Skip to main content

Na+, K+-ATPase in the Brain: Structure and Function

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Maintenance of the Na+ and K+ gradients between the intracellular and extracellular compartments of animal cells is a prerequisite for basic cellular homeostasis and for diverse functions of specialized cells. Na+, K+-ATPase (sodium- and potassium-activated adenosine 5′-triphosphatase), also called Na+ pump or Na+, K+-pump, is an ubiquitous membrane transport protein in mammalian cells, responsible to establish and maintain high K+ and low Na+ concentration in the cytoplasm; it is essential for normal resting membrane potentials and diverse cellular activities. As all ATPases, it hydrolyzes ATP and occludes ions within the membrane inserted segment of the protein during the translocation process. This system couples the hydrolysis of one molecule of ATP to exchange three sodium for two potassium ions, thus maintaining the normal gradient of these cations in animal cells. It acts as an electrogenic ion transporter, which is autophosphorylated on an aspartic acid residue by the gamma phosphate group of the ATP molecule that it hydrolyzes. Oxidative metabolism is very active in brain, where large amounts of chemical energy as ATP molecules are consumed, mostly required to maintain cellular Na+/K+ gradients that underlie resting and action potentials, which are involved in nerve impulse propagation, neurotransmitter release and cation homeostasis.

Na+, K+-ATPase is an olygomeric enzyme consisting of α and β subunits, both required for enzyme function. The α subunit is the catalytic one which crosses ten times the membrane; the binding sites for ATP and the inhibitor ouabain as well as ion occlusion occur in this subunit. Three isoforms with cell-type and development-specific expression patterns are present in brain. Subunits α1, α2, and α3 bind ouabain with low, intermediate and high affinity, respectively; the last two isoforms are associated to neurons whereas the first is related to glial cells. The β subunit regulates the activity and conformational stability of the α subunit, is highly glycosylated and presents a single-transmembrane span. It seems to participate in the modulation of enzyme affinity for K+ and Na+ and is important for ATP hydrolysis, ion transport, and binding of inhibitors such as ouabain. This subunit must interact with α subunit in order to accomplish ion transport. In association with the αβ dimmer there is a third subunit which belongs to the FXYD family proteins. It modulates transport function of the enzyme, seems not essential for functional Na+, K+-ATPase but most likely plays a regulatory role in a tissue-specific manner. These small proteins are considered as channels or regulators of ion channels; they are hydrophobic type I proteins with a single-transmembrane span. The mammalian FXYD proteins from FXYD1 to FXYD7 exhibit tissue-specific distribution. FXYD7 is expressed exclusively in the brain, it is associated with α1-β isozymes and is most likely involved in neuronal excitability. Phospholemman (FXYD1) is highly expressed in selected structures in the CNS.

Due to changing physiological needs, diverse regulatory mechanisms are operative to ensure not only appropriate expression of Na+, K+-ATPase but also required enzyme activity. Multiple mechanisms can regulate Na+, K+-ATPase activity, coherent with the diverse functional roles in different conditions, which leads this protein to be vulnerable to pathogenic insults and a target for therapeutics. Besides its dependence for ATP, this enzyme activity is regulated by phosphorylation state, endogenous ouabain-like substances, neurotransmitters, oxidant stress such as reactive oxygen species, and diverse peptides.

In addition to pumping ions, Na+, K+-ATPase seems to act as a signal transducer. Binding of ouabain to Na+, K+-ATPase changes the interaction of the enzyme with neighboring membrane proteins inducing the formation of multiple signaling modules, leading to Src kinase activation, transactivation of the epidermal growth factor receptor and enhanced formation of reactive oxygen species. Interaction of such signals results in the activity of several other cascades, including phospholipase C activation. The inhibition of Src blocks many of the ouabain-activated signaling pathways. Src binds to Na+, K+-ATPase directly and ouabain modulates the interaction between Na+, K+-ATPase and Src, leading to Src activation. The possibility that signaling Na+, K+-ATPase is concentrated in an separate pool on the plasma membrane has been advanced and potential interaction between Na+, K+-ATPase and caveolins studied, due to enzyme concentration in caveloae/rafts.

Apoptosis has been recognized in a wide range of disease states, and Na+, K+-ATPase deficiency seems to be a contributor to apoptosis and pathogenesis. Physiological concentration of intracellular K+ acts as a repressor of apoptotic effectors. The pro-apoptotic disruption of K+ homeostasis can be mediated by over-activated K+ channels or ionotropic glutamate receptor, accompanied by decreased K+ uptake provoked by Na+, K+-ATPase disfunction.

