Skip to main content

Event-Related Potentials (ERPs) in the Study of Schizophrenia: How Preclinical ERP Studies have Contributed to our Understanding of Schizophrenia

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Impairments in auditory event-related potentials (ERPs) have been studied extensively as endophenotypic markers of schizophrenia. Abnormalities in amplitude and latency of the ERPs as well as aberrations in gating of the auditory stimuli and difficulties in the detection of change in auditory stimulus characteristics are common in schizophrenic populations. This chapter introduces readers to ERPs and their role as an endophenotypic marker of schizophrenia. In addition to a review of the basic understanding of the role of ERPs in human research, this chapter also illustrates the congruence of mouse and human ERPs. The role of rodent-based preclinical models of ERP abnormalities, including pharmacological and genetic models, in schizophrenia research is reviewed. Pharmacologic models of treatment are also a promising area of research in the preclinical study of schizophrenia. The authors describe several well-studied mouse models and the effects of various antipsychotic treatments on ERPs in these model. More novel therapeutics and models, including abnormalities in gamma oscillations, also are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABRs:

acoustic brainstem responses

cAMP:

cyclic AMP

DHBE:

dihydro-β-erythroidine

ERPs:

event-related potentials

GBO:

gamma band oscillation

ISI:

interstimulus interval

MLA:

methyllycaconitine

MMN:

mismatch negativity

nAChR:

nicotinic acetylcholinergic receptor

NMDA:

N-methyl-d-aspartate

References

  • Adler G, Adler J, Schneck M, Armbruster B. 1990. Influence of stimulation parameters on auditory stimulus processing in schizophrenia and major depression: An auditory evoked potential study. Acta Psychiatr Scand 81: 453–458.

    Article  PubMed  CAS  Google Scholar 

  • Adler G, Gattaz WF. 1993. Auditory evoked potentials in schizophrenic patients before and during neuroleptic treatment. Relationship to psychopathological state. Eur Arch Psychiatry Clin Neurosci 242: 357–361.

    Article  PubMed  CAS  Google Scholar 

  • Adler LE, Olincy A, Waldo M, Harris JG, Griffith J, Stevens K, Flach. 1998. Schizophrenia, sensory gating, and nicotinic receptors. Schizophrenia Bulletin 24: 189–202.

    Article  PubMed  CAS  Google Scholar 

  • Adler LE, Pachtman E, Franks RD, Pecevich M, Waldo MC, Freedman R. 1982. Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia. Biol Psychiatry 17: 639–654.

    PubMed  CAS  Google Scholar 

  • Adler LE, Rose G, Freedman R. 1986. Neurophysiological studies of sensory gating in rats: Effects of amphetamine, phencyclidine, and haloperidol. Biol Psychiatry 21: 787–798.

    Article  PubMed  CAS  Google Scholar 

  • Alho K, Winkler I, Escera C, Huotilainen M, Virtanen J, Jaaskelainen IP, Pekkonen E, Ilmoniemi RJ. 1998. Processing of novel sounds and frequency changes in the human auditory cortex: magnetoencephalographic recordings. Psychophysiology 35: 211–224.

    Article  PubMed  CAS  Google Scholar 

  • Bennett MR. 1998. Monoaminergic synapses and schizophrenia: 45 years of neuroleptics. J Psychopharmacol 12: 289–304.

    Article  PubMed  CAS  Google Scholar 

  • Boutros NN, Belger A, Campbell D, D'Souza C, Krystal J. 1999. Comparison of four components of sensory gating in schizophrenia and normal subjects: a preliminary report. Psychiatry Res 88: 119–130.

    Article  PubMed  CAS  Google Scholar 

  • Boutros NN, Bonnet KA, Millana R, Liu J. 1997b. A parametric study of the N40 auditory evoked response in rats. Biol Psychiatry 42: 1051–1059.

    Article  PubMed  CAS  Google Scholar 

  • Boutros NN, Korzyukov O, Jansen B, Feingold A, Bell M. 2004. Sensory gating deficits during the mid-latency phase of information processing in medicated schizophrenia patients. Psychiatry Res 126: 203–215.

