Skip to main content

5.2 Nitric Oxide in Regulation of Mitochondrial Function, Respiration, and Glycolysis

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology
  • 1069 Accesses

1 Introduction

After the discovery of its biological activity, nitric oxide (NO) has been shown to play essential functions in the modulation of vascular tone (Ignarro et al., 1987; Palmer et al., 1987), neurotransmission (Garthwaite et al., 1988), and the immune system (Hibbs et al., 1988; Stuehr and Nathan, 1989). Formed by a family of NO synthases (NOS), NO mainly binds to soluble guanylyl cyclase and mitochondrial cytochrome c oxidase and thus mediates cellular signaling cascades. The binding of NO with soluble guanylyl cyclase allosterically activates the enzyme, which strongly increases cyclic GMP concentrations. In smooth muscle cells, endothelial-derived NO thus switches on cyclic GMP-activated protein kinase, which mediates the relaxation that leads to vasodilatation. The binding of NO with the aā€“a 3 binuclear center of cytochrome c oxidase rapidly decreases the affinity of the enzyme complex for O2, hence inhibiting the mitochondrial electron flux and ATP synthesis.

The...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbud W, Habinowski S, Zhang JZ, Kendrew J, Elkairi FS, et al 2000. Stimulation of AMP-activated protein kinase (AMPK) is associated with enhancement of Glut1-mediated glucose transport. Arch Biochem Biophys 380: 347ā€“352.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • AgullĆ³ L, GarcĆ­a A. 1992a. Characterization of noradrenaline-stimulated cyclic GMP formation in brain astrocytes in culture. Biochem J 288: 619ā€“624.

    Google ScholarĀ 

  • AgullĆ³ L, GarcĆ­a A. 1992b. Different receptors mediate stimulation of nitric oxide-dependent cyclic GMP formation in neurons and astrocytes in culture. Biochem Biophys Res Commun 182: 1362ā€“1368.

    Google ScholarĀ 

  • Albina JE, Mastrofrancesco B. 1993. Modulation of glucose metabolism in macrophages by products of nitric oxide synthase. Am J Physiol 264: C1594ā€“C1599.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Almeida A, Almeida J, BolaƱos JP, Moncada S. 2001. Different responses of astrocytes and neurons to nitric oxide: The role of glycolytically-generated ATP in astrocyte protection. Proc Natl Acad Sci USA 98: 15294ā€“15299.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Almeida A, BolaƱos JP. 2001. A transient inhibition of mitochondrial ATP synthesis by nitric oxide synthase activation triggered apoptosis in primary cortical neurons. J Neurochem 77: 676ā€“690.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Almeida A, BolaƱos JP, Medina JM. 1992. Ketogenesis from lactate in rat liver during the perinatal period. Pediatr Res 31: 415ā€“418.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Almeida A, BolaƱos JP, Medina JM. 1999. Nitric oxide mediates brain mitochondrial maturation immediately after birth. FEBS Lett 452: 290ā€“294.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Almeida A, Moncada S, BolaƱos JP. 2004. Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nat Cell Biol 6: 45ā€“51.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Amber IJ, Hibbs JB Jr, Parker CJ, Johnson BB, Taintor RR, et al 1991. Activated macrophage conditioned medium: Identification of the soluble factors inducing cytotoxicity and the l-arginine dependent effector molecule. J Leukoc Biol 49: 610ā€“620.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Andriezen WL. 1893. On a system of fibre-like cells surrounding the blood vessels of the brain of man and mammals, and its physiological significance. Int Monatsschr Anat Physiol 10: 532ā€“540.

    Google ScholarĀ 

  • Apelt J, Mehlhorn G, Schliebs R. 1999. Insulin-sensitive GLUT4 glucose transporters are colocalized with GLUT3-expressing cells and demonstrate a chemically distinct neuron-specific localization in rat brain. J Neurosci Res 57: 693ā€“705.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Bal-Price A, Brown GC. 2000. Nitric-oxide-induced necrosis and apoptosis in PC12 cells mediated by mitochondria. J Neurochem 75: 1455ā€“1464.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Barker JE, BolaƱos JP, Land JM, Clark JB, Heales SJR. 1996. Glutathione protects astrocytes from peroxynitrite-mediated mitochondrial damage: Implications for neuronal/astrocytic trafficking and neurodegeneration. Dev Neurosci 18: 391ā€“396.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Barnes K, Ingram JC, Porras OH, Barros LF, Hudson ER, et al 2002. Activation of GLUT1 by metabolic and osmotic stress: Potential involvement of AMP-activated protein kinase (AMPK). J Cell Sci 115: 2433ā€“2442.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. 1990. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87: 1620ā€“1624.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Beckman JS, Ischiropoulos H, Zhu J, van der Woerd M, Smith C, et al 1992. Kinetics of superoxide dismutase-and iron-catalyzed nitration of phenolics by peroxynitrite. Arch Biochem Biophys 298: 438ā€“445.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Beinert H, Griffith DE, Wharton DC, Sands RH. 1962. Properties of the copper associated with cytochrome oxidase as studied by paramagnetic resonance spectroscopy. J Biol Chem 237: 2337ā€“2346.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Bell GI, Burant CF, Takeda J, Gould GW. 1993. Structure and function of mammalian facilitative sugar transporters. J Biol Chem 268: 19161ā€“19164.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Bellamy TC, Griffiths C, Garthwaite J. 2002. Differential sensitivity of guanylyl cyclase and mitochondrial respiration to nitric oxide measured using clamped concentrations. J Biol Chem 277: 31801ā€“31807.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • BeltrĆ”n B, Mathur A, Duchen MR, Erusalimsky JD, Moncada S, 2000. The effect of nitric oxide on cell respiration: A key to understanding its role in cell survival or death. Proc Natl Acad Sci USA 97: 14602ā€“14607.

    PubMedĀ  Google ScholarĀ 

  • Ben-Yoseph O, Boxer PA, Ross BD. 1996. Assessment of the role of the glutathione and pentose phosphate pathways in the protection of primary cerebrocortical cultures from oxidative stress. J Neurochem 66: 2329ā€“2337.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Bidmon HJ, Wu J, Buchkremer-Ratzmann I, Mayer B, Witte OW, et al 1998. Transient changes in the presence of nitric oxide synthases and nitrotyrosine immunoreactivity after focal cortical lesions. Neuroscience 82: 377ā€“395.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Birnbaum MJ, Haspel HC, Rosen OM. 1986. Cloning and characterization of a cDNA encoding the rat brain glucose-transporter protein. Proc Natl Acad Sci USA 83: 5784ā€“5788.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Blokzijl-Homan MFJ, Van Gelder BF. 1971. Biochemical and biophysical studies on cytochrome aa 3 III. The EPR spectrum of NO-ferrocytochrome a 3. Biochim Biophys Acta 234: 493ā€“498.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Blough NV, Zafiriou OC. 1985. Reactions of superoxide with nitric oxide to form peroxonitrite in alkaline aqueous solution. Inorg Chem 24: 3502ā€“3504.