Na+, K+-ATPase activity is reduced or is insufficient to maintain adequate ionic balances during and after episodes of hypoglycemia, ischemia or epilepsy, as well as after administration of excitotoxins like glutamate agonists. Besides, a relationship between endogenous Na+, K+-ATPase inhibitors with central dysfunction as occurs in Parkinson's disease, CNS glioma, schizophrenia and epilepsy has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DARPP-32:

dopamine- and cAMP-regulated phosphoprotein of 32 kDa

HPLC:

high performance liquid chromatography

Na+, K+-ATPase:

sodium- and potassium-activated adenosine 5′-triphosphatase

PKC:

protein kinase C

PP1:

protein phosphatase 1

References

  • Akagawa K, Hara N, Tsukada Y. 1984. Partial purification and properties of the inhibitors of Na+, K+-ATPase and ouabain-binding in bovine central nervous system. J Neurochem 42: 775–780.

    CAS  PubMed  Google Scholar 

  • Albers RW, Siegel GJ. 1999. Membrane transport. Basic Neurochemistry, 6th edn. Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD, editors. Philadelphia: Lippincott-Raven; pp. 95–118.

    Google Scholar 

  • Antolovic R, Bruller HJ, Bunk S, Linder D, Schoner W. 1991. Epitope mapping by amino-acid-sequence-specific antibodies reveals that both ends of the alpha subunit of Na+/K(+)-ATPase are located on the cytoplasmic side of the membrane. Eur J Biochem 199: 195–202.

    CAS  PubMed  Google Scholar 

  • Bagrov AY, Fedorova OV, Dmitrieva RI, Howald WN, Hunter AP, et al. 1998. Characterization of a urinary bufodienolide Na+, K+-ATPase inhibitor in patients after acute myocardial infarction. Hypertension 31: 1097–1103.

    CAS  PubMed  Google Scholar 

  • Bagrov AY, Bagrov YY, Fedorova OV, Kashkin VA, Patkina NA, et al. 2002. Endogenous digitalis-like ligands of the sodium pump: possible involvement in mood control and ethanol addiction. Eur Neuropsychopharmacol 12: 1–12.

    CAS  PubMed  Google Scholar 

  • Bai M. 2004. Dimerization of G-protein-coupled receptors: roles in signal transduction. Cell Signal 16: 175–186.

    CAS  PubMed  Google Scholar 

  • Balduini W, Costa LG. 1990. Characterization of ouabain-induced phosphoinositide hydrolysis in brain slices of the neonatal rat. Neurochem Res 15: 1023–1029.

    CAS  PubMed  Google Scholar 

  • Beguin P, Wang X, Firsov D, Puoti A, Claeys D, et al. 1997. The gamma subunit is a specific component of the Na, K-ATPase and modulates its transport function. EMBO J. 16: 4250–4260.

    CAS  PubMed  Google Scholar 

  • Beguin P, Crambert G, Monnet-Tschudi F, Uldry M, Horisberger JD, et al. 2002. FXYD7 is a brain-specific regulator of NaK-ATPase alpha 1-beta isozymes. EMBO J 21: 3264–3273.

    CAS  PubMed  Google Scholar 

  • Berrebi-Bertrand I, Maixent JM, Christe G, Leleièvre LG. 1990. Two active Na+/K+-ATPases of high affinity for ouabain in adult rat brain membranes. Biochim Biophys Acta 1021: 148–156.

    CAS  PubMed  Google Scholar 

  • Bertorello AM, Aperia A, Walaas SI, Nairn AC, Greengard P. 1991. Phosphorylation of the catalytic subunit of Na+, K+-ATPase inhibits the activity of the enzyme. Proc Natl Acad Sci USA 88: 11359–1362.

    CAS  PubMed  Google Scholar 

  • Blanco G, Mercer RW. 1998. Isozymes of the Na-K-ATPase: heterogeneity in structure diversity in function. Am J Physiol-Renal Physiol 275: F633–F650.

    CAS  Google Scholar 

  • Bojorge G, Rodríguez de Lores Arnaiz G. 1987. Insulin modifies Na+, K+-ATPase activity of synaptosomal membranes and whole homogenates prepared from rat cerebral cortex. Neurochem Int 11: 11–16.

    CAS  PubMed  Google Scholar 

  • Budzikowski AS, Huang BS, Leenen FH. 1998. Brain “ouabain”, a neurosteroid mediates sympathetic hyperactivity in salt-sensitive hypertension. Clin Exp Hypertens 20: 119–140.

    CAS  PubMed  Google Scholar 

  • Butt AN, Semra YK, Ho CS, Swaminathan R. 1997. Effect of high salt intake on plasma and tissue concentration of endogenous ouabain-like substance in the rat. Life Sci 61: 2367–2373.