    Article  PubMed  Google Scholar 

  • Boutros N, Nasrallah H, Leighty R, Torello M, Tueting P, et al. 1997a. Auditory evoked potentials, clinical vs. research applications. Psychiatry Res 69: 183–195.

    Article  PubMed  CAS  Google Scholar 

  • Braff DL, Geyer MA. 1990. Sensorimotor gating and schizophrenia. Human and animal model studies. Arch Gen Psychiatry 47: 181–188.

    Article  PubMed  CAS  Google Scholar 

  • Breier A, Buchanan RW. 1992. The effects of metabolic stress on plasma progesterone in healthy volunteers and schizophrenic patients. Life Sci 51: 1527–1534.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A. 1977. Does dopamine play a role in schizophrenia? Psychol Med 7: 583–597.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A. 1978. Does dopamine have a role in schizophrenia?. Biol Psychiatry 13: 3–21.

    PubMed  CAS  Google Scholar 

  • Ceponiene R, Cheour M, Naatanen R. 1998. Interstimulus interval and auditory event-related potentials in children: evidence for multiple generators. Electroencephalogr Clin Neurophysiol 108: 345–354.

    Article  PubMed  CAS  Google Scholar 

  • Clementz BA, Blumenfeld LD. 2001. Multichannel electroencephalographic assessment of auditory evoked response suppression in schizophrenia. Exp Brain Res 139: 377–390.

    Article  PubMed  CAS  Google Scholar 

  • Clementz BA, Geyer MA, Braff DL. 1998. Multiple site evaluation of P50 suppression among schizophrenia and normal comparison subjects. Schizophr Res 30: 71–80.

    Article  PubMed  CAS  Google Scholar 

  • Clementz BA, Keil A, Kissler J. 2004. Aberrant brain dynamics in schizophrenia: delayed buildup and prolonged decay of the visual steady-state response. Brain Res Cogn Brain Res 18: 121–129.

    Article  PubMed  Google Scholar 

  • Connolly PM, Maxwell C, Liang Y, Kahn JB, Kanes SJ, et al. 2004. The effects of ketamine vary among inbred mouse strains and mimic schizophrenia for the P80, but not P20 or N40 auditory ERP components. Neurochem Res 29: 1179–1188.

    Article  PubMed  CAS  Google Scholar 

  • Connolly PM, Maxwell CR, Kanes SJ, Abel T, Liang Y, et al. 2003. Inhibition of auditory evoked potentials and prepulse inhibition of startle in DBA/2J and DBA/2Hsd inbred mouse substrains. Brain Res 992: 85–95.

    Article  PubMed  CAS  Google Scholar 

  • de Bruin NM, Ellenbroek BA, Cools AR, Coenen AM, van Luijtelaar EL. 1999a. Differential effects of ketamine on gating of auditory evoked potentials and prepulse inhibition in rats. Psychopharmacology (Berl) 142: 9–17.

    Article  CAS  Google Scholar 

  • de Bruin NM, Ellenbroek BA, Cools AR, Coenen AM, van Luijtelaar EL. 1999b. Differential effects of ketamine on gating of auditory evoked potentials and prepulse inhibition in rats. Psychopharmacology (Berl) 142: 9–17.

    Article  CAS  Google Scholar 

  • Deakin JF, Slater P, Simpson MD, Gilchrist AC, Skan WJ, et al. 1989. Frontal cortical and left temporal glutamatergic dysfunction in schizophrenia. J Neurochem 52: 1781–1786.

    Article  PubMed  CAS  Google Scholar 

  • Donchin E, Miller GA, Farwell LA. 1986. The endogenous components of the event-related potential–a diagnostic tool? Prog Brain Res 70: 87–102.

    Article  PubMed  CAS  Google Scholar 

  • Ehlers CL, Somes C, Thomas J, Riley EP. 1997. Effects of neonatal exposure to nicotine on electrophysiological parameters in adult rats. Pharmacol Biochem Behav 58: 713–720.

