinoshita, T. Kawai: Upper critical field and anisotropy of the high-T c Bi2Sr2CaCu2O x phase, Phys. Rev. B 45, 7414 (1992)

    Article  ADS  Google Scholar 

  79. Q. Li, M. Suenaga, J. Gohng, D. K. Finnemore, T. Hikata, K. Sato: Reversible magnetic properties of c-axis-oriented superconducting Bi2Sr2Ca2Cu10, Phys. Rev. B 46, 3195 (1992)

    Article  ADS  Google Scholar 

  80. Q. Li, M. Suenaga, T. Hikata, K. Sato: Two-dimensional fluctuations in the magnetization of Bi2Sr2Ca2Cu3O10, Phys. Rev. B 46, 5857 (1992)

    Article  ADS  Google Scholar 

  81. A. V. Narlikar (Ed.): High Temperature Superconductivity, 1: Materials, 2: Engineering Applications (Springer, Berlin, Heidelberg, New York 2004)

    Google Scholar 

  82. S. Martin, A. T. Fiory, R. M. Fleming, L. E. Schneemeyer, J. V. Wasczcak: Normal-state transport properties of Bi2+x Sr2-y CuOδ crystals, Phys. Rev. B 41, 846 (1990)

    Article  ADS  Google Scholar 

  83. T. W. Li, A. A. Menovski, J. J. M. Franse, P. H. Kes: Flux pinning in Bi-2212 single crystals with various oygen contents, Physica C 257, 179 (1996)

    ADS  Google Scholar 

  84. D. R. Harshman, R. N. Kleiman, M. Inui, G. P. Espinosa, D. B. Mitzi, A. Kapitulnik, T. Pfiz, D. L. Williams: Magnetic penetration depth and flux dynamics in single crystal Bi2Sr2CaCu2O8-δ , Phys. Rev. Lett. 67, 3152 (1991)

    Article  ADS  Google Scholar 

  85. H. Enriquez, N. Bontemps, A. A. Zhukov, D. V. Shovkun, M. R. Trunin, A. Buzdin, M. Daumens, T. Tamegai: A compilation of references considering λc(0), Phys. Rev. B 63, 144 (2001)

    Article  Google Scholar 

  86. Y. Ando, G. S. Boebinger, A. Passner, L. F. Schneemeyer, T. Kimura, M. Okuya, S. Watauchi, J. Shimoyama, K. Kishio, K. Tamsaku, N. Ichikawa, S. Uchida: Upper critical fields and irreversibility lines of optimal doped high-T c cuprates, Phys. Rev. B 60, 12475 (1999)

    ADS  Google Scholar 

  87. A. Attenberger: Elektrische Transportmessungen über definierte Korngrenzen-Strukturen in epitaktischen Bi2223-Schichten. Ph.D. Thesis (Technische Universität Dresden, Dresden 2000)

    Google Scholar 

  88. I. L. Landau, H. R. Ott: Temperature dependence of the upper critical field of type-II superconductors from isothermal magnetization data: Application to high-temperature superconductors, Phys. Rev. B 66, 144506 (2002)

    Article  ADS  Google Scholar 

  89. R. Wesche: High-Temperature Superconductors: Materials, Properties, and Applications (Kluwer, Boston, Dordrecht, London 1998)

    Google Scholar 

  90. P. Schmitt, P. Kummeth, L. Schultz, G. Saemann-Ischenko: Two-dimensional behavior and critical-current anisotropy in epitaxial Bi2Sr2CaCu2O8+x thin films, Phys. Rev. Lett. 67, 267 (1991)

    Article  ADS  Google Scholar 

  91. T. Amrein, L. Schultz, B. Kabius, K. Urban: Orientation dependence of grain-boundary critical current densities in high-T c bicrystals, Phys. Rev. B 51, 6792 (1995)

    Article  ADS  Google Scholar 

  92. G. Balestrino, M. Marinelli, E. Milani, L. Reggiani, R. Vaglio, A. A. Varlamov: Exess conductivity in 2:2:1:2-phase Bi–Sr–Ca–Cu–O epitaxial thin films, Phys. Rev. B 46, 14919 (1992)