    CAS  PubMed  Google Scholar 

  • Calviño MA, Peña C, Rodríguez de Lores Arnaiz G. 2001. An endogenous Na+, K+-ATPase inhibitor enhances phosphoinositide hydrolysis in neonatal but not in adult rat brain cortex. Neurochem Res 26: 1253–1259.

    PubMed  Google Scholar 

  • Chauhan NB, Lee JM, Siegel GJ. 1997. NaK-ATPase mRNA levels and plaque load in Alzheimer's disease. J Mol Neurosci 9: 151–166.

    CAS  PubMed  Google Scholar 

  • Chow DC, Forte JG. 1995. Functional significance of the beta-subunit for heterodimeric P-type ATPases. J Exp Biol 198: 1–17.

    CAS  PubMed  Google Scholar 

  • Chow MK, Shao Q, Ren B, Leenen FH, Van Huysse JW. 2002. Changes in brain Na, K-ATPase isoform expression and enzymatic activity after aortic constriction. Brain Res 944: 124–134.

    CAS  PubMed  Google Scholar 

  • Cornelius F, Mahmmoud YA. 2003. Functional modulation of the sodium pump: the regulatory proteins “Fixit”. News Physiol Sci 18: 119–124.

    CAS  PubMed  Google Scholar 

  • Crambert G, Beguin P, Uldry M, Monnet-Tschudi F, Horisberger JD, et al. 2003. FXYD7, the first brain- and isoform-specific regulator of Na, K-ATPase: biosynthesis and function of its posttranslational modifications. Ann N Y Acad Sci 986: 444–448.

    CAS  PubMed  Google Scholar 

  • De Robertis E. 1983. The synaptosome. Two decades of cell fractionation of the brain. Intern Brain Res Org Monogr Ser 10: 1–10.

    CAS  Google Scholar 

  • DiPolo R, Beaugé L. 1991. Regulation of Na–Ca exchange. An overview. Ann N Y Acad Sci 639: 100–111.

    CAS  PubMed  Google Scholar 

  • Eakle KA, Kabalin MA, Wang SG, Farley RA. 1994. The influence of beta subunit structure on the stability of Na+/K+-ATPase complexes and interaction with K+. J Biol Chem 269: 6550–6557.

    CAS  PubMed  Google Scholar 

  • Ferrandi M, Minotti E, Salardi S, Florio M, Bianchi G, et al. 1992. Ouabain-like factor in Milan hypertensive rats. Am J Physiol-Renal Physiol 263: F739–F748.

    CAS  Google Scholar 

  • Feschenko MS, Donnet C, Wetzel RK, Asinovski NK, Jones LR, et al. 2003. Phospholemman a single-span membrane protein is an accessory protein of Na, K-ATPase in cerebellum and choroid plexus. J Neurosci 23: 2161–2169.

    CAS  PubMed  Google Scholar 

  • Fishman MC. 1979. Endogenous digitalis-like activity in mammalian brain. Proc Natl Acad Sci USA 76: 4661–4663.

    CAS  PubMed  Google Scholar 

  • Gamaro GD, Streck EL, Matte C, Prediger ME, Wyse AT, et al. 2003. Reduction of hippocampal Na+, K+-ATPase activity in rats subjected to an experimental model of depression. Neurochem Res 28: 1339–1344.

    CAS  PubMed  Google Scholar 

  • Geering K, Beguin P, Garty H, Karlish S, Fuzesi M, et al. 2003. FXYD proteins: new tissue- and isoform-specific regulators of NaK-ATPase. Ann N Y Acad Sci 986: 388–394.

    CAS  PubMed  Google Scholar 

  • Goto A, Yamada K. 1998. Purification of endogenous digitalis-like factors from normal human urine. Clin Exp Hypertens 20: 551–556.

    CAS  PubMed  Google Scholar 

  • Goto A, Yamada K, Yagi N, Yoshioka M, Sugimoto T. 1992. Physiology and pharmacology of endogenous digitalis-like factors. Pharmacol Rev 44: 377–399.

    CAS  PubMed  Google Scholar 

  • Greengard P. 2001. The neurobiology of slow synaptic transmission. Science 294: 1024–1030.

    CAS  PubMed  Google Scholar 

  • Haas M, Askari A, Xie Z. 2000. Involvement of Src and epidermal growth factor receptor in the signal-transducing function of Na+/K+-ATPase. J Biol Chem 275: 27832–27837.

    CAS  PubMed  Google Scholar 

  • Hamlyn JM, Blaustein MP, Bova S, DuCharme DW, Harris DW, et al. 1991. Identification and characterization of an ouabain-like compound from human plasma. Proc Natl Acad Sci USA 88: 6259–6263.