    Article  PubMed  CAS  Google Scholar 

  • Ellenbroek BA, van Luijtelaar G, Frenken M, Cools AR. 1999. Sensory gating in rats: Lack of correlation between auditory evoked potential gating and prepulse inhibition. Schizophr Bull 25: 777–788.

    Article  PubMed  CAS  Google Scholar 

  • Engel AK, Fries P, Singer W. 2001. Dynamic predictions: Oscillations and synchrony in top-down processing. Nat Rev Neurosci 2: 704–716.

    Article  PubMed  CAS  Google Scholar 

  • Erwin RJ, Mawhinney-Hee M, Gur RC, Gur RE. 1991 Midlatency auditory evoked responses in schizophrenia. Biol Psychiatry 30: 430–442.

    Article  PubMed  CAS  Google Scholar 

  • Erwin RJ, Shtasel D, Gur RE. 1994. Effects of medication history on midlatency auditory evoked responses in schizophrenia. Schizophr Res 11: 251–258.

    Article  PubMed  CAS  Google Scholar 

  • Escera C, Alho K, Winkler I, Naatanen R. 1998. Neural mechanisms of involuntary attention to acoustic novelty and change. J Cogn Neurosci 10: 590–604.

    Article  PubMed  CAS  Google Scholar 

  • Ford JM, Hillyard SA. 1981. Event-related potentials (ERPs) to interruptions of a steady rhythm. Psychophysiology 18: 322–330.

    Article  PubMed  CAS  Google Scholar 

  • Ford JM, Mathalon DH, Kalba S, Marsh L, Pfefferbaum A. 2001. N1 and P300 abnormalities in patients with schizophrenia, epilepsy, and epilepsy with schizophrenialike features. Biol Psychiatry 49: 848–860.

    Article  PubMed  CAS  Google Scholar 

  • Ford JM, White PM, Csernansky JG, Faustman WO, Roth WT, et al. 1994. ERPs in schizophrenia: Effects of antipsychotic medication. Biol Psychiatry 36: 153–170.

    Article  PubMed  CAS  Google Scholar 

  • Frangou S, Sharma T, Alarcon G, Sigmudsson T, Takei N, Binnie C, Murray RM. 1997. The Maudsley Family Study, II: Endogenous event-related potentials in familial schizophrenia. Schizophr Res 23: 45–53.

    Article  PubMed  CAS  Google Scholar 

  • Freedman R, Adler LE, Waldo MC, Pachtman E, Franks RD. 1983. Neurophysiological evidence for a defect in inhibitory pathways in schizophrenia: comparison of medicated and drug-free patients. Biol Psychiatry 18: 537–551.

    PubMed  CAS  Google Scholar 

  • Freedman R, Hall M, Adler L, Leonard S. 1995. Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biological Psychiatry 38: 22–33.

    Article  PubMed  CAS  Google Scholar 

  • Frith CD, Friston KJ. 1996. The role of the thalamus in “top down” modulation of attention to sound. Neuroimage 4: 210–215.

    Article  PubMed  CAS  Google Scholar 

  • Gallinat J, Mulert C, Bajbouj M, Herrmann WM, Schunter J, Senkowski D, Moukhtieva R, Kronfeldt D, Winterer G. 2002. Frontal and temporal dysfunction of auditory stimulus processing in schizophrenia. Neuroimage 17: 110–127.

    Article  PubMed  Google Scholar 

  • Gil-Ad I, Dickerman Z, Amdursky S, Laron Z. 1986. Diurnal rhythm of plasma beta endorphin, cortisol and growth hormone in schizophrenics as compared to control subjects. Psychopharmacology (Berl) 88: 496–499.

    Article  CAS  Google Scholar 

  • Gould TJ, Bizily SP, Tokarczyk J, Kelly MP, Siegel SJ, et al. 2004. Sensorimotor gating deficits in transgenic mice expressing a constitutively active form of Gs alpha. Neuropsychopharmacology 29: 494–501.