    CASĀ  Google ScholarĀ 

  • Blumcke I, Eggli P, Celio MR. 1995. Relationship between astrocytic processes and ā€œperineuronal netsā€ in rat neocortex. Glia 15: 131ā€“140.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Boelens R, Rademaker H, Pel R, Wever R. 1982. Electron paramagnetic-RES studies of the photo-dissociation reactions of cytochrome c oxidase nitric oxide complexes. Biochim Biophys Acta 679: 84ā€“94.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Boelens R, Rademaker H, Wever R, Vangelder BF. 1984. The cytochrome c oxidase azide nitric oxide complex as a model for the oxygen binding site. Biochim Biophys Acta 765: 196ā€“209.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Boelens R, Wever R, Vangelder BF, Rademaker H. 1983. An electron paramagnetic-RES study of the photo-dissociation reactions of oxidized cytochrome c oxidase nitric oxide complexes. Biochim Biophys Acta 724: 176ā€“183.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • BolaƱos JP, Almeida A. 1999. Roles of nitric oxide in brain hypoxiaā€“ischemia. Biochim Biophys Acta 1411: 415ā€“436.

    PubMedĀ  Google ScholarĀ 

  • BolaƱos JP, Almeida A, Stewart V, Peuchen S, Land JM, et al 1997. Nitric oxide-mediated mitochondrial damage in the brain: Mechanisms and implications for neurodegenerative diseases. J Neurochem 68: 2227ā€“2240.

    PubMedĀ  Google ScholarĀ 

  • BolaƱos JP, GarcĆ­a-Nogales P, Almeida A. 2004. Provoking neuroprotection by peroxynitrite. Curr Pharm Des 10: 867ā€“877.

    PubMedĀ  Google ScholarĀ 

  • BolaƱos JP, Heales SJR, Land JM, Clark JB. 1995. Effect of peroxynitrite on the mitochondrial respiratory chain: Differential susceptibility of neurones and astrocytes in primary cultures. J Neurochem 64: 1965ā€“1972.

    PubMedĀ  Google ScholarĀ 

  • BolaƱos JP, Heales SJR, Peuchen S, Barker JE, Land JM, et al 1996. Nitric oxide-mediated mitochondrial damage: A potential neuroprotective role for glutathione. Free Radic Biol Med 21: 995ā€“1001.

    PubMedĀ  Google ScholarĀ 

  • BolaƱos JP, Peuchen S, Heales SJR, Land JM, Clark JB. 1994. Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. J Neurochem 63: 910ā€“916.

    PubMedĀ  Google ScholarĀ 

  • Bonfoco E, Krainc C, Ankarcrona M, Nicotera P, Lipton SA. 1995. Apoptosis and necrosis: Two distinct events induced, respectively, by mild and intense insults with N-methyl-d-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA 92: 7162ā€“7166.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • BorutaitĆ© V, Brown GC. 1996. Rapid reduction of nitric oxide by mitochondria, and reversible inhibition of mitochondrial respiration by nitric oxide. Biochem J 315: 295ā€“299.

    PubMedĀ  Google ScholarĀ 

  • Bredt DS, Hwang PM, Snyder SH. 1990. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347: 768ā€“770.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Bredt DS, Snyder SH. 1990. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA 87: 682ā€“685.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Brookes PS, Land JM, Clark JB, Heales SJR. 1998. Peroxynitrite and brain mitochondria: Evidence for increased proton leak. J Neurochem 70: 2195ā€“2202.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Brorson JR, Schumacker PT, Zhang H. 1999. Nitric oxide acutely inhibits neuronal energy metabolism. J Neurosci 19: 147ā€“158.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Brorson JR, Sulit RA, Zhang H. 1997. Nitric oxide disrupts Ca2+ homeostasis in hippocampal neurons. J Neurochem 68: 95ā€“105.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Brorson JR, Zhang H. 1997. Disrupted [Ca2+]i homeostasis contributes to the toxicity of nitric oxide in cultured hippocampal neurons. J Neurochem 69: 1882ā€“1889.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Brown GC. 1995. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett 369: 136ā€“139.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Brown GC. 2003. NO says yes to mitochondria. Science 299: 838ā€“839.

    PubMedĀ  Google ScholarĀ 

  • Brown GC, BolaƱos JP, Heales SJR, Clark JB. 1995. Nitric oxide produced by activated astrocytes rapidly and reversibly inhibits cellular respiration. Neurosci Lett 193: 201ā€“204.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Brown GC, Borutaite V. 2004. Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim Biophys Acta 1658: 44ā€“49.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Brown GC, Cooper CE. 1994. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett 356: 295ā€“298.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Brudvig GW, Stevens TH, Chan SI. 1980. Reactions of nitric oxide with cytochrome c oxidase. Biochemistry 19: 5275ā€“5285.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Carling D. 2004. The AMP-activated protein kinase cascadeā€”a unifying system for energy control. Trends Biochem Sci 29: 18ā€“24.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Cassina A, Radi R. 1996. Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328: 309ā€“316.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Castro L, RodrĆ­guez M, Radi R. 1994. Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem 269: 29409ā€“29415.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Cataldo AM, Broadwell RD. 1986. Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions. I. Neurons and glia. J Electron Microsc Tech 3: 413ā€“437.

    CASĀ  Google ScholarĀ 

  • Chang J, Rao NV, Markewitz BA, Hoidal JR, Michael JR. 1996. Nitric oxide donor prevents hydrogen peroxide-mediated endothelial cell injury. Am J Physiol 270: L931ā€“L949.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Chen ZP, Mitchelhill KI, Michell BJ, Stapleton D, Rodriguez-Crespo I, et al 1999. AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett 443: 285ā€“289.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Choeiri C, Staines W, Messier C. 2002. Immunohistochemical localization and quantification of glucose transporters in the mouse brain. Neuroscience 111: 19ā€“34.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Cidad P, Almeida A, BolaƱos JP. 2004. Inhibition of mitochondrial respiration by nitric oxide rapidly stimulates cytoprotective GLUT3-mediated glucose uptake through 5ā€²-AMP-activated protein kinase. Biochem J 384: 629ā€“636.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Cidad P, GarcĆ­a-Nogales P, Almeida A, BolaƱos JP. 2001. Expression of glucose transporter GLUT3 by endotoxin in cultured rat astrocytes: The role of nitric oxide. J Neurochem 79: 17ā€“24.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Clancy RM, Levartovsky D, Leszczynska-Piziak J, Yegudin J, Abramson S. 1994. Nitric oxide reacts with intracellular glutathione and activates the hexose monophosphate shunt in human neutrophils: Evidence for S-nitrosoglutathione as a bioactive intermediary. Proc Natl Acad Sci USA 91: 3680ā€“3684.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Clarke DD, Sokoloff L. 1994. Circulation and energy metabolism of the brain. Basic neurochemistry. Siegel GJ, Agranoff BW, Albers RW, Molinoff PB, editors. (eds) New York: Raven Press; pp. 645ā€“680.