    Article  ADS  Google Scholar 

  93. K. Endo, H. Yamasaki, S. Misawa, S. Yoshida, K. Kajimura: Lett. Nature 355, 327 (1992)

    Article  ADS  Google Scholar 

  94. P. Wagner, F. Hillmer, U. Frey, H. Adrian, T. Steinborn, L. Ranno, A. Elschner, I. Heyvaert, Y. Bruynseraede: Preparation and structural characterisation of thin epitaxial Bi2Sr2CaCu2O8+δ films with T c in the 90 K range, Physica C 215, 123 (1993)

    Article  ADS  Google Scholar 

  95. Q. Li, Y. N. Tsay, M. Suenaga, R. A. Klemm, G. D. Gu, N. Koshizuka: Bi2Sr2CaCu2O8+δ bicrystal c-axis twist Josephson junktions: A new phase sensitive test of order parameter symmetry, Phys. Rev. Lett. 83, 4160 (1999)

    Article  ADS  Google Scholar 

  96. N. Tomita, Y. Takahashi, Y. Ishida: Preparation of bicrystal in a Bi–Sr–Ca–O superconductor, Jpn. J. Appl. Phys. 29, 1 (1990)L 30

    Article  Google Scholar 

  97. Q. Li, Y. N. Tsay, M. Suenaga, G. Wirth, G. D. Du, N. Koshizuka: Superconducting transport properties of 2.2-GeV Au-ion irradiated c-axis twist Bi2Sr2CaCu2O8+δ bicrystals, Appl. Phys. Lett. 74, 1323 (1999)

    Article  ADS  Google Scholar 

  98. S. Chu, M. E. McHenry: Growth and characterization of (Bi,Pb)2Sr2Ca2Cu3O x single crystals, J. Mater. Res. 13, 589 (1998)3

    Article  ADS  Google Scholar 

  99. B. Sailer, F. Schwaigerrer, K. Gibson, H.-J. Meyer, M. Lehmann, L. Woodall, M. Gerards: Effect of precursor powder properties on magnetic and electrical transport properties of (Bi,Pb)-2223-tapes, IEEE Trans. Appl. Supercond. 11, 2975 (2001)

    Article  Google Scholar 

  100. H. F. Poulsen, L. Gottschalck Andersen, T. Frello, S. Prantontep, N. H. Andersen, S. Garbe, J. Madsen, A. Abrahamsen, M. D. Bentzon, M. von Zimmermann: In situ study of equilibrium phenomena and kinetics in a BSCCO/Ag tape, Physica C 315, 254 (1999)

    Article  ADS  Google Scholar 

  101. E. Giannini, E. Bellingeri, R. Passerini, R. Flükiger: Direct observation of the Bi,Pb (2223) phase formation inside Ag-sheathed tapes and quantitative secondary phase analysis by means of in situ high-temperature neutron diffraction, Physica C 315, 185 (1999)

    Article  ADS  Google Scholar 

  102. T. Fahr, H. P. Trinks, R. Schneider, C. Fischer: Investigation of the formation of the Bi-2223/Ag tapes by in situ high temperature neutron diffraction, IEEE Trans. Appl. Supercond. 11, 3399 (2001)

    Article  Google Scholar 

  103. T. Lang, B. Heeb, D. Buhl, L. J. Gaukler: Proc. of the Forth Intern. Conf. And Exhibition, World Congress on Supercoductivity, June 27–July 1, 1994, Orlando (Florida), Vol. 2, ed. by K. Krishen, C. Burnham, p. 753

    Google Scholar 

  104. J. C. Grivel, R. Flükiger: Visualization of the formation of the (Bi,Pb)2Sr2Ca2Cu3O10+δ phase, Supercond. Sci. Technol. 9, 555 (1996)

    Article  ADS  Google Scholar 

  105. L. Y. Wang, W. Bian, Y. Zhu, Z. X. Cai, D. O. Welch, R. L. Sabatini, T. R. Thurston, M. Suenaga: A kinetic mechanism for the formation of aligned (Bi,Pb)2Sr2Ca2Cu3O10 in a powder-in-tube processed tape, Appl. Phys. Lett. 69, 580 (1996)