    Article  PubMed  CAS  Google Scholar 

  • Grzella I, Muller BW, Oades RD, Bender S, Schall U, Zerbin D, Wolstein J, Sartory G. 2001. Novelty-elicited mismatch negativity in patients with schizophrenia on admission and discharge. J Psychiatry Neurosci 26: 235–246.

    PubMed  CAS  Google Scholar 

  • Herrmann CS, Demiralp T. 2005. Human EEG gamma oscillations in neuropsychiatric disorders. Clin Neurophysiol 116: 2719–2733.

    Article  PubMed  CAS  Google Scholar 

  • Iwanami A, Shinba T, Sumi M, Ozawa N, Yamamoto K. 1994. Event-related potentials during an auditory discrimination task in rats. Neurosci Res 21: 103–106.

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Doneshka P, Zylberman I, Ritter W, Vaughn GH. 1993. Impairment of early cortical processing in schizophrenia; An event-related potential confirmation study. Biol Psychiatry 33: 513–519.

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Steinschneider M, Schroeder CE, Arezzo JC. 1996. Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: implications for schizophrenia. Proc Natl Acad Sci. 93: 11962–11967.

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Zukin SR. 1991. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148: 1301–1308.

    PubMed  CAS  Google Scholar 

  • Jessen F, Fries T, Kucharski C, Nishimura T, Hoenig K, Maier W, Falkai P, Heun R. 2001. Amplitude reduction of the mismatch negativity in first-degree relatives of patients with schizophrenia. Neurosci Lett. 309: 185–188.

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Potkin SG. 1996. P50 changes with visual interference in normal subjects: a sensory distraction model for schizophrenia. Clin Electroencephalogr 27: 151–154.

    PubMed  CAS  Google Scholar 

  • Judd LL, McAdams L, Budnick B, Braff DL. 1992. Sensory gating deficits in schizophrenia: new results. Am J Psychiatry 149: 488–493.

    PubMed  CAS  Google Scholar 

  • Karoumi B, Laurent A, Rosenfeld F, Rochet T, Brunon AM, et al. 2000. Alteration of event related potentials in siblings discordant for schizophrenia. Schizophr Res 41: 325–334.

    Article  PubMed  CAS  Google Scholar 

  • Koenig JI, Elmer GI, Shepard PD, Lee PR, Mayo C, et al. 2005. Prenatal exposure to a repeated variable stress paradigm elicits behavioral and neuroendocrinological changes in the adult offspring: Potential relevance to schizophrenia. Behav Brain Res 156: 251–261.

    Article  PubMed  Google Scholar 

  • Kok A. 1990. Internal and external control: A two-factor model of amplitude change of event-related potentials. Acta Psychol (Amst) 74: 203–236.

    Article  CAS  Google Scholar 

  • Kok A. 1997. Event-related-potential (ERP) reflections of mental resources: A review and synthesis. Biol Psychol 45: 19–56.

    Article  PubMed  CAS  Google Scholar 

  • Lahti AC, Koffel B, LaPorte D, Tamminga CA. 1995. Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology 13: 9–19.

    Article  PubMed  CAS  Google Scholar 

  • Lahti AC, Weiler MA, Tamara Michaelidis BA, Parwani A, Tamminga CA. 2001. Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology 25: 455–467.

    Article  PubMed  CAS  Google Scholar 

  • Lammers CH, Garcia-Borreguero D, Schmider J, Gotthardt U, Dettling M, et al. 1995. Combined dexamethasone/corticotropin-releasing hormone test in patients with schizophrenia and in normal controls: II. Biol Psychiatry 38: 803–807.

    Article  PubMed  CAS  Google Scholar 

  • Laurent A, Garcia-Larrea L, d’Amato T, Bosson JL, Saoud M, et al. 1999. Auditory event-related potentials and clinical scores in unmedicated schizophrenic patients. Psychiatry Res 86: 229–238.

    Article  PubMed  CAS  Google Scholar 

  • Lee KH, Williams LM, Breakspear M, Gordon E. 2003. Synchronous gamma activity: A review and contribution to an integrative neuroscience model of schizophrenia. Brain Res Brain Res Rev 41: 57–78.