    Google ScholarĀ 

  • Cleeter MWJ, Cooper JM, Darley-Usmar VM, Moncada S, Schapira AH. 1994. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett 345: 50ā€“54.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Clementi E, Brown GC, Feelisch M, Moncada S. 1998. Persistent inhibition of cell respiration by nitric oxide: Crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci USA 95: 7631ā€“7636.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Cooper CE. 2003. Competitive, reversible, physiological? inhibition of mitochondrial cytochrome oxidase by nitric oxide. IUBMB Life 55: 591ā€“597.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Cooper CE, Brown GC. 1995. The interactions between nitric oxide and brain nerve terminals as studied by electron paramagnetic resonance. Biochem Biophys Res Commun 212: 404ā€“412.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Darley-Usmar V, Wiseman H, Halliwell B. 1995. Nitric oxide and oxygen radicals: A question of balance. FEBS Lett 369: 131ā€“135.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Dawson VL, Dawson TM. 1996. Nitric oxide neurotoxicity. J Chem Neuroanat 10: 179ā€“190.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Dawson VL, Dawson TM, Bartley DA, Uhl GR, Snyder SH. 1993. Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J Neurosci 13: 2651ā€“2661.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH. 1991. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 88: 6368ā€“6371.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Delgado-Esteban M, Almeida A, BolaƱos JP. 2000. d-glucose prevents glutathione oxidation and mitochondrial damage after glutamate receptor stimulation in rat cortical primary neurons. J Neurochem 75: 1618ā€“1624.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • De Visscher G, Springett R, Delpy DT, Van Reempts J, Borgers M, et al 2002. Nitric oxide does not inhibit cerebral cytochrome oxidase in vivo or in the reactive hyperemic phase after brief anoxia in the adult rat. J Cereb Blood Flow Metab 22: 515ā€“519.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Dijkmans R, Billiau A. 1991. Interferon-g/lipopolysaccharide-treated mouse embryonic fibroblasts are killed by a glycolysis/l-arginine-dependent process accompanied by depression of mitochondrial respiration. Eur J Biochem 202: 151ā€“159.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Dimroth P, Kaim G, Matthey U. 2000. Crucial role of the membrane potential for ATP synthesis by F(1)F(0) ATP synthases. J Exp Biol 203: 51ā€“59.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Drapier J-C, Hibbs JB Jr. 1988. Differentiation of murine macrophages to express nonspecific cytotoxicity for tumor cells results in l-arginine-dependent inhibition of mitochondrial ironā€“sulfur enzymes in the macrophage effector cells. J Immunol 140: 2829ā€“2838.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Dringen R. 2000. Metabolism and functions of glutathione in brain. Prog Neurobiol 62: 649ā€“671.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Dringen R, Gebhardt R, Hamprecht B. 1993. Glycogen in astrocytes: Possible function as lactate supply for neighboring cells. Brain Res 623: 208ā€“214.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Dringen R, Hamprecht B. 1992. Glucose, insulin, and insulin-like growth factor I regulate the glycogen content of astroglia-rich primary cultures. J Neurochem 58: 511ā€“517.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Dringen R, Kussmaul L, Gutterer JM, Hirrlinger J, Hamprecht B. 1999. The glutathione system of peroxide detoxification is less efficient in neurons than in astrocytes. J Neurochem 72: 2523ā€“2530.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Erecinska M, Nelson D, Vanderkooi JM. 1995. Effects of NO-generating compounds on synaptosomal energy metabolism. J Neurochem 65: 2699ā€“2705.

    CASĀ  Google ScholarĀ 

  • Etgen GJ Jr, Fryburg DA, Gibbs EM. 1997. Nitric oxide stimulates skeletal muscle glucose transport through a calcium/contraction- and phosphatidylinositol-3-kinase-independent pathway. Diabetes 46: 1915ā€“1919.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Eu JP, Liu L, Zeng M, Stamler JS. 2000. An apoptotic model for nitrosative stress. Biochemistry 39: 1040ā€“1047.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Faraci FM, Brian JE. 1994. Nitric oxide and the cerebral circulation. Stroke 25: 692ā€“703.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Fryer LG, Hajduch E, Rencurel F, Salt IP, Hundal HS, et al 2000, Activation of glucose transport by AMP-activated protein kinase via stimulation of nitric oxide synthase. Diabetes 49: 1978ā€“1985.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Fukumura D, Yonei Y, Kurose I, Saito H, Ohishi T, et al 1996. Role of nitric oxide in Kupffer cell-mediated hepatoma cell cytotoxicity. Hepatology 24: 141ā€“149.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Gajkowska B, Mossakowski MJ. 1997. Endothelial nitric oxide synthase in vascular endothelium of rat hippocampus after ischemia: Evidence and significance. Folia Neuropathol 35: 171ā€“180.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Galea E, Feinstein DL, Reis DJ. 1992. Induction of calcium-independent nitric oxide synthase activity in primary rat glial cultures. Proc Natl Acad Sci USA 89: 10945ā€“10949.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Galli F, Rossi R, Di Simplicio P, Floridi A, Canestrari F. 2002. Protein thiols and glutathione influence the nitric oxide-dependent regulation of the red blood cell metabolism. Nitric Oxide 6: 186ā€“199.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • GarcĆ­a-Nogales P, Almeida A, BolaƱos JP. 2003. Peroxynitrite protects neurons against nitric oxide-mediated apoptosis. A key role for glucose-6-phosphate dehydrogenase activity in neuroprotection. J Biol Chem 278: 864ā€“874.

    Google ScholarĀ 

  • GarcĆ­a-Nogales P, Almeida A, FernĆ”ndez E, Medina JM, BolaƱos JP. 1999. Induction of glucose-6-phosphate dehydrogenase by lipopolysaccharide contributes to preventing nitric oxide-mediated glutathione depletion in cultured rat astrocytes. J Neurochem 72: 1750ā€“1758.

    PubMedĀ  Google ScholarĀ 

  • Garthwaite J, Charles SL, Chess-Williams R. 1988. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests a role as intercellular messenger in the brain. Nature 336: 385ā€“387.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Gehrmann J, Banati RB, Wiessnert C, Hossmann KA, Kreutzberg GW. 1995. Reactive microglia in cerebral ischemia. An early mediator of tissue damage. Neuropathol Appl Neurobiol 21: 277ā€“289.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Geng Y-J, Hansson GK, Holme E. 1992. Interferon-g and tumor necrosis factor synergize to induce nitric oxide production and inhibit mitochondrial respiration in vascular smooth muscle cells. Circ Res 71: 1268ā€“1276.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Giaume C, Tabernero A, Medina JM. 1997. Metabolic trafficking through astrocytic gap junctions. Glia 21: 114ā€“123.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Gorovits N, Charron MJ. 2003. What we know about facilitative glucose transporters. Lessons from cultured cells, animal models and human studies. Biochem Mol Biol Educ 13: 163ā€“172.