    CAS  PubMed  Google Scholar 

  • Hamlyn JM, Lu ZR, Manunta P, Ludens JH, Kimura K, et al. 1998. Observations on the nature biosynthesis secretion and significance of endogenous ouabain. Clin Exp Hypertens 20: 523–533.

    CAS  PubMed  Google Scholar 

  • Hansen O. 2003. No evidence for a role in signal-transduction of Na+/K+-ATPase interaction with putative endogenous ouabain. Eur J Biochem 270: 1916–1919.

    CAS  PubMed  Google Scholar 

  • Hermenegildo C, Felipo V, Miñana MD, Grisolía S. 1992. Inhibition of protein kinase C restores Na+, K+-ATPase activity in sciatic nerve of diabetic mice. J Neurochem 58: 1246–1249.

    CAS  PubMed  Google Scholar 

  • Hermenegildo C, Felipo V, Miñana MD, Romero FJ, Grisolía S. 1993. Sustained recovery of Na(+)-K(+)-ATPase activity in the sciatic nerve of diabetic mice by administration of H7 or calphostin C inhibitors of PKC. Diabetes 42: 257–262.

    CAS  PubMed  Google Scholar 

  • Hernández RJ. 1992. Na(+)-K(+)-ATPase regulation by neurotransmitters. Neurochem Int 20: 1–10.

    Google Scholar 

  • Hollenberg NK, Graves SW. 1996. Endogenous sodium pump inhibition: current status and therapeutic opportunities. Prog Drug Res 46: 9–42.

    CAS  PubMed  Google Scholar 

  • Huang BS, Leenen FHH. 1995. Brain ouabain sodium and arterial baroreflex in spontaneous hypertensive rats. Hypertension 25 (Pt. 2): 814–817.

    CAS  PubMed  Google Scholar 

  • Jaisser F, Horisberger JD, Rossier BC. 1992. The beta subunit modulates potassium activation of the Na–K pump. Ann N Y Acad Sci 671: 113–119.

    CAS  PubMed  Google Scholar 

  • Jamme I, Petit E, Gerbi A, Maixent JM, Mac Kenzie ET, et al. 1997. Changes in ouabain affinity of Na+, K+-ATPase during focal cerebral ischaemia in the mouse. Brain Res 774: 123–130.

    CAS  PubMed  Google Scholar 

  • Jewell-Motz EA, Lingrel JB. 1993. Site-directed mutagenesis of the Na, K-ATPase: consequences of substitutions of negatively-charged amino acids localized in the transmembrane domains. Biochemistry 32: 13523–13530.

    CAS  PubMed  Google Scholar 

  • Jorgensen PL, Hakansson KO, Karlish SJ. 2003. Structure and mechanism of Na, K-ATPase: functional sites and their interactions. Annu Rev Physiol 65: 817–849.

    CAS  PubMed  Google Scholar 

  • Kaplan JH. 2002. Biochemistry of Na, K-ATPase. Annu Rev Biochem 71: 511–535.

    CAS  PubMed  Google Scholar 

  • Kramer HJ, Krampitz G, Bäcker A, Meyer-Lehnert H. 1998. Ouabain-like factors in human urine: identification of a Na–K-ATPase inhibitor as vanadium-diascorbate adduct. Clin Exp Hypertens 20: 557–571.

    CAS  PubMed  Google Scholar 

  • Kourie JI. 1998. Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol-Cell Physiol 275: C1–C24.

    CAS  Google Scholar 

  • Kuntzweiler TA, Arguello JM, Lingrel JB. 1996. Asp804 and Asp808 in the transmembrane domain of the Na, K-ATPase alpha subunit are cation coordinating residues. J Biol Chem 271: 29682–29687.

    CAS  PubMed  Google Scholar 

  • Kurup RK, Kurup PA. 2002. Central role of hypothalamic digoxin in conscious perception neuroimmunoendocrine integration and coordination of cellular function: relation to hemispheric dominance. Int J Neurosci 112: 705–739.

    PubMed  Google Scholar 

  • Lachowicz L, Janiszewska G. 1985. Role of theophylline during the action of SP in vitro on the activity of synaptosomal membrane ATPase (EC 3.6.1.3) from different areas of rat brain. Gen Pharmacol 16: 149–152.

    CAS  PubMed  Google Scholar 

  • Leenen FH, Harmsen E, Yu H, Ou C. 1993. Effects of dietary sodium on central and peripheral ouabain-like activity in spontaneously hypertensive rats. Am J Physiol-Heart Physiol 264: H2051–H2055.

    CAS  Google Scholar 

  • Leenen FH, Harmsen E, Yu H. 1994. Dietary sodium and central vs. peripheral ouabain-like activity in Dahl salt-sensitive vs. salt-resistant rats. Am J Physiol-Heart Physiol 267: H1916–H1920.