    Article  PubMed  Google Scholar 

  • Leonard S, Freedman R. 2003. Recombination in a schizophrenic proband fails to exclude CHRNA7 at chromosome 15q14. Mol Psychiatry 8: 145–146.

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom L, Klockhoff I, Svedberg A, Bergstrom K. 1987. Abnormal auditory brain-stem responses in hallucinating schizophrenic patients. Br J Psychiatry 151: 9–14.

    Article  PubMed  CAS  Google Scholar 

  • Mamiya N, Buchanan R, Wallace T, Skinner RD, Garcia-Rill E. 2005. Nicotine suppresses the P13 auditory evoked potential by acting on the pedunculopontine nucleus in the rat. Exp Brain Res 164: 109–119.

    Article  PubMed  CAS  Google Scholar 

  • Martin LF, Kem WR, Freedman R. 2004. Alpha-7 nicotinic receptor agonists: Potential new candidates for the treatment of schizophrenia. Psychopharmacology (Berl) 174: 54–64.

    Article  CAS  Google Scholar 

  • Mathalon DH, Ford JM, Pfefferbaum A. 2000. Trait and state aspects of P300 amplitude reduction in schizophrenia: a retrospective longitudinal study. Biol Psychiatry 47: 434–449.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell CR, Ehrlichman RS, Liang Y, Gettes DR, Evans DL, et al. 2006a. Corticosterone modulates auditory gating in mouse. Neuropsychopharmacology 31: 897–903.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell CR, Ehrlichman RS, Liang Y, Trief D, Kanes SJ, et al. 2006b. Ketamine produces lasting disruptions in encoding of sensory stimuli. J Pharmacol Exp Ther 316: 315–324.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell CR, Kanes SJ, Abel T, Siegel SJ. 2004a. Phosphodiesterase inhibitors: A novel mechanism for receptor-independent antipsychotic medications. Neuroscience 129: 101–107.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell CR, Liang Y, Kelly MP, Kanes SJ, Abel T, et al. 2006c. Mice expressing constitutively active G(s)alpha exhibit stimulus encoding deficits similar to those observed in schizophrenia patients. Neuroscience 141: 1257–1264.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell CR, Liang Y, Weightman BD, Kanes SJ, Abel T, et al. 2004b. Effects of chronic olanzapine and haloperidol differ on the mouse N1 auditory evoked potential. Neuropsychopharmacology 29: 739–746.

    Article  PubMed  CAS  Google Scholar 

  • Metzger KL, Maxwell CR, Liang Y, Siegel SJ. 2006. Effects of nicotine vary across two auditory evoked potentials in the mouse. Biol Psychiatry 61: 23–30.

    Article  PubMed  CAS  Google Scholar 

  • Miyazato H, Skinner RD, Garcia-Rill E. 1999. Sensory gating of the P13 midlatency auditory evoked potential and the startle response in the rat. Brain Res 822: 60–71.

    Article  PubMed  CAS  Google Scholar 

  • Moxon KA, Gerhardt GA, Adler LE. 2003. Dopaminergic modulation of the P50 auditory-evoked potential in a computer model of the CA3 region of the hippocampus: its relationship to sensory gating in schizophrenia. Biol Cybern 88: 265–275.

    Article  PubMed  Google Scholar 

  • Newcomer JW, Farber NB, Jevtovic-Todorovic V, Selke G, Melson AK, et al. 1999. Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology 20: 106–118.

    Article  PubMed  CAS  Google Scholar 

  • Ogura C, Nageishi Y, Matsubayashi M, Omura F, Kishimoto A, et al. 1991. Abnormalities in event-related potentials, N100, P200, P300 and slow wave in schizophrenia. Jpn J Psychiatry Neurol 45: 57–65.

    PubMed  CAS  Google Scholar 

  • Onitsuka T, Ninomiya H, Sato E, Yamamoto T, Tashiro N. 2000. The effect of interstimulus intervals and between-block rests on the auditory evoked potential and magnetic field: is the auditory P50 in humans an overlapping potential? Clin Neurophysiol 111: 237–245.

