Skip to main content

In Situ Hybridization

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology
  • 1077 Accesses

Abstract:

In situ hybridisation is a powerful technique for determining the distribution of specific mRNA species in tissues such as brain that comprise different cell types. Its utility in molecular neurobiology has driven the development of a variety of variations of this technique will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BCIP:

5-bromo-4-chloro-3-indolyl phosphate, toluidine salt

CCD:

charged-coupled device

CNS:

central nervous system

cDNA:

copy or complimentary RNA

cRNA:

copy or complimentary RNA

DNase:

deoxyribonuclease

FITC:

fluorescein isothiocyanate

mRNA:

messenger RNA

NBT:

nitro blue tetrazolium choride

PCR:

polymerase chain reaction

RNase:

ribonclease

References

  • Ambesi‐Impiombato A, D'Urso G, Muscettola G, de Bartolomeis A. 2003. Method for quantitative in situ hybridization histochemistry and image analysis applied for Homer1a gene expression in rat brain. Brain Res Prot 11:189–196.

    Article  Google Scholar 

  • Bateson AN, Darlison MG. 1992. The design and use of oligonucleotides. A Laboratory Manual in Molecular Biology, Protocols in Molecular Neurobiology Vol. 13 Humana Press, Totowa, New Jersey: pp. 55–66. Longstaff A, Revest P, editors. Chapter 4;

    Google Scholar 

  • Bateson AN, Harvey RJ, Wisden W, Glencorse TA, Hicks AA, et al. 1991. The chicken GABAA receptor α1‐subunit: cDNA sequence and localization of the corresponding mRNA. Mol Brain Res 9:333–339.

    Article  CAS  Google Scholar 

  • Böckers TM, Segger‐Junius M, Iglauer P, Bockmann J, Gundelfinger ED, et al. 2004. Differential expression and dendritic transcript localization of Shank family members: identification of a dendritic targeting element in the 3V untranslated region of Shank1 mRNA. Mol Cell Neurosci 26:182–190.

    Article  Google Scholar 

  • Chang M‐S, Hahn MK, Sved AF, Zigmond MJ, Austin MC, et al. 2000. Analysis of tyrosine hydroxylase gene transcription using an intron specific probe. J Neurosci Meth 94:177–185.

    Article  CAS  Google Scholar 

  • Chawla MK, Lin G, Olson K, Vazdarjanova A, Burke SN, et al. 2004. 3D‐catFISH: a system for automated quantitative three‐dimensional compartmental analysis of temporal gene transcription activity imaged by fluorescence in situ hybridization. J Neurosci Meth 139:13–24.

    Article  CAS  Google Scholar 

  • Chevalier J, Yi J, Michel O, Tang X‐M. 1997. Biotin and digoxigenin as labels for light and electron microscopy in situ hybridization process: where do we stand? J Histochem Cytochem 45: 481–491.

    Article  CAS  Google Scholar 

  • Cloez‐Tayarani I, Fillion G. 1997. The in situ hybridization and immunocytochemistry techniques for characterization of cells expressing specific mRNAs in paraffin‐embedded brains. Brain Res Prot 1:195–202.

    Article  Google Scholar 

  • Erdtmann‐Vourliotis M, Mayer P, Riechert U, Handel M, Kriebitzsch J, et al. 1999. Rational design of oligonucleotide probes to avoid optimization steps in in situ hybridization. Brain Res Prot 4:82–91.

    Article  Google Scholar 

  • Ginsberg MD, Zhao W, Singer JT, Alonso OF, Loor‐Estades Y, et al. 1996. Computer‐assisted image‐averaging strategies for the topographic analysis of in situ hybridization autoradiographs. J Neurosci Meth 68:225–233.

    Article  CAS  Google Scholar 

  • Grino M, Zamora AJ. 1998. An in situ hybridization histochemistry technique allowing simultaneous visualization by the use of confocal microscopy of three cellular mRNA species in individual neurons. J Histochem Cytochem 46:753–759.

    Article  CAS  Google Scholar 

  • Hynd MR, Lewohl JM, Scott HL, Dodd PR. 2003. Biochemical and molecular studies using human autopsy brain tissue. J Neurochem 85:543–562.

    Article  CAS  Google Scholar 

  • Judice TN, Nelson NC, Beisel CL, Delimont DC, Fritzsch B, et al. 2002. Cochlear whole mount in situ hybridization: identification of longitudinal and radial gradients. Brain Res Prot 9:65–76.

    Article  Google Scholar 

  • Kerner JA, Standaert DA, Penney JB Jr, Young AB, Landwehrmeyer GB. 1998. Simultaneous isotopic and nonisotopic in situ hybridization histochemistry with cRNA probes. Brain Res Prot 3:22–32.

    Article  CAS  Google Scholar 

  • Key M, Wirick B, Cool D, Morris M. 2001. Quantitative in situ hybridization for peptide mRNAs in mouse brain. Brain Res Prot 8:8–15.

    Article  CAS  Google Scholar 

  • Lein ES, Zhao X, Gage FH. 2004. Defining a molecular atlas of the hippocampus using DNA microarrays and high‐throughput in situ hybridization. J Neurosci 24:3879–3889.