    Article  ADS  Google Scholar 

  106. G. W. Wang, M. D. Bentzon, P. Vase: High critical current and detect free km long Bi-2223/Ag-alloy multifilament tapes, Proceedings of EUCAS 1999, ed. by X. Obradors, F. Sandiumenge, J. Fontcuberta, Institut of Physics Conference Ser. Number 167, Vol. 1, p. 459

    Google Scholar 

  107. C. Fischer, T. Fahr, A. Hütten, U. Schläfer, M. Schubert, C. Rodig, H. P. Trinks: Technology of Bi,Pb-2223 tape fabrication with Ag and Ag alloy sheaths for electric power systems, Supercond. Sci. Technol. 11, 995 (1998)

    Article  ADS  Google Scholar 

  108. P. Vase, R. Flükiger, M. Leghissa, B. Glowcki: Current status of high-T c wire, Supercond. Sci. Technol. 13, R.71 (2000)

    Google Scholar 

  109. L. Masur: Adv. Cryog. Eng. 46, 871 (2000)

    Google Scholar 

  110. P. M. Grant: IEEE Trans. Appl. Supercond. 7, 7 (1997)

    Article  MATH  Google Scholar 

  111. A. P. Malozemoff, W. Carter, S. Fleshler, L. Fritzemeier, Q. Li, L. Masue, P. Miles, D. Parker, R. Parella, E. Podtburg, G. N. Riley Jr., M. Rupich, J. Scudiere, W. Zhang: HTS wire at commercial levels, IEEE Trans. Appl. Supercond. 9, 2469 (1999)

    Article  Google Scholar 

  112. T. Hasegawa, N. Ohtani, T. Koizumi, Y. Aoki, S. Nagaya, N. Hirano, L. Motowidlo et al.: Improvement of superconducting properties of B-2212 round wire and primary test results of large capacity Rutherford cable, IEEE Trans. Appl. Supercond. 11, 3034 (2001)

    Article  Google Scholar 

  113. H. S. Pan, E. W. Hudson, K. M. Lang, H. Elsaki, S. Uchida, J. C. Davis: Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+δ , Nature 403, 746 (2000)

    Article  ADS  Google Scholar 

  114. A. Diaz, L. Mechin, P. Berghuis, J. E. Evetts: Evidence for vortex pinning by dislocations in YBa2Cu3O7-δ low-angle grain boundaries, Phys. Rev. Lett. 80, 3855 (1998)

    Article  ADS  Google Scholar 

  115. B. Dam, J. L. Huijbregtse, F. C. Klaassen, R. C. F. van der Geest, G. Doornbos, J. H. Rector, A. M. Testa, S. Freisem, J. C. Martinez, B. Stäuble-Pümpin, R. Griessen: Origin of high critical currents in YBa2Cu3O7-δ superconducting films, Nature 399, 439 (1999)

    Article  ADS  Google Scholar 

  116. L. Bulaevskij, L. Daemen, M. Maley, J. Coulter: Limits to the critical current in high-T c superconducting tapes, Phys. Rev. B 48, 13798 (1993)

    Article  ADS  Google Scholar 

  117. B. Hensel, G. Grasso, R. Flükiger: Limits to the critical transport current in superconducting (Bi,Pb)2Sr2Ca2Cu3O10 silver sheathed tapes: The railway-switch model, Phys. Rev. B 51, 15456 (1995)

    Article  ADS  Google Scholar 

  118. G. N. Riley, A. P. Malozemoff, Q. Li, S. Fleshler, T. G. Holesinger: The freeway model: New concepts in understanding supercurrent transport in Bi-2223 tapes, JOM 49 10, 24 (1997)

    Article  Google Scholar 

  119. T. Staiger: Stromtransport in supraleitenden (Bi,Pb)2Sr2Ca2Cu3O x /Ag-Bändern. Ph.D. Thesis (Technische Universität Dresden, Dresden 1998)