    CAS  Google Scholar 

  • Leenen FH, Huang BS, Yu H, Yuan B. 1995. Brain “ouabain” mediates sympathetic hyperactivity in congestive heart failure. Circ Res 77: 993–1000.

    CAS  PubMed  Google Scholar 

  • Lees GJ. 1991. Inhibition of sodium-potassium-ATPase: a potentially ubiquitous mechanism contributing to central nervous system neuropathology. Brain Res Brain Res Rev 16: 283–300.

    CAS  PubMed  Google Scholar 

  • Li D, Aperia A, Celsi G, da Cruz e Silva EF, Greengard P, et al. 1995. Protein phosphatase-1 in the kidney: evidence for a role in the regulation of medullary Na(+)-K(+)-ATPase. Am J Physiol 269: F673–F680.

    CAS  PubMed  Google Scholar 

  • Lichtstein D, Rosen H. 2001. Endogenous digitalis-like Na+, K+-ATPase inhibitors and brain function. Neurochem Res 26: 971–978.

    CAS  PubMed  Google Scholar 

  • Lichtstein D, Gati I, Samuelov S, Berson D, Rozenman Y, et al. 1993. Identification of digitalis-like compounds in human cataractous lenses. Eur J Biochem 216: 261–268.

    CAS  PubMed  Google Scholar 

  • Liu J, Kesiry R, Periyasamy SM, Malhotra D, Xie Z, et al. 2004. Ouabain induces endocytosis of plasmalemmal Na/K-ATPase in LLC-PK 1 cells by a clathrin-dependent mechanism. Kidney Int 66: 227–241.

    CAS  PubMed  Google Scholar 

  • López Ordieres MG, Rodríguez de Lores Arnaiz G. 2000. Neurotensin inhibits neuronal Na+, K+-ATPase activity through high affinity peptide receptor. Peptides 21: 571–576.

    PubMed  Google Scholar 

  • López Ordieres MG, Rodríguez de Lores Arnaiz G. 2001. K+-p-nitrophenyl-phosphatase inhibition by neurotensin involves high affinity neurotensin receptor: influence of potassium concentration and enzyme phosphorylation. Regul Pept 101: 183–187.

    PubMed  Google Scholar 

  • López Ordieres MG, Gironacci M, Rodríguez de Lores Arnaiz G, Peña C. 1998. Effect of angiotensin-(1–7) on ATPase activities in several tissues. Regul Pept 77: 135–139.

    PubMed  Google Scholar 

  • Ludens JH, Clark MA, DuCharme DW, Harris DW, Lutzke BS, et al. 1991. Purification of an endogenous digitalislike factor from human plasma for structural analysis. Hypertension 17: 923–929.

    CAS  PubMed  Google Scholar 

  • Lutsenko S, Kaplan JH. 1993. An essential role for the extracellular domain of the Na, K-ATPase beta-subunit in cation occlusion. Biochemistry 32: 6737–6743.

    CAS  PubMed  Google Scholar 

  • Mains RE, Eipper BA. 1999. Peptides. Basic Neurochemistry, 6th edn. Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD, editors. Philadelphia: Lippincott-Raven; pp. 363–382.

    Google Scholar 

  • Malik N, Canfield VA, Beckers MC, Gros P, Levenson R. 1996. Identification of the mammalian Na, K-ATPase beta 3 subunit. J Biol Chem 271: 22754–22758.

    CAS  PubMed  Google Scholar 

  • Masocha W, González LG, Baeyens JM, Agil A. 2002. Mechanisms involved in morphine-induced activation of synaptosomal Na+, K+-ATPase. Brain Res. 957: 311–319.

    CAS  PubMed  Google Scholar 

  • Masocha W, Horvath C, Agil A, Ocana M, Del Pozo E, et al. 2003. Role of Na+, K+-ATPase in morphine-induced antinociception. J Pharmacol Exp Ther 306: 1122–1128.

    CAS  PubMed  Google Scholar 

  • Mathews WR, DuCharme DW, Hamlyn JM, Harris DW, Mandel F, et al. 1991. Mass spectral characterization of an endogenous digitalislike factor from human plasma. Hypertension 17: 930–935.

    CAS  PubMed  Google Scholar 

  • McGrail KM, Phillips JM, Sweadner KJ. 1991. Immunofluorescent localization of three Na, K-ATPase isozymes in the rat central nervous system: both neurons and glia express more than one Na, K-ATPase. J Neurosci 11: 381–391.