    Article  CAS  Google Scholar 

  • Lu Z, McLaren RS, Winters CA, Ralston E. 1998. Ribosome association contributes to restricting mRNAs to the cell body of hippocampal neurons. Mol Cell Neurosci 12:363–375.

    Article  CAS  Google Scholar 

  • Luo L‐G, Jackson IMD. 1999. Advantage of double labeled in situ hybridization for detecting the effects of glucocorticoids on the mRNAs of protooncogenes and neural peptides TRH in cultured hypothalamic neurons. Brain Res Prot 4:201–208.

    Article  CAS  Google Scholar 

  • Luque JM, Adams WB, Nicholls JG. 1998. Procedures for whole‐mount immunohistochemistry and in situ hybridization of immature mammalian CNS. Brain Res Prot 2:165–173.

    Article  CAS  Google Scholar 

  • Ma D, Morris JF. 2002. Protein synthetic machinery in the dendrites of the magnocellular neurosecretory neurons of wild‐type Long‐Evans and homozygous Brattleboro rats. J Histochem Cytochem 23:171–186.

    CAS  Google Scholar 

  • Meltzer JC, Sanders V, Grimm PC, Stern E, Rivier C, et al. 1998. Production of digoxigenin‐labelled RNA probes and the detection of cytokine mRNA in rat spleen and brain by in situ hybridization. Brain Res Prot 2:339–351.

    Article  CAS  Google Scholar 

  • Mladinic M, Frederic Didelon F, Cherubini E, Bradbury A. 2000. ‘Specific’ oligonucleotides often recognize more than one gene: the limits of in situ hybridization applied to GABA receptors. J Neurosci Meth 98:33–42.

    Article  CAS  Google Scholar 

  • Newton SS, Dow A, Terwilliger R, Duman R. 2002. A simplified method for combined immunohistochemistry and in‐situ hybridization in fresh‐frozen, cryocut mouse brain sections. Brain Res Prot 9:214–219.

    Article  CAS  Google Scholar 

  • Nuovo GJ. 2001. Co‐labeling using in situ PCR: a review. J Histochem Cytochem 49:1329–1339.

    Article  CAS  Google Scholar 

  • Paxinos G, Watson C. 1997. The rat brain stereotaxic coordinates. New York: Academic.

    Google Scholar 

  • Sandberg R, Yasuda R, Pankratz DG, Carter TA, Del Rio JA, et al. 2000. Regional and strain‐specific gene expression mapping in the adult mouse brain. Proc Natl Acad Sci USA 97:11038–11043.

    Article  CAS  Google Scholar 

  • Shifman MI, Selzer ME. 2000. In situ hybridization in wholemounted lamprey spinal cord: localization of netrin mRNA expression. J Neurosci Meth 104:19–25.

    Article  CAS  Google Scholar 

  • Stern CA. 1995. Detection of multiple gene products simultaneously by in situ hybridization histochemistry and immunohistochemistry in while mounts of avian embryos. Curr Top Dev Biol 36:223–243.

    Article  Google Scholar 

  • Steward O, Schuman EM. 2003. Compartmentalized synthesis and degradation of proteins in neurons. Neuron 40: 347–359.

    Article  CAS  Google Scholar 

  • Suzuki T, Ogata A, Tashiro K, Nagashima K, Tamura M, et al. 1999. A method for detection of a cytokine and its mRNA in the central nervous system of the developing rat. Brain Res Prot 4:271–279.

    Article  CAS  Google Scholar 

  • Tata, AM. 2001. An in situ hybridization protocol to detect rare mRNA expressed in neural tissue using biotin‐labelled oligonucleotide probes, Brain Res Prot 6:178–184.

    Article  CAS  Google Scholar 

  • Tohda C. 2003. Comprehensive identifying method for localized mRNAs in single neuronal axons. J Biochem Biophys Meth 57:57–63.

    Article  CAS  Google Scholar 

  • Tongiorgi E, Righi M, Cattaneo A. 1998. A non‐radioactive in situ hybridization method that does not require RNAse‐free conditions. J Neurosci Meth 85:129–139.

    Article  CAS  Google Scholar 

  • Wisden W, Laurie DJ, Monyer H, Seeburg PH. 1992. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci 12:1040–10462.

    Article  CAS  Google Scholar 

  • Vizi S, Gulya K. 2000. Calculation of maximal hybridization capacity (Hmax) for quantitative in situ hybridization: a case study for multiple calmodulin mRNAs. J Histochem Cytochem 48:893–904.

    Article  CAS  Google Scholar 

  • Zhang HL, Byrd AL, Singer RH, Bassell GJ. 1999. Neurotrophin regulation of β‐actin mRNA and protein localization within growth cones. J. Cell Biol. 147:59–70.

    Article  CAS  Google Scholar 

  • Zhao W, Truettner J, Schmidt‐Kastner R, Belayev L, Ginsberg MD. 1999. Quantitation of multiple gene expression by in situ hybridization autoradiography: accurate normalization using Bayes classifier. J Neurosci Meth 88:63–70.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

Alan, N.B. (2007). In Situ Hybridization. In: Lajtha, A., Baker, G., Dunn, S., Holt, A. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30401-4_16

Download citation

Publish with us

Policies and ethics