    Google ScholarĀ 

  • Gould GW, Thomas HM, Jess TJ, Bell GI. 1991. Expression of human glucose transporters in Xenopus oocytes: Kinetic characterization and substrate specificities of the erythrocyte, liver, and brain isoforms. Biochemistry 30: 5139ā€“5145.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Grosche J, Matyash V, Moller T, Verkhratsky A, Reichenbach A, et al 1999. Microdomains for neuronā€“glia interaction: Parallel fiber signaling to Bergmann glial cells. Nat Neurosci 2: 139ā€“143.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Hagen T, Taylor CT, Lam F, Moncada S. 2003. Redistribution of intracellular oxygen in hypoxia by nitric oxide: Effect on HIF1alpha. Science 302: 1975ā€“1978.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Hardie DG, Carling D, Sim ATR. 1989. The AMP-activated protein kinase: A multisubstrate regulator of lipid metabolism. Trends Biochem Sci 14: 20ā€“23.

    CASĀ  Google ScholarĀ 

  • Hausladen A, Fridovich I. 1994. Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J Biol Chem 269: 29405ā€“29408.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Hawkins R. 1985. Cerebral energy metabolism. Cerebral energy metabolism and metabolic encephalopathy. McCandless DW, editor. Plenum Press; New York: pp 3ā€“17.

    Google ScholarĀ 

  • Heales SJR, BolaƱos JP, Land JM, Clark JB. 1994. Trolox protects mitochondrial complex IV from nitric oxide-mediated damage in astrocytes. Brain Res 668: 243ā€“245.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Hers HG, Van Schaftingen E. 1982. Fructose 2,6-bisphosphate 2 years after its discovery. Biochem J 206: 1ā€“12.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Hibbs JB Jr, Taintor RR, Vavrin Z, Rachlin EM. 1988. Nitric oxide: A cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun 157: 87ā€“94.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Hunot S, Boissiere F, Faucheux B, Brugg B, Mouattprigent A, et al 1996. Nitric oxide synthase and neuronal vulnerability in Parkinson's disease. Neuroscience 72: 355ā€“363.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Iadecola C. 1997. Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci 20: 132ā€“139.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. 1987. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84: 9265ā€“9269.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Inai Y, Takehara Y, Yabuki M, Sato EF, Akiyama J, Yasuda T, Inoue M, Horton AA, Utsumi K. 1996. Oxygen-dependent-regulation of Ehrlich ascites tumor ell respiration by nitric oxide. Cell Struct Funct 21: 151ā€“157.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Ischiropoulos H, Zhu LC, Chen J, Tsai M, Martin JC, et al 1992. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys 298: 431ā€“437.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Jenner P, Dexter DT, Sian J, Schapira AHV, Marsden CD. 1992. Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental Lewy body disease. Ann Neurol 32: S82ā€“S87.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Jia L, Bonaventura C, Bonaventura J, Stamler JS. 1996. S-nitrosohaemoglobin: A dynamic activity of blood involved in vascular control. Nature 380: 221ā€“226.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Joost HG, Thorens B. 2001. The extended GLUT-family of sugar/polyol transport facilitators: Nomenclature, sequence characteristics, and potential function of its novel members (review). Mol Membr Biol 18: 247ā€“256.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Kacem K, Lacombe P, Seylaz J, Bonvento G. 1998. Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: A confocal microscopy study. Glia 23: 1ā€“10.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Keelan J, Vergun O, Duchen MR. 1999. Excitotoxic mitochondrial depolarisation requires both calcium and nitric oxide in rat hippocampal neurons. J Physiol 520: 797ā€“813.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Keilin D, Hartree EF. 1939. Cytochrome and cytochrome oxidase. Proc Roy Soc London Ser B 127: 167ā€“191.

    CASĀ  Google ScholarĀ 

  • Keynes RG, Duport S, Garthwaite J. 2004. Hippocampal neurons in organotypic slice culture are highly resistant to damage by endogenous and exogenous nitric oxide. Eur J Neurosci 19: 1163ā€“1173.

    PubMedĀ  Google ScholarĀ 

  • Kilbourn RG, Belloni P. 1990. Endothelial cell production of nitrogen oxides in response to interferon in combination with tumor necrosis factor, interleukin-1, or endotoxin. J Natl Cancer Inst 82: 772ā€“776.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Kitade H, Kanemaki T, Sakitani K, Inoue K, Matsui Y, et al 1996. Regulation of energy metabolism by interleukin-1-beta, but not by interleukin-6, is mediated by nitric oxide in primary cultured rat hepatocytes. Biochim Biophys Acta 1311: 20ā€“26.

    PubMedĀ  Google ScholarĀ 

  • Kletzien RF, Harris PKW, Foellmi LA. 1994. Glucose-6-phosphate dehydrogenase: A housekeeping enzyme subject to tissue-specific regulation by hormones, nutrients, and oxidant stress. FASEB J 8: 174ā€“181.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Knowles RG, Moncada S. 1994. Nitric oxide synthases in mammals. Biochem J 298: 249ā€“258.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Knowles RG, Palacios M, Palmer RMJ, Moncada S. 1989. Formation of nitric oxide from l-arginine in the central nervous system: A transduction mechanism for stimulation of the soluble guanylate cyclase. Proc Natl Acad Sci USA 86: 5159ā€“5162.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Kobzik L, Stringer B, Balligand J-L, Reid MB, Stamler JS. 1995. Endothelial type nitric oxide synthase in skeletal muscle fibers: Mitochondrial relationships. Biochem Biophys Res Commun 211: 375ā€“381.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Kon H. 1968. Paramagnetic resonance study of nitric oxide haemoglobin. J Biol Chem 243: 4350ā€“4357.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Kon H. 1969. Electron paramagnetic resonance of nitric oxide cytochrome c. Biochem Biophys Res Commun 35: 423ā€“427.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Kon H, Kataoka N, 1969. Electron paramagnetic resonance of nitric oxideā€“protoheme complexes with some nitrogenous base. Model systems of nitric oxide hemoproteins. Biochemistry 8: 4757ā€“4762.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Kristian T, Gertsch J, Bates TE, Siesjƶ BK. 2000. Characteristics of the calcium-triggered mitochondrial permeability transition in non-synaptic brain mitochondria: Effect of cyclosporin A and ubiquinone 0. J Neurochem 74: 1999ā€“2009.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Kurose I, Ebinuma H, Higuchi H, Yonei Y, Saito H, et al 1995. Nitric oxide mediates mitochondrial dysfunction in hepatoma cells induced by nonactivated Kupffer cells: Evidence implicating ICAM-1-dependent process. J Gastroenterol Hepatol 10: S68ā€“S71.