    CAS  PubMed  Google Scholar 

  • Mintorovitch J, Yang GY, Shimizu H, Kucharczyk J, Chan PH, et al. 1994. Diffusion-weighted magnetic resonance imaging of acute focal cerebral ischemia: comparison of signal intensity with changes in brain water and Na(+), K(+)-ATPase activity. J Cereb Blood Flow Metab 14: 332–336.

    CAS  PubMed  Google Scholar 

  • Moseley AE, Lieske SP, Wetzel RK, James PF, He S, et al. 2003. The Na, K-ATPase alpha 2 isoform is expressed in neurons and its absence disrupts neuronal activity in newborn mice. J Biol Chem 278: 5317–5324.

    CAS  PubMed  Google Scholar 

  • Mulchahey JJ, Nagy G, Neill JD. 1999. A molecular recognition hypothesis for nonpeptides: Na+ K+ ATPase and endogenous digitalis-like peptides. Cell Mol Life Sci 55: 653–662.

    CAS  PubMed  Google Scholar 

  • Nestler EJ, Greengard P. 1999. Serine and threonine phosphorylation. Basic Neurochemistry, 6th edn. Philadelphia: Lippincott-Raven; pp. 471–495.

    Google Scholar 

  • Peña C, Rodríguez de Lores Arnaiz G. 1997. Differential properties between an endogenous brain Na+, K+-ATPase inhibitor and ouabain. Neurochem Res 22: 379–383.

    PubMed  Google Scholar 

  • Putney JW Jr. 1999. Calcium. Basic Neurochemistry, 6th edn. Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD, editors. Philadelphia: Lippincott-Raven; pp. 453–469.

    Google Scholar 

  • Qazzaz HM, Cao Z, Bolanowski DD, Clark BJ, Valdes R Jr. 2004. De novo biosynthesis and radiolabeling of mammalian digitalis-like factors. Clin Chem 50: 612–620.

    CAS  PubMed  Google Scholar 

  • Rodríguez de Lores Arnaiz G. 1983. Neuronal Na+, K+-ATPase and its regulation by catecholamines. Intern Brain Res Org Monogr Ser 10: 147–158.

    Google Scholar 

  • Rodríguez de Lores Arnaiz G. 1992. In search of synaptosomal Na+, K+-ATPase regulators. Mol Neurobiol 6: 359–375.

    PubMed  Google Scholar 

  • Rodríguez de Lores Arnaiz G. 1993. An endogenous factor which interacts with synaptosomal membrane Na+, K+-ATPase activation by K+. Neurochem Res 18: 655–661.

    PubMed  Google Scholar 

  • Rodríguez de Lores Arnaiz G. 2000. How many endobains are there? Neurochem Res 25: 1421–1430.

    PubMed  Google Scholar 

  • Rodríguez de Lores Arnaiz G. 2002. Interplay between Na+, K+-ATPase and neurotransmitter receptors. Current Topics in Neurochemistry Research Trends, Vol. 3.Richard R, editor. Trivandrum, India: Research Trends; pp. 189–198.

    Google Scholar 

  • Rodríguez de Lores Arnaiz G, Mistrorigo de Pacheco M. 1978. Regulation of (Na+, K+) adenosine triphosphatase of nerve ending membranes: action of norepinephrine and a soluble factor. Neurochem Res 3: 733–744.

    PubMed  Google Scholar 

  • Rodríguez de Lores Arnaiz G, Peña C. 1995. Characterization of synaptosomal membrane Na+, K+-ATPase inhibitors. Neurochem Int 27: 319–327.

    PubMed  Google Scholar 

  • Rodríguez de Lores Arnaiz G, López Ordieres MG. 1997. A study of calcitonin effect on synaptosomal membrane enzymes. Peptides 18: 613–615.

    PubMed  Google Scholar 

  • Rodríguez de Lores Arnaiz G, López Ordieres MG. 2003. Neuropeptides and CNS Na+, K+-ATPase. Current Topics in Peptide & Protein Research Research Trends, Vol. 5. Richard R, editor. Trivandrum, India: Research Trends; pp. 75–85.

    Google Scholar 

  • Rodríguez de Lores Arnaiz G, Alberici M, De Robertis E. 1967. Ultrastructural and enzymic studies of cholinergic and non-cholinergic synaptic membranes isolated from brain cortex. J Neurochem 14: 215–225.

    Google Scholar 

  • Rodríguez de Lores Arnaiz G, Herbin T, Peña C. 2003. A comparative study between a brain Na+, K+-ATPase inhibitor (endobain E) and ascorbic acid. Neurochem Res 28: 903–910.

    PubMed  Google Scholar 

  • Rusnak F, Mertz P. 2000. Calcineurin: form and function. Physiol Rev 80: 1483–1521.