    Article  PubMed  CAS  Google Scholar 

  • Paavilainen P, Karlsson ML, Reinikainen K, Naatanen R. 1989. Mismatch negativity to change in spatial location of an auditory stimulus. Electroencephalogr Clin Neurophysiol 73: 129–141.

    Article  PubMed  CAS  Google Scholar 

  • Paylor R, Crawley JN. 1997. Inbred strain differences in prepulse inhibition of the mouse startle response. Psychopharmacology (Berl) 132: 169–180.

    Article  CAS  Google Scholar 

  • Phillips JM, Ehrlichman RS, Siegel SJ. 2006. Nicotine receptor subtype contributions to the beneficial and detrimental effects of nicotine on event related potentials. Society for Neuroscience, Atlanta, GA.

    Google Scholar 

  • Phillips JM, Ehrlichman RS, Siegel SJ. 2007. Mecamylamine blocks nicotine-induced enhancement of the P20 auditory event related potential and evoked gamma. Neuroscience 144: 1314–1323.

    Article  PubMed  CAS  Google Scholar 

  • Picton TW, Hillyard SA. 1974. Human auditory evoked potentials. II. Effects of attention. Electroencephalogr Clin Neurophysiol 36: 191–199.

    Article  PubMed  CAS  Google Scholar 

  • Picton TW, Hillyard SA, Krausz HI, Galambos R. 1974. Human auditory evoked potentials. I. Evaluation of components. Electroencephalogr Clin Neurophysiol 36: 179–190.

    Article  PubMed  CAS  Google Scholar 

  • Polich J. 1987. Comparison of P300 from a passive tone sequence paradigm and an active discrimination task. Psychophysiology 24: 41–46.

    Article  PubMed  CAS  Google Scholar 

  • Roth WT, Horvath TB, Pfefferbaum A, Kopell BS. 1980a. Event-related potentials in schizophrenics. Electroencephalogr Clin Neurophysiol 48: 127–139.

    Article  PubMed  CAS  Google Scholar 

  • Roth WT, Pfefferbaum A, Horvath TB, Berger PA, Kopell BS. 1980b. P3 reduction in auditory evoked potentials of schizophrenics. Electroencephalogr Clin Neurophysiol 49: 497–505.

    Article  PubMed  CAS  Google Scholar 

  • Roth WT, Pfefferbaum A, Kelly AF, Berger PA, Kopell BS. 1981. Auditory event-related potentials in schizophrenia and depression. Psychiatry Res 4: 199–212.

    Article  PubMed  CAS  Google Scholar 

  • Sams M, Alho K, Naatanen R. 1983. Sequential effects on the ERP in discriminating two stimuli. Biol Psychol 17: 41–58.

    Article  PubMed  CAS  Google Scholar 

  • Schall U, Catts SV, Karayanidis F, Ward PB. 1999. Auditory event-related potential indices of fronto-temporal information processing in schizophrenia syndromes: valid outcome prediction of clozapine therapy in a three-year follow-up. Int J Neuropsychopharmcol 2: 83–93.

    Article  Google Scholar 

  • Schlor KH, Moises HW, Haas S, Rieger H. 1985. Schizophrenia, psychoticism, neuroleptics, and auditory evoked potentials. Pharmacopsychiatry 18: 293–296.

    Article  PubMed  CAS  Google Scholar 

  • Shaw NA. 1995. The temporal relationship between the brainstem and primary cortical auditory evoked potentials. Prog Neurobiol 47: 95–103.

    Article  PubMed  CAS  Google Scholar 

  • Shelley AM, Ward PB, Catts SV, Michie PT, Andrews S, McConaghy N. 1991. Mismatch negativity: an index of a preattentive processing deficit in schizophrenia. Biol Psychiatry 30: 1059–1062.