    PubMedĀ  Google ScholarĀ 

  • Kussmaul L, Hamprecht B, Dringen R. 1999. The detoxification of cumene hydroperoxide by the glutathione system of cultured astroglial cells hinges on hexose availability for the regeneration of NADPH. J Neurochem 73: 1246ā€“1253.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J. 1993. NMDA-dependent superoxide production and neurotoxicity. Nature 364: 535ā€“537.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Le Goffe C, Vallette G, Charrier L, Candelon T, Bou-Hanna C, et al 2002. Metabolic control of resistance of human epithelial cells to H2O2 and NO stresses. Biochem J 364: 349ā€“359.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Lehninger AL, Nelson DL, Cox MM. 1995. Principles of biochemistry. New York: Worth Publishers.

    Google ScholarĀ 

  • Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen HSV, et al 1993. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364: 626ā€“632.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Lizasoain I, Moro MA, Knowles RG, Darley-Usmar V, Moncada S. 1996. Nitric oxide and peroxynitrite exert distinct effects on mitochondrial respiration which are differentially blocked by glutathione or glucose. Biochem J 314: 877ā€“880.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Lobrutto R, Wei YH, Yoshida S, Vancamp HL, Scholes CP, et al 1984. Electron paramagnetic resonance resolved (EPR-resolved) kinetics of cryogenic nitric oxide recombination to cytochrome c oxidase and myoglobin. Biophys J 45: 473ā€“479.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Lymar SV, Jiang Q, Hurst JK. 1996. Mechanism of carbon dioxide-catalyzed oxidation of tyrosine by peroxynitrite. Biochemistry 35: 7855ā€“7861.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Maeda Y, Matsumoto M, Hori O, Kuwabara K, Ogawa S, et al 1994. Hypoxia/reoxygenation-mediated induction of astrocyte interleukin-6. A paracrine mechanism potentially enhancing neuron survival. J Exp Med 180: 2297ā€“2308.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Magistretti PJ, Hof PR, Martin JL. 1986. Adenosine stimulates glycogenolysis in mouse cerebral cortex: A possible coupling mechanism between neuronal activity and energy metabolism. J Neurosci 6: 2558ā€“2562.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Maher F. 1995. Immunolocalization of GLUT1 and GLUT3 glucose transporters in primary cultured neurons and glia. J Neurosci Res 42: 459ā€“469.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Maher F, Vannucci SJ, Simpson IA. 1993. Glucose transporter isoforms in brain: Absence of GLUT3 from the bloodā€“brain barrier. J Cereb Blood Flow Metab 13: 342ā€“345.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Maher F, Vannucci SJ, Simpson IA. 1994. Glucose transporter proteins in brain. FASEB J 8: 1003ā€“1011.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Makar TK, Nedergaard M, Preuss A, Gelbard AS, Perumal AS, et al 1994. Vitamin E, ascorbate, glutathione, glutathione disulfide, and enzymes of glutathione metabolism in cultures of chick astrocytes and neurones: Evidence that astrocytes play an important role in antioxidative processes in the brain. J Neurochem 62: 45ā€“53.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Mallozzi C, Di Stasi AMM, Minetti M. 1997. Peroxynitrite modulates tyrosine-dependent signal transduction pathway of human erythrocyte band 3. FASEB J 11: 1281ā€“1290.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Malmstrƶm BG. 1979. Cytochrome c oxidase. Structure and catalytic activity. Biochim Biophys Acta 549: 281ā€“303.

    PubMedĀ  Google ScholarĀ 

  • Manzano A, Rosa JL, Ventura F, Perez JX, Nadal M, et al 1998. Molecular cloning, expression, and chromosomal localization of a ubiquitously expressed human 6-phosphofructo-2-kinase/ fructose-2, 6-bisphosphatase gene (PFKFB3). Cytogenet Cell Genet 83: 214ā€“217.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Marsin AS, Bertrand L, Rider MH, Deprez J, Beauloye C, et al 2000. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol 10: 1247ā€“1255.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Mateo RB, Reichner JS, Mastrofrancesco B, Kraft-Stolar D, Albina JE. 1995. Impact of nitric oxide on macrophage glucose metabolism and glyceraldehyde-3-phosphate dehydrogenase activity. Am J Physiol 268: C669ā€“C675.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Mayer B, Pfeiffer S, Schrammel A, Koesling D, Schmidt K, et al 1998. A new pathway of nitric oxide/cyclic GMP signalling involving S-nitrosoglutathione. J Biol Chem 273: 3264ā€“3270.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Medina JM, Cuezva JM, Mayor F. 1980. Non-gluconeogenic fate of lactate during the early neonatal period in the rat. FEBS Lett 114: 132ā€“134.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Medina JM, FernĆ”ndez E, BolaƱos JP, Vicario C, Arizmendi C. 1990. Fuel supply to the brain during the early postnatal period. Endocrine and biochemical development of the fetus and neonate. Cuezva JM, Pascual-Leone AM, Patel MS, editors. Plenum Press; New York: pp. 175ā€“194.

    Google ScholarĀ 

  • Meldrum BS. 2000. Glutamate as a neurotransmitter in the brain: Review of physiology and pathology. J Nutr 130: 1007Sā€“1015S.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Mennerick S, Zorumski CF. 1994. Glial contributions to excitatory neurotransmission in cultured hippocampal cells. Nature 368: 59ā€“62.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Merrill JE, Murphy SP, Mitrovic B, Mackenzie-Graham A, Dopp JC, et al 1997. Inducible nitric oxide synthase and nitric oxide production by oligodendrocytes. J Neurosci Res 48: 372ā€“384.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Messmer UK, Brune B. 1996. Modification of macrophage glyceraldehyde-3-phosphate dehydrogenase in response to nitric oxide. Eur J Pharmacol 302: 171ā€“182.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Miles PR, Bowman L, Huffman L. 1996. Nitric oxide alters metabolism in isolated alveolar type-II cells. Am J Physiol 15: L23ā€“L30.