    CAS  PubMed  Google Scholar 

  • Sancho JM. 1998. A non-ouabain Na/K ATPase inhibitor isolated from bovine hypothalamus. Its relation to hypothalamic ouabain. Clin Exp Hypertens 20: 535–542.

    CAS  Google Scholar 

  • Sato T, Tanaka K, Ohnishi Y, Teramoto T, Irifune M, et al. 2004. Effects of steroid hormones on (Na+, K+)-ATPase activity inhibition-induced amnesia on the step-through passive avoidance task in gonadectomized mice. Pharmacol Res 49: 151–159.

    CAS  PubMed  Google Scholar 

  • Scheiner-Bobis G. 2002. The sodium pump. Its molecular properties and mechanism of ion transport. Eur J Biochem 269: 2424–2433.

    CAS  Google Scholar 

  • Schmalzing G, Kroner S, Schachner M, Gloor S. 1992. The adhesion molecule on glia (AMOG/beta 2) and alpha 1 subunits assemble to functional sodium pumps in Xenopus oocytes. J Biol Chem 267: 20212–20216.

    CAS  PubMed  Google Scholar 

  • Schneider R, Wray V, Nimtz M, Lehmann WD, Kirch U, et al. 1998. Bovine adrenals contain in addition to ouabain a second inhibitor of the sodium pump. J Biol Chem 273: 784–792.

    CAS  PubMed  Google Scholar 

  • Schoner W. 2000. Ouabain a new steroid hormone of adrenal gland and hypothalamus. Exp Clin Endocrinol Diabetes 108: 449–454.

    CAS  PubMed  Google Scholar 

  • Shainskaya A, Karlish SJ. 1994. Evidence that the cation occlusion domain of Na/K-ATPase consists of a complex of membrane-spanning segments. Analysis of limit membrane-embedded tryptic fragments. J Biol Chem 269: 10780–10789.

    CAS  PubMed  Google Scholar 

  • Shamraj OI, Lingrel JB. 1994. A putative fourth Na+, K(+)-ATPase alpha-subunit gene is expressed in testis. Proc Natl Acad Sci USA 91: 12952–12956.

    CAS  PubMed  Google Scholar 

  • Shimoni Y, Gotsman M, Deutsch J, Kachalsky S, and Lichtstein D. 1984. Endogenous ouabain-like compound increases heart muscle contractility. Nature 307: 369–371.

    CAS  PubMed  Google Scholar 

  • Skou J. 1957. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23: 394–401.

    CAS  PubMed  Google Scholar 

  • Skriver E, Maunsbach AB, Hebert H, Scheiner-Bobis G, Schoner W. 1989. Two-dimensional crystalline arrays of NaK-ATPase with new subunit interactions induced by cobalt-tetrammine-ATP. J Ultrastruct Mol Struct Res 102: 189–195.

    CAS  PubMed  Google Scholar 

  • Stahl W. 1986. The NaK-ATPase of nervous tissue. Neurochem Int 8: 449–476.

    CAS  PubMed  Google Scholar 

  • Sweadner KJ. 1989. Isozymes of Na+, K+-ATPase. Biochim Biophys Acta 988: 185–220.

    CAS  PubMed  Google Scholar 

  • Sweadner KJ, Rael E. 2000. The FXYD gene family of small ion transport regulators or channels: cDNA sequence protein signature sequence and expression. Genomics 68: 41–56.

    CAS  PubMed  Google Scholar 

  • Teixeira VL, Katz AI, Pedemonte CH, Bertorello AM. 2003. Isoform-specific regulation of Na+, K+-ATPase endocytosis and recruitment to the plasma membrane. Ann N Y Acad Sci 986: 587–594.

    CAS  PubMed  Google Scholar 

  • Therien AG, Blostein R. 2000. Mechanisms of sodium pump regulation. Am J Physiol-Cell Physiol 279: C541–C566.

    CAS  PubMed  Google Scholar 

  • Traub N, Lichtstein D. 2000. The mood cycle hypothesis: possible involvement of steroid hormones in mood regulation by means of Na+, K+-ATPase inhibition. J Basic Clin Physiol Pharmacol 11: 375–394.

    CAS  PubMed  Google Scholar 

  • Tymiak AA, Norman JA, Bolgar M, Di Donato GC, Lee H, et al. 1993. Physicochemical characterization of a ouabain isomer isolated from bovine hypothalamus. Proc Natl Acad Sci USA 90: 8189–8193.

    CAS  PubMed  Google Scholar 

  • Van Huysse JW, Jewell EA, Lingrel JB. 1993. Site-directed mutagenesis of a predicted cation binding site of Na, K-ATPase. Biochemistry 32: 819–826.