    Article  PubMed  CAS  Google Scholar 

  • Siegel C, Waldo M, Mizner G, Adler LE, Freedman R. 1984. Deficits in sensory gating in schizophrenic patients and their relatives. Evidence obtained with auditory evoked responses. Arch Gen Psychiatry 41: 607–612.

    Article  PubMed  CAS  Google Scholar 

  • Siegel SJ, Connolly P, Liang Y, Lenox RH, Gur RE, et al. 2003. Effects of strain, novelty, and NMDA blockade on auditory-evoked potentials in mice. Neuropsychopharmacology 28: 675–682.

    Article  PubMed  CAS  Google Scholar 

  • Siegel SJ, Ehrlichman R, Phillips JM, Liang Y, Turetsky BI, et al. 2006. Ketamine causes persistent evoked gamma oscillations similar to schizophrenia and reduced hippocampul glutamate concentrations in mice. Society for Biological Psychiatry, Toronto, CA.

    Google Scholar 

  • Siegel SJ, Ehrlichman R, Phillips JM, Liang Y, Turetsky BI, Aillon D, Johnson D. 2006. Ketamine causes persistent evoked gamma oscillations similar to schizophrenia and reduced hippocampul glutamate concentrations in mice. In: Society for Biological Psychiatry. Toronto, CA.

    Google Scholar 

  • Siegel SJ, Maxwell CR, Majumdar S, Trief DF, Lerman C, et al. 2005. Monoamine reuptake inhibition and nicotine receptor antagonism reduce amplitude and gating of auditory evoked potentials. Neuroscience 133: 729–738.

    Article  PubMed  CAS  Google Scholar 

  • Siegel SJ, Shoemaker JM, Swerdlow NR, Beckerman W, Liang Y, et al. 2004. Surgically implantable long-term delivery systems for atypical antipsychotic medications. ACNP annual meeting.

    Google Scholar 

  • Siegel SJ, Shoemaker JM, Swerdlow NR, Beckerman W, Liang Y, al. E. 2004. Surgically implantable long-term delivery systems for atypical antipsychotic medications. In: The American College of Neuropsychopharmacology. San Juan, Puerto Rico.

    Google Scholar 

  • Simosky JK, Stevens KE, Adler LE, Freedman R. 2003. Clozapine improves deficient inhibitory auditory processing in DBA/2 mice, via a nicotinic cholinergic mechanism. Psychopharmacology (Berl) 165: 386–396.

    CAS  Google Scholar 

  • Simosky JK, Stevens KE, Freedman R. 2002. Nicotinic agonists and psychosis. Curr Drug Targets CNS Neurol Disord 1: 149–162.

    Article  PubMed  CAS  Google Scholar 

  • Simosky JK, Stevens KE, Kem WR, Freedman R. 2001. Intragastric DMXB-A, an alpha7 nicotinic agonist, improves deficient sensory inhibition in DBA/2 mice. Biol Psychiatry 50: 493–500.

    Article  PubMed  CAS  Google Scholar 

  • Spencer KM, Dien J, Donchin E. 2001. Spatiotemporal analysis of the late ERP responses to deviant stimuli. Psychophysiology 38: 343–358.

    Article  PubMed  CAS  Google Scholar 

  • Stevens KE, Bullock AE, Collins AC. 2001. Chronic corticosterone treatment alters sensory gating in C3H mice. Pharmacol Biochem Behav 69: 359–366.

    Article  PubMed  CAS  Google Scholar 

  • Stevens KE, Freedman R, Collins AC, Hall M, Leonard S, et al. 1996a. Genetic correlation of inhibitory gating of hippocampal auditory evoked response and α-bungerotoxin-binding nicotinic cholinergic receptors in inbred mouse strains. Neuropsychopharmacology 15: 152–162.

    Article  PubMed  CAS  Google Scholar 

  • Stevens KE, Fuller LL, Rose GM. 1991. Dopaminergic and noradrenergic modulation of amphetamine-induced changes in auditory gating. Brain Res 555: 91–98.

    Article  PubMed  CAS  Google Scholar 

  • Stevens KE, Johnson RG, Rose GM. 1997. Rats reared in social isolation show schizophrenia-like changes in auditory gating. Pharmacol Biochem Behav 58: 1031–1036.