    Google ScholarĀ 

  • Minc-Golomb D, Yadid G, Tsarfaty I, Resau JH, Schwartz JP. 1996. In vivo expression of inducible nitric oxide synthase in cerebellar neurons. J Neurochem 66: 1504ā€“1509.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Mitrovic B, Ignarro LJ, Montestruque S, Smoll A, Merrill JE. 1994. Nitric oxide as a potential pathological mechanism in demyelination: Its differential effects on primary glial cells in vitro. Neuroscience 61: 575ā€“585.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Mohanakumar KP, Thomas B, Sharma SM, Muralikrishnan D, Chowdhury R, et al 2002. Nitric oxide: An antioxidant and neuroprotector. Ann N Y Acad Sci 962: 389ā€“401.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Mohr S, Stamler JS, Brune B. 1996. Posttranslational modification of glyceraldehyde-3-phosphate dehydrogenase by S-nitrosylation and subsequent NADH attachment. J Biol Chem 271: 4209ā€“4214.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Molina y Vedia L, McDonald B, Reep B, BrĆ¼ne B, Di Silvio M, et al 1992. Nitric oxide-induced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosilation. J Biol Chem 267: 24929ā€“24932.

    Google ScholarĀ 

  • Morgello S, Uson RR, Schwartz EJ, Haber RS. 1995. The human bloodā€“brain barrier glucose transporter (GLUT1) is a glucose transporter of gray matter astrocytes. Glia 14: 43ā€“54.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Moro MA, Darley-Usmar VM, Goodwin DA, Read NG, Zamora-Pino R, et al 1994. Paradoxical fate and biological action of peroxynitrite on human platelets. Proc Natl Acad Sci USA 91: 6702ā€“6706.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Moro MA, Darley-Usmar VM, Lizasoain YS, Knowles RG, Radomski MW, Moncada S. 1995. The formation of nitric oxide donors from peroxynitrite. Br J Pharmacol 116: 1999ā€“2004.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Mueckler M, Caruso C, Baldwin SA, Panico M, Blench I, et al 1985. Sequence and structure of a human glucose transporter. Science 229: 941ā€“945.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Murphy S, Grzybicki D. 1996. Glial NO. Normal and pathological roles. Neuroscientist 2: 90ā€“99.

    CASĀ  Google ScholarĀ 

  • Murphy S, Simmons ML, AgullĆ³ L, GarcĆ­a A, Feinstein DL, et al 1993. Synthesis of nitric oxide in CNS glial cells. Trends Neurosci 16: 323ā€“328.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Nagamatsu S, Sawa H, Kamada K, Nakamichi Y, Yoshimoto K, et al 1993. Neuron-specific glucose transporter (NSGT): CNS distribution of GLUT3 rat glucose transporter (RGT3) in rat central neurons. FEBS Lett 334: 289ā€“295.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, et al 2003. Mitochondrial biogenesis in mammals: The role of endogenous nitric oxide. Science 299: 896ā€“899.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Nisoli E, Falcone S, Tonello C, Cozzi V, Palomba L, et al 2004. Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals. Proc Natl Acad Sci USA 101: 16507ā€“16512.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Nomura Y, Kitamura Y. 1993. Inducible nitric oxide synthase in glial cells. Neurosci Res 18: 103ā€“107.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Oury TD, Ho YS, Piantadosi CA, Crapo JD. 1992. Extracellular superoxide dismutase, nitric oxide, and central nervous system O2 toxicity. Proc Natl Acad Sci USA 89: 9715ā€“9719.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Packer MA, Murphy MP. 1994. Peroxynitrite causes calcium efflux from mitochondria which is prevented by cyclosporin A. FEBS Lett 345: 237ā€“240.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Packer MA, Murphy MP. 1995. Peroxynitrite formed by simultaneous nitric oxide and superoxide generation causes cyclosporine A-sensitive mitochondrial calcium efflux and depolarization. Eur J Biochem 234: 231ā€“239.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Palacios-Callender M, Quintero M, Hollis VS, Springett RJ, Moncada S. 2004. Endogenous NO regulates superoxide production at low oxygen concentrations by modifying the redox state of cytochrome c oxidase. Proc Natl Acad Sci USA 101: 7630ā€“7635.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Palmer RM, Ashton DS, Moncada S. 1988. Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature 333: 664ā€“666.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Palmer RMJ, Ferrige AG, Moncada S. 1987. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524ā€“526.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Pardridge WM, Boado RJ, Farrell CR. 1990. Brain-type glucose transporter (GLUT-1) is selectively localized to the bloodā€“brain barrier. Studies with quantitative Western blotting and in situ hybridization. J Biol Chem 265: 18035ā€“18040.

    CASĀ  Google ScholarĀ 

  • Park LCH, Zhang H, Sheu KFR, Calingasan NY, Kristal BS, et al 1999. Metabolic impairment induces oxidative stress, compromises inflammatory responses, and inactivates a key mitochondrial enzyme in microglia. J Neurochem 72: 1948ā€“1958.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Pauwels PJ, Opperdoes FR, Trouet A. 1985. Effects of antimycin, glucose deprivation, and serum on cultures of neurons, astrocytes, and neuroblastoma cells. J Neurochem 44: 143ā€“148.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Peachman KK, Lyles DS, Bass DA. 2001. Mitochondria in eosinophils: Functional role in apoptosis but not respiration. Proc Natl Acad Sci USA 98: 1717ā€“1722.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Pellerin L. 2003. Lactate as a pivotal element in neuronā€“glia metabolic cooperation. Neurochem Int 43: 331ā€“338.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Pellerin L, Magistretti PJ. 1994. Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91: 10625ā€“10629.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Pessin JE, Bell GI. 1992. Mammalian facilitative glucose transporter family: Structure and molecular regulation. Annu Rev Physiol 54: 911ā€“930.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Phillips JD, Kinikini DV, Yu Y, Guo B, Leibold EA. 1996. Differential regulation of IRP1 and IRP2 by nitric oxide in rat hepatoma cells. Blood 87: 2983ā€“2992.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Poderoso JJ, Carreras MC, Lisdero C, RiobĆ³ N, Schƶper F, et al 1996. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 328: 85ā€“92.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Radi R. 1996. Reactions of nitric oxide with metalloproteins. Chem Res Toxicol 9: 828ā€“835.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Radi R, Beckman JS, Bush KM, Freeman BA. 1991. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266: 4244ā€“4250.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Radi R, RodrĆ­guez M, Castro L, Telleri R. 1994. Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 308: 89ā€“95.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Rauhala P, Lin AM, Chiueh CC. 1998. Neuroprotection by S-nitrosoglutathione of brain dopamine neurons from oxidative stress. FASEB J 12: 165ā€“173.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Rees DD, Palmer RJM, Moncada S. 1989. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci USA 86: 3375ā€“3378.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • RiobĆ³ NA, Clementi E, Melani M, Boveris A, Cadenas E, Moncada S, Poderoso JJ. 2001. Nitric oxide inhibits mitochondrial NADH: Ubiquinone reductase activity through peroxynitrite formation. Biochem J 359: 139ā€“145.