    CAS  PubMed  Google Scholar 

  • Vanmolkot KR, Kors EE, Hottenga JJ, Terwindt GM, Haan J, et al. 2003. Novel mutations in the Na+, K+-ATPase pump gene ATP1A2 associated with familial hemiplegic migraine and benign familial infantile convulsions. Ann Neurol 54: 360–366.

    CAS  PubMed  Google Scholar 

  • Villa RF, Gorini A, Hoyer S. 2002. ATPases of synaptic plasma membranes from hippocampus after ischemia and recovery during ageing. Neurochem Res 27: 861–870.

    CAS  PubMed  Google Scholar 

  • Vilsen B. 1993. Glutamate 329 located in the fourth transmembrane segment of the alpha-subunit of the rat kidney Na+, K+-ATPase is not an essential residue for active transport of sodium and potassium ions. Biochemistry 32: 13340–13349.

    CAS  PubMed  Google Scholar 

  • Wang XQ, Xiao AY, Sheline C, Hyrc K, Yang A, et al. 2003. Apoptotic insults impair Na+, K+-ATPase activity as a mechanism of neuronal death mediated by concurrent ATP deficiency and oxidant stress. J Cell Sci 116: 2099–2110.

    CAS  PubMed  Google Scholar 

  • Wang H, Haas M, Liang M, Cai T, Tian J, et al. 2004. Ouabain assembles signaling cascades through the caveolar Na+/K+-ATPase. J Biol Chem 279: 17250–17259.

    CAS  PubMed  Google Scholar 

  • Watts AG, Sánchez-Watts G, Emanuel JR, Levenson R. 1991. Cell-specific expression of mRNAs encoding Na+, K(+)-ATPase alpha- and beta-subunit isoforms within the rat central nervous system. Proc Natl Acad Sci USA 88: 7425–7429.

    CAS  PubMed  Google Scholar 

  • Wu PH. 1986. Na+, K+-ATPase in nervous tissue. Neuromethods Enzymes. Boulton AA, Baker GB, Wu PH, editors. Clifton, NJ: Humana Press; pp. 451–502.

    Google Scholar 

  • Xiao AY, Wei L, Xia S, Rothman S, Yu SP. 2002. Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurons. J Neurosci 22: 1350–1362.

    CAS  PubMed  Google Scholar 

  • Xie Z. 2003. Molecular mechanisms of Na/K-ATPase-mediated signal transduction. Ann N Y Acad Sci 986: 497–503.

    CAS  PubMed  Google Scholar 

  • Xie Z, Askari A. 2002. Na(+)/K(+)-ATPase as a signal transducer. Eur J Biochem 269: 2434–2439.

    CAS  PubMed  Google Scholar 

  • Xie Z, Cai T. 2003. Na+-K+-ATPase-mediated signal transduction: from protein interaction to cellular function. Mol Interv 3: 157–168.

    CAS  PubMed  Google Scholar 

  • Yakel JL. 1997. Calcineurin regulation of synaptic function: from ion channels to transmitter release and gene transcription. Trends Pharmacol Sci 18: 124–134.

    CAS  PubMed  Google Scholar 

  • Yamada HM, Naruse M, Naruse K, Demura H, Takahashi H, et al. 1992. Histological study on ouabain immunoreactivities in the mammalian hypothalamus. Neurosci Lett 141: 143–146.

    CAS  PubMed  Google Scholar 

  • Yoshida H, Nagai K, Ohashi T, Nakagawa Y. 1969. K+-dependent phosphatase activity observed in the presence of both adenosine triphosphate and Na+. Biochim Biophys Acta 171: 178–185.

    CAS  PubMed  Google Scholar 

  • Yu SP. 2003a. Na+, K+-ATPase: the new face of an old player in pathogenesis and apoptotic/hybrid cell death. Biochem Pharmacol 66: 1601–1609.

    CAS  Google Scholar 

  • Yu SP. 2003b. Regulation and critical role of potassium homeostasis in apoptosis. Prog Neurobiol 70: 363–386.

    CAS  Google Scholar 

  • Zhao N, Lo L, Berova N, Nakanishi K, Tymiak AA, et al. 1995. Na, K-ATPase inhibitors from bovine hypothalamus and human plasma are different from ouabain: nanogram scale CD structural analysis. Biochemistry 34: 9893–9896.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author is chief investigator from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). This work was supported by grants from Agencia Nacional de Promoción Científica y Tecnológica, CONICET, and Universidad de Buenos Aires, Argentina.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC.

About this entry

Cite this entry

Arnaiz, G.R.d. (2007). Na+, K+-ATPase in the Brain: Structure and Function. In: Lajtha, A., Reith, M.E.A. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30380-2_10

Download citation

Publish with us

Policies and ethics