    Google Scholar 

  120. K-H. Müller, G. Drechsler, S-L. Fuchs, V. N. Narozhnyi: Magnetic, superconducting properties of rare earth borocarbides of the type RNi 2 B 2 C, Handbook of Magnetic Materials, Vol. 14, ed. by K. H. J. Buschow (Elsevier, Amsterdam 2002) pp. 199–306

    Google Scholar 

  121. R. Flükiger, W. Klose (Eds.): Superconductors, Landolt–Börnstein, New Series http://www.springerlink.com/link.asp?id=t4wrml3m7w3d (Springer, Berlin, Heidelberg 1990)

    Google Scholar 

  122. T. Q. Huang He, A. P. Ramirez, Y. Wang, K. A. Regan, N. Rogado, M. A. Hayward, M. K. Haas, J. I. Slusky, K. Inumara, H. W. Zandbergen, N. P. Ong, R. J. Cava: Nature 411, 54 (2001)

    Article  ADS  Google Scholar 

  123. K. Sakamaki, H. Wada, H. Nozaki, Y. Onuki: Solid State Commun. 112, 323 (1999)

    Article  ADS  Google Scholar 

  124. K. Sakamaki, H. Wada, H. Nozaki, Y. Onuki: Solid State Commun. 118, 113 (2001)

    Article  ADS  Google Scholar 

  125. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu: Nature 410, 63 (2001)

    Article  ADS  Google Scholar 

  126. R. Nagarajan, C. Mazumdar, Z. Hossain, S. K. Dhar, K. V. Gopalakrishnan, L. C. Gupta, C. Godart, B. C. Padalia, R. Vijayaraghavan: Phys. Rev. Lett. 72, 274 (1994)

    Article  ADS  Google Scholar 

  127. R. J. Cava, H. Takagi, H. W. Zandbergen, J. J. Krajewski, W. F. Peck Jr., T. Siegrist, B. Batlogg, R. B. van Dover, R. J. Felder, K. Mizuhashi, J. O. Lee, S. Uchida: Nature 367, 252 (1994)

    Article  ADS  Google Scholar 

  128. Rosseinsky et al.: Superconductivity at 28 K in Rb x C60, Phys. Rev. Lett. 60 (1991)

    Google Scholar 

  129. M. I. Eremets, V. V. Struzhkin, H.-K. Mao, R. J. Hemley: Science 293, 272 (2001)

    Article  ADS  Google Scholar 

  130. C. Buzea, T. Yamashita: Supercond. Sci. Technol. 14, 115 (2001)

    Article  ADS  Google Scholar 

  131. C. C. Lai, M. S. Lin, Y. B. You, H. C. Ku: Phys. Rev. B 51, 420 (1995)

    Article  ADS  Google Scholar 

  132. R. Flükiger, W. Klose (Eds.): Superconductors, Landolt–Börnstein, New Series http://www.springerlink.com/link.asp?id=t4wrml3m7w3d (Springer, Berlin, Heidelberg 1994)

    Google Scholar 

  133. Z. Xou-xiang, H. Shou-an: Solid State Commun. 45, 281 (1983)

    Article  ADS  Google Scholar 

  134. H. Ihara, Y. Kimura, K. Senzaki, H. Kezuka, M. Hirabayashi: Phys. Rev. B 31, 3177 (1985)

    Article  ADS  Google Scholar 

  135. S. Yamanaka, H. Kawaji, K. Hotehama, M. Ohashi: Adv. Mater. 8, 771 (1996)

    Article  Google Scholar 

  136. S. Yamanaka, K. Hotehama, H. Kawaji: Nature 392, 580 (1998)

    Article  ADS  Google Scholar 

  137. R. Flükiger, W. Klose (Eds.): Superconductors, Landolt–Börnstein, New Series http://www.springerlink.com/link.asp?id=t4wrml3m7w3d (Springer, Berlin, Heidelberg 1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag

About this entry

Cite this entry

Fischer, C., Fuchs, G., Holzapfel, B., Schüpp-Niewa, B., Warlimont, H. (2005). Superconductors. In: Martienssen, W., Warlimont, H. (eds) Springer Handbook of Condensed Matter and Materials Data. Springer Handbooks. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30437-1_10

Download citation

Publish with us

Policies and ethics