    PubMedĀ  Google ScholarĀ 

  • Roberts CK, Barnard RJ, Scheck SH, Balon TW. 1997. Exercise-stimulated glucose transport in skeletal muscle is nitric oxide dependent. Am J Physiol 273: E220ā€“225.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Sagara J, Miura K, Bannai S. 1993. Maintenance of neuronal glutathione by glial cells. J Neurochem 61: 1672ā€“1676.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Sakai T, Ishizaki T, Nakai T, Miyabo S, Matsukawa S, et al 1996. Role of nitric oxide and superoxide anion in leukotoxin-induced, 9,10-epoxy-12-octadecenoate-induced mitochondrial dysfunction. Free Radic Biol Med 20: 607ā€“612.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Salvemini F, FranzĆ© A, Iervolino A, Filosa S, Salzano S, et al 1999. Enhanced glutathione levels and oxidoresistance mediated by increased glucose-6-phosphate dehydrogenase expression. J Biol Chem 274: 2750ā€“2757.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Sastry PS, Rao KS. 2000. Apoptosis and the nervous system. J Neurochem 74: 1ā€“20.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Schapira AHV, Cooper JM, Dexter D, Clark JB, Jenner P, et al 1990a. Mitochondrial complex I deficiency in Parkinson's disease. J Neurochem 54: 823ā€“827.

    CASĀ  Google ScholarĀ 

  • Schapira AHV, Mann VM, Cooper JM, Dexter D, Daniel SE, et al 1990b. Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson's disease. J Neurochem 55: 2142ā€“2145.

    CASĀ  Google ScholarĀ 

  • Schrammel A, Gorren ACF, Schmidt K, Pfeiffer S, Mayer B. 2003. S-nitrosation of glutathione by nitric oxide, peroxynitrite, and ā€¢NO/. Free Radic Biol Med 34: 1078ā€“1088.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Schurr A, Payne RS, Miller JJ, Rigor BM. 1997. Brain lactate is an obligatory aerobic energy substrate for functional recovery after hypoxia: Further in vitro validation. J Neurochem 69: 423ā€“426.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Schurr A, West CA, Rigor BM. 1988. Lactate-supported synaptic function in the rat hippocampal slice preparation. Science 240: 1326ā€“1328.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Schweizer M, Richter C. 1994. Nitric oxide potently and reversibly deenergizes mitochondria at low oxygen tension. Biochem Biophys Res Commun 204: 169ā€“175.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Schweizer M, Richter C. 1996. Peroxynitrite stimulates the pyridine nucleotide-linked Ca2+ release from intact rat liver mitochondria. Biochemistry 35: 4524ā€“4528.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Sharpe MA, Cooper CE. 1998. Interaction of peroxynitrite with mitochondrial cytochrome oxidase. J Biol Chem 273: 30961ā€“30972.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Shi Y, Liu H, Vanderburg G, Samuel SJ, Ismail-Beigi F, et al 1995. Modulation of GLUT1 intrinsic activity in clone 9 cells by inhibition of oxidative phosphorylation. J Biol Chem 270: 21772ā€“21778.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Simmons ML, Murphy S. 1992. Induction of nitric oxide synthase in glial cells. J Neurochem 59: 897ā€“905.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Soussi B, Idstrom J-P, Schersten T, Bylund-Fellenius A-C. 1990. Cytochrome c oxidase and cardiolipin alterations in response to skeletal muscle ischaemia and reperfusion. Acta Physiol Scand 138: 107ā€“114.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Spolarics Z, Spitzer JJ. 1993. Augmented glucose use and pentose cycle activity in hepatic endothelial cells after in vivo endotoxemia. Hepatology 17: 615ā€“620.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Spolarics Z, Stein DS, GarcĆ­a ZC. 1996. Endotoxin stimulates hydrogen peroxide detoxifying activity in rat hepatic endothelial cells. Hepatology 24: 691ā€“696.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Stadler J, Billiar TR, Curran RD, Stuehr DJ, Ochoa JB, et al 1991. Effect of exogenous and endogenous nitric oxide on mitochondrial respiration of rat hepatocytes. Am J Physiol 260: C910ā€“C916.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Stagliano NE, Dietrich WD, Prado R, Green EJ, et al 1997. The role of nitric oxide in the pathophysiology of thromboembolic stroke in the rat. Brain Res 759: 32ā€“40.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Stamler JS, Simon DI, Jaraki O, Osborne JA, Francis S, et al 1992. S-nitrosylation of tissue-type plasminogen activator confers vasodilatory and antiplatelet properties on the enzyme. Proc Natl Acad Sci USA 89: 87ā€“91.

    Google ScholarĀ 

  • Stevens TH, Bocian DF, Chan SI. 1979a, EPR studies of 15NO-ferrocytochrome a 3 in cytochrome c oxidase. FEBS Lett 97: 314ā€“316.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Stevens TH, Brudvig GW, Bocian DF, Chan SI. 1979b. Structure of cytochrome a 3ā€“Cua3 couple in cytochrome c oxidase as revealed by nitric oxide binding studies. Proc Natl Acad Sci USA 76: 3320ā€“3324.

    CASĀ  Google ScholarĀ 

  • Stewart VC, Land JM, Clark JB, Heales SJR. 1998. Pretreatment of astrocytes with interferon-Ī±/Ī² prevents neuronal mitochondrial respiratory chain damage. J Neurochem 70: 432ā€“434.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Stuehr DJ, Nathan CF. 1989. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumour target cells. J Exp Med 169: 1543ā€“1555.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Sung Y-J, Dietert RR. 1994. Nitric oxide (ā€¢NO)-induced mitochondrial injury among chicken ā€¢NO-generating and target leukocytes. J Leukoc Biol 56: 52ā€“58.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • SzabĆ³ C, Day BJ, Salzman AL. 1996. Evaluation of the relative contribution of nitric oxide and peroxynitrite to the suppression of mitochondrial respiration in immunostimulated macrophages using a manganese mesoprophyrin superoxide dismutase mimetic and peroxynitrite scavenger. FEBS Lett 381: 82ā€“86.

    PubMedĀ  Google ScholarĀ 

  • SzabĆ³ C, Salzman AL. 1995. Endogenous peroxynitrite is involved in the inhibition of mitochondrial respiration in immuno-stimulated J774.2 macrophages. Biochem Biophys Res Commun 209: 739ā€“743.

