Skip to main content

N-Body Computational Methods

  • Reference work entry
Encyclopedia of Parallel Computing
  • 496 Accesses

Synonyms

Particle dynamics; Particle methods

Definition

N-body computation refers to a class of simulation methods that model the behavior of a physical system using a set of discrete entities (e.g., atoms, astrophysical bodies, etc.) and a set of interactions among them (coupling potentials). These simulations are typically time dependent. In each timestep, attributes of the discrete entities are updated (typically force, acceleration, velocity, and position), and the process is repeated, to study spatiotemporal evolution of the system.

Discussion

Introduction

Many interesting physical problems can be modeled as the time-evolution of a set of interacting, classical objects (assumed to be point masses). The behavior of these particles is governed by Newton’s second law. A series of seminal efforts by, among other notables, Newton, Euler, Lagrange, Hamilton, Delaunay, and Sundman demonstrated the difficulty of analitically solving the problem for systems comprised of more than two...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Aluru S (1996) Greengard’s n-body algorithm is not O(n). SIAM J Sci Comput 17(3):773–776

    MATH  MathSciNet  Google Scholar 

  2. Appel AW (1985) An efficient program for many-body simulation. SIAM J Comput 6

    Google Scholar 

  3. Barnes J, Hut P (1986) A hierarchical o(n log n) force calculation algorithm. Nature 324

    Google Scholar 

  4. Callahan PB, Kosaraju SR (May 1992) A decomposition of multi-dimensional point-sets with applications to k-nearest-neighbors and n-body potential fields. In: Proceedings of 24th annual ACM symposium on theory of computing, Victoria, BC, Canada, pp 546–556

    Google Scholar 

  5. Esselink K (1992) The order of Appel’s algorithm. Inform Process Lett 41:141–147

    MATH  Google Scholar 

  6. Grama A, Kumar V, Sameh A (1994) Scalable parallel formulations of the Barnes–Hut method for n-body simulations. In: Supercomputing ’94 proceedings

    Google Scholar 

  7. Grama A, Gupta A, Karypis G, Kumar V (2004) Introduction to parallel computing. Addison Wesley, Reading, MA

    Google Scholar 

  8. Greengard L (1987) The rapid evaluation of potential fields in particle systems. MIT Press, Cambridge

    Google Scholar 

  9. Greengard L, Gropp W (1987) A parallel version of the fast multipole method. Parallel Process Sci Comput, pp 213–222

    Google Scholar 

  10. Greengard L, Rokhlin V (1987) A fast algorithm for particle simulations. J Comp Phys 73:325–348

    MATH  MathSciNet  Google Scholar 

  11. Singh J, Holt C, Hennessy J, Gupta A (1993) A parallel adaptive fast multipole method. In: Proceedings of the supercomputing ’93 conference

    Google Scholar 

  12. Warren M, Salmon J (1993) A parallel hashed oct-tree N-body algorithm. In: Supercomputing ’93 proceedings, IEEE Comp. Soc. Press, Washington, DC, pp 12–21

    Google Scholar 

  13. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kal L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802

    Google Scholar 

  14. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Google Scholar 

  15. Bowers KJ, Dror RO, Shaw DE (2007) Zonal methods for the parallel execution of range-limited N-body simulations. J Comp Phys 221:303–329

    MATH  MathSciNet  Google Scholar 

  16. Schlick T, Skeel RD, Brunger AT, Kale LV, Board JA Jr, Hermans J, Schulten K (1999) Algorithmic challenges in computational molecular biophysics. J Comput Phys 151:9–48

    MATH  MathSciNet  Google Scholar 

  17. Andersen HC (1983) Rattle: a velocity version of the SHAKE algorithm for molecular dynamics calculations. J Comput Phys 52:24

    MATH  Google Scholar 

  18. Garcia-Archilla B, Sanz-Serna JM, Skeel RD (1998) Long-time-step methods for oscillatory differential equations. SIAM J Sci Comput 20:930

    MathSciNet  Google Scholar 

  19. Mandziuk M, Schlick T (1995) Resonance in the dynamics of chemical systems simulated by the implicit midpoint scheme. Chem Phys Lett 237:525

    Google Scholar 

  20. Schlick T, Mandziuk M, Skeel RD, Srinivas K (1998) Nonlinear resonance artifacts in molecular dynamics simulations. J Comput Phys 139:1

    MathSciNet  Google Scholar 

  21. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J Comput Phys 23:327

    Google Scholar 

  22. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Google Scholar 

  23. Voter AF, Montalenti F, Germann TC (2002) Extending the time scale in atomistic simulation of materials. Annu Rev Mater Res 32:32146

    Google Scholar 

  24. Voter AF (1998) Parallel replica method for dynamics of infrequent events. Phys Rev B 57:22

    Google Scholar 

  25. Voter AF (1997) Hyperdynamics: accelerated molecular dynamics of infrequent events. Phys Rev Lett 78:3908–3911

    Google Scholar 

  26. Voter AF (1997) A method for accelerating the molecular dynamics simulation of infrequent events. J Chem Phys 106:4665

    Google Scholar 

  27. Steiner MM, Genilloud PA, Wilkins JW (1998) Simple bias potential for boosting molecular dynamics with the hyperdynamics scheme. Phys Rev B 57:17

    Google Scholar 

  28. Fang QF, Wang R (2000) Atomistic simulation of the atomic structure and diffusion within the core region of an edge dislocation in aluminum. Phys Rev B 62:9317–9324

    Google Scholar 

  29. Montalenti F, Voter AF (2001) Applying accelerated molecular dynamics to crystal growth. Phys Stat Solidi B 226:21–27

    Google Scholar 

  30. Henkelman G, Jonsson H (2001) Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table. J Chem Phys 115:9657

    Google Scholar 

  31. Frenkel D (2002) Understanding molecular simulation. Academic, New York

    Google Scholar 

  32. Ewald PP (1921) The calculation of optical and electrostatic grid potential. Ann Phys 64:253

    MATH  Google Scholar 

  33. Mardline RA, Aarseth SJ (2001) Tidal interactions in star cluster simulations. Mon Not R Astron Soc 321:398

    Google Scholar 

  34. Fryxell B, Olson K, Ricker P, Timmes FX, Zingale M, Lamb DQ, MacNeice P, Rosner R, Truran JW Tufo H (2000) FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophysical J 131(Suppl.):273334

    Google Scholar 

  35. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519

    Google Scholar 

  36. Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72:2384

    Google Scholar 

  37. Berendsen HC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684

    Google Scholar 

  38. Parrinello M, Rahaman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182

    Google Scholar 

  39. Louwerse MJ, Baerends EJ (2006) Calculation of pressure in case of periodic boundary conditions. Chem Phys Lett 421:138

    Google Scholar 

  40. van Duin ACT, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105:9396

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

Grama, A.Y., Fogarty, J., Aktulga, H., Pandit, S. (2011). N-Body Computational Methods. In: Padua, D. (eds) Encyclopedia of Parallel Computing. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09766-4_97

Download citation

Publish with us

Policies and ethics