    Article  PubMed  CAS  Google Scholar 

  • Stevens KE, Kem WR, Mahnir VM, Freedman R. 1998. Selective alpha 7-nicotinic agonists normalize inhibition of auditory response in DBA mice. Psychopharmacology (Berl) 136: 320–327.

    Article  CAS  Google Scholar 

  • Stevens KE, Luthman J, Lindqvist E, Johnson RG, Rose GM. 1996b. Effects of neonatal dopamine depletion on sensory inhibition in the rat. Pharmacol Biochem Behav 53: 817–823.

    Article  PubMed  CAS  Google Scholar 

  • Stevens KE, Meltzer J, Rose GM. 1995. Nicotinic cholinergic normalization of amphetamine-induced loss of auditory gating in freely moving rats. Psychopharmacology (Berl) 119: 163–170.

    Article  CAS  Google Scholar 

  • Stevens KE, Wear KD. 1997. Normalizing effects of nicotine and a novel nicotinic agonist on hippocampal auditory gating in two animal models. Pharmacol Biochem Behav 57: 869–874.

    Article  PubMed  CAS  Google Scholar 

  • Toru M. 1998. Biological research on schizophrenia. Psychiatry Clin Neurosci 52 (Suppl): S170–172.

    PubMed  CAS  Google Scholar 

  • Tsai G, van Kammen DP, Chen S, Kelley ME, Grier A, et al. 1998. Glutamatergic neurotransmission involves structural and clinical deficits of schizophrenia. Biol Psychiatry 44: 667–674.

    Article  PubMed  CAS  Google Scholar 

  • Umbricht D, Javitt D, Novak G, Bates J, Pollack S, et al. 1998. Effects of clozapine on auditory event-related potentials in schizophrenia. Biol Psychiatry 44: 716–725.

    Article  PubMed  CAS  Google Scholar 

  • Umbricht D, Krljes S. 2005. Mismatch negativity in schizophrenia: A meta-analysis. Schizophr Res 76: 1–23.

    Article  PubMed  Google Scholar 

  • Umbricht D, Schmid L, Koller R, Vollenweider FX, Hell D, Javitt DC. 2000. Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: Implications for models of cognitive deficits in schizophrenia. Arch Gen Psychiatry 57: 1139–1147.

    Article  PubMed  CAS  Google Scholar 

  • Umbricht D, Vyssotky D, Latanov A, Nitsch R, Brambilla R, et al. 2004. Midlatency auditory event-related potentials in mice: Comparison to midlatency auditory ERPs in humans. Brain Res 1019: 189–200.

    Article  PubMed  CAS  Google Scholar 

  • Umbricht D, Vyssotky D, Latanov A, Nitsch R, Brambilla R, D'Adamo P, Lipp HP. 2004. Midlatency auditory event-related potentials in mice: comparison to midlatency auditory ERPs in humans. Brain Res 1019: 189–200.

    Article  PubMed  CAS  Google Scholar 

  • Verleger R. 1988. The true P3 is hard to see: Some comments on Kok’s (1986) paper on degraded stimuli. Biol Psychol 27: 45–50.

    Article  PubMed  CAS  Google Scholar 

  • Whalley LJ, Christie JE, Blackwood DH, Bennie J, Dick H, et al. 1989. Disturbed endocrine function in the psychoses. I. Disordered homeostasis or disease process? Br J Psychiatry 155: 455–461.

    Article  PubMed  CAS  Google Scholar 

  • Zheng QY, Johnson KR, Erway LC. 1999. Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hear Res 130: 94–107.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Phillips, J.M., Maxwell, C.R., Ehrlichman, R.S., Siegel, S.J. (2009). Event-Related Potentials (ERPs) in the Study of Schizophrenia: How Preclinical ERP Studies have Contributed to our Understanding of Schizophrenia. In: Lajtha, A., Javitt, D., Kantrowitz, J. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30410-6_17

Download citation

Publish with us

Policies and ethics