Skip to main content

Learning Significant Fourier Coefficients over Finite Abelian Groups

2003; Akavia, Goldwasser, Safra

  • Reference work entry
Encyclopedia of Algorithms

Keywords and Synonyms

Learning heavy fourier coefficients; Finding heavy fourier coefficients                    

Problem Definition

Fourier transform is among the most widely used tools in computer science. Computing the Fourier transform of a signal of length N may be done in time \( { \Theta(N\log N) } \) using the Fast Fourier Transform (FFT) algorithm. This time bound clearly cannot be improved below \( { \Theta(N) } \), because the output itself is of length N. Nonetheless, it turns out that in many applications it suffices to find only the significant Fourier coefficients, i. e., Fourier coefficients occupying, say, at least \( { 1\% } \)of the energy of the signal. This motivates the problem discussed in this entry: the problem of efficiently finding and approximating the significant Fourier coefficients of a given signal (SFT, in short). A naive solution for SFT is to first compute the entire Fourier transform of the given signal and then to output only the significant Fourier coefficients;...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For readers more accustomed to vector notation, the authors remark that there is a simple correspondence between vector and functional notation. For example, a one-dimensional signal \( { (v_1,\dots, v_N)\in \mathbb{C^N} } \) corresponds to the function \( { f\colon\mathbb{Z}_N\to\mathbb{C} } \) defined by \( { f(i)=v_i } \) for all \( { i=1,\dots, N } \). Likewise, a two-dimensional signal \( { M\in \mathbb{C}^{N_1\times N_2} } \) corresponds to the function \( { f\colon\mathbb{Z}_{N_1}\times\mathbb{Z}_{N_2}\to\mathbb{C} } \) defined by \( { f(i,j)=M_{ij} } \) for all \( { i=1,\dots, N_1 } \) and \( { j=1,\dots, N_2 } \).

  2. 2.

    Say that an algorithm is given oracle access to a function f over G, if it can request and receive the value f(x) for any \( { x\in G } \) in unit time.

  3. 3.

    \( { \mathcal{P}=\{{P_N\colon\mathbb{Z}_N\to{\{ 0,1 \}}}\}_{{N\in\mathbb{Z}^+}} } \) is a family of efficiently computable functions if there is an algorithm that given any \( { {N\in\mathbb{Z}^+} } \) and \( { x\in \mathbb{Z}_N } \) outputs \( { P_N(x) } \) in time \( { {poly}(\log N) } \).

  4. 4.

    A family of functions \( { \mathcal{P} =\{{P_N\colon \mathbb{Z}_N\to{\{ 0,1 \}}}\}_{N\in\mathbb{Z}^+} } \) is non-negligibly far from constant if \( { \forall {N\in\mathbb{Z}^+} } \) and \( { b\in{\{ 0,1 \}} } \), \( { \mathrm{Pr}_{j\in\mathbb{Z}_N}[P_N(j)=b]\le 1-{poly}(1/\log N) } \).

Recommended Reading

  1. Akavia, A., Goldwasser, S.: Manuscript submitted as an NSF grant, awarded (2005) CCF-0514167

    Google Scholar 

  2. Akavia, A., Goldwasser, S., Safra, S.: Proving hard-core predicates using list decoding. In: Proceedings of the 44th Symposium on Foundations of Computer Science (FOCS'03), pp. 146–157. IEEE Computer Society (2003)

    Google Scholar 

  3. Atici, A., Servedio, R.A.: Learning unions of ω(1)-dimensional rectangles. In: ALT, pp. 32–47 (2006)

    Google Scholar 

  4. Blum, M., Micali, S.: How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits. SIAM J. Comput. 4(13), 850–864 (1984)

    Article  MathSciNet  Google Scholar 

  5. Cormode, G., Muthukrishnan, S.: Combinatorial algorithms for compressed sensing. In: Structural Information and Communication Complexity, 13th International Colloquium, SIROCCO (2006), Chester, UK, July 2–5, 2006 pp. 280–294

    Google Scholar 

  6. Gilbert, A.C., Guha, S., Indyk, P., Muthukrishnan, S., Strauss, M.: Near-optimal sparse fourier representations via sampling. In: Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pp. 152–161. ACM Press (2002)

    Google Scholar 

  7. Gilbert, A.C., Muthukrishnan, S., Strauss, M.J.: Improved time bounds for near-optimal sparse fourier representation via sampling. In: Proceedings of SPIE Wavelets XI, San Diego, CA 2005 (2005)

    Google Scholar 

  8. Gilbert, A.C., Strauss, M.J., Tropp, J.A., Vershynin, R.: One sketch for all: Fast algorithms for compressed sensing. In: 39th ACM Symposium on Theory of Computing (STOC'07)

    Google Scholar 

  9. Goldreich, O., Levin, L.: A hard-core predicate for all one-way functions. In: 27th ACM Symposium on Theory of Computing (STOC'89) (1989)

    Google Scholar 

  10. Mansour, Y.: Randomized interpolation and approximation of sparse polynomials. SIAM J. Comput. 24, 357–368 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sudan, M.: List decoding: algorithms and applications. SIGACT News 31, 16–27 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Akavia, A. (2008). Learning Significant Fourier Coefficients over Finite Abelian Groups. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_199

Download citation

Publish with us

Policies and ethics