    PubMedĀ  Google ScholarĀ 

  • Tabernero A, BolaƱos JP, Medina JM. 1993. Lipogenesis from lactate in rat neurons and astrocytes in primary culture. Biochem J 294: 635ā€“638.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Tabernero A, Giaume C, Medina JM. 1996. Endothelin-1 regulates glucose utilization in cultured astrocytes by controlling intercellular communication through gap junctions. Glia 16: 187ā€“195.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Takehara Y, Kanno T, Yoshioka T, Inoue M, Utsumi K. 1995. Oxygen-dependent regulation of mitochondrial energy metabolism by nitric oxide. Arch Biochem Biophys 323: 27ā€“32.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Takuma K, Phuagphong P, Lee E, Mori K, Baba A, et al 2001. Anti-apoptotic effect of cGMP in cultured astrocytes. Inhibition by cGMP-dependent protein kinase of mitochondrial permeable transition pore. J Biol Chem 276: 48093ā€“48099.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Tatton WH, Olanow CW. 1999. Apoptosis in neurodegenerative diseases: The role of mitochondria. Biochim Biophys Acta 1410: 195ā€“213.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Torres J, Darley-Usmar VM, Wilson MT. 1995. Inhibition of cytochrome c oxidase in turnover by nitric oxide: Mechanism and implications for control of respiration. Biochem J 312: 169ā€“173.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Trimmer BA, Aprille JR, Dudzinski DM, Lagace CJ, Lewis SM, et al 2001. Nitric oxide and the control of firefly flashing. Science 292: 2486ā€“2488.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Tsacopoulos M, Magistretti PJ. 1996. Metabolic coupling between glia and neurons. J Neurosci 16: 877ā€“885.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Uppu RM, Squadrito GL, Pryor WA. 1996. Acceleration of peroxynitrite oxidations by carbon dioxide. Arch Biochem Biophys 327: 335ā€“343.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Ursini MV, Parrella A, Rosa G, Salzano S, Martini G. 1997. Enhanced expression of glucose-6-phosphate dehydrogenase in human cells sustaining oxidative stress. Biochem J 323: 801ā€“806.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Van der Vliet A, Eiserich JP, Kaur H, Cross CE, Halliwell B. 1996. Nitrotyrosine as biomarker for reactive nitrogen species. Methods Enzymol 269: 175ā€“184.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Vicario C, Arizmendi C, Malloch G, Clark JB, Medina JM. 1991. Lactate utilization by isolated cells from early neonatal rat brain. J Neurochem 57: 1700ā€“1707.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Wainio WW. 1955. Reactions of cytochrome oxidase. J Biol Chem 212: 723ā€“733.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Walz W, Mukerji S. 1988. Lactate release from cultured astrocytes and neurons: A comparison. Glia 1: 366ā€“370.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Wang GJ, Randall RD, Thayer SA. 1994. Glutamate-induced intracellular acidification of cultured hippocampal neurons demonstrates altered energy metabolism resulting from Ca2+ loads. J Neurophysiol 72: 2563ā€“2569.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Welsh N, Sandler S. 1992. Interleukin-1 beta induces nitric oxide production and inhibits the activity of aconitase without decreasing glucose oxidation rates in isolated mouse pancreatic islets. Biochem Biophys Res Commun 182: 333ā€“340.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • White DA. 1973. The phospholipid composition of mammalian tissues. Form and function of phospholipids. Ansell GB, Hawthorne JN, Dawson RMC, editors. Amsterdam: Elsevier Science; pp 441ā€“482.

    Google ScholarĀ 

  • White RJ, Reynolds IJ. 1996. Mitochondrial depolarization in glutamate-stimulated neurons: An early signal specific to excitotoxic exposure. J Neurosci 16: 5688ā€“5697.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Wiesinger H, Hamprecht B, Dringen R. 1997. Metabolic pathways for glucose in astrocytes. Glia 21: 22ā€“34.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Wilson DF, Erecinska M, Owen CS. 1976. Some properties of the redox components of cytochrome c oxidase and their reactions. Arch Biochem Biophys 175: 160ā€“172.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Wink DA, Cook JA, Pacelli R, DeGraff W, Gamson J, et al 1996. The effect of various nitric oxide-donor agents on hydrogen peroxide-mediated toxicity: A direct correlation between nitric oxide formation and protection. Arch Biochem Biophys 331: 241ā€“248.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Wong-Riley MTT. 1989. Cytochrome oxidase: An endogenous metabolic marker for neuronal activity. Trends Neurosci 12: 94ā€“101.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Wood IS, Trayhurn P. 2003. Glucose transporters (GLUT and SGLT): Expanded families of sugar transport proteins. Br J Nutr 89: 3ā€“9.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Wood PL. 1995. Microglia as a unique cellular target in the treatment of stroke. Potential neurotoxic mediators produced by activated microglia. Neurol Res 17: 242ā€“248.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Wu K, Aoki C, Elste A, Rogalski-Wilk AA, Siekevitz P. 1997. The synthesis of ATP by glycolytic enzymes in the postsynaptic density and the effect of endogenous generated nitric oxide. Proc Natl Acad Sci USA 94: 13273ā€“13278.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Wu X, Freeze HH. 2002. GLUT14, a duplicon of GLUT3, is specifically expressed in testis as alternative splice forms. Genomics 80: 553ā€“557.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Xia Y, Roman IJ, Masters BS, Zweier JL. 1998. Inducible nitric oxide synthase generates superoxide from the reductase domain. J Biol Chem 273: 22635ā€“22639.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Xie Q-W, Kashiwabara Y, Nathan C. 1994. Role of transcription factor NF-kB/rel in induction of nitric oxide synthase. J Biol Chem 269: 4705ā€“4708.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Xu W, Liu L, Charles IG, Moncada S. 2004. Nitric oxide induces coupling of mitochondrial signalling with the endoplasmic reticulum stress response. Nat Cell Biol 6: 1129ā€“1134.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Yankner BA. 1996. Mechanisms of neuronal degeneration in Alzheimer's disease. Neuron 16: 921ā€“932.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Zhang J, Snyder SH. 1992. Nitric oxide stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci USA 89: 9382ā€“9385.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Zhang C, Wong-Riley MTT. 1996. Do nitric oxide synthase, NMDA receptor subunit R1 and cytochrome oxidase co-localize in the rat central nervous system? Brain Res 729: 205ā€“215.

    PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgments

J.P.B. is funded by the Spanish Ministry of Science and Education (grant SAF2004-2038) and the Junta de Castilla-LeĆ³n (grant SA081/04). A.A.P. is funded by the Fondo de InvestigaciĆ³n Sanitaria (grant FIS03/1055) and the Junta de Castilla-LeĆ³n (grant SA020/02). The authors wish to thank Dr. MarĆ­a Delgado-Esteban, Dr. Paula GarcĆ­a-Nogales, Dr. Victoria Vega-Agapito, Dr. Pilar Cidad, Dr. Emilio FernĆ”ndez, Prof. Jose M. Medina, Dr. Simon J. Heales, Prof. John B. Clark, Dr. Guy C. Brown, and Prof. Salvador Moncada for exciting collaborative efforts that led to part of the results discussed in this chapter.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2007 Springer Science+Business Media, LLC.

About this entry

Cite this entry

BolaƱos, J.P., Almeida, A. (2007). 5.2 Nitric Oxide in Regulation of Mitochondrial Function, Respiration, and Glycolysis. In: Lajtha, A., Gibson, G.E., Dienel, G.A. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30411-3_18

Download citation

Publish with us

Policies and ethics