Skip to main content

Perturbation Theory and Molecular Dynamics

  • Reference work entry
Encyclopedia of Complexity and Systems Science
  • 183 Accesses

Definition of the Subject

In the framework of Quantum Mechanics the dynamics of a molecule is governed by the (time‐dependent) Schrödinger equation , involvingnuclei and electrons coupled through electromagnetic interactions. While the equation is mathematically well-posed, yielding the existence ofa unique solution, the complexity of the problem makes the exact solution unattainable. Even for small molecules, the large number of degrees offreedom prevents from direct numerical simulation, making an approximation scheme necessary.

Indeed, one may exploit the smallness of the electron/nucleus mass ratio to introduce a convenient computational scheme leading to approximatesolutions of the original time‐dependent problem. In this article we review the standard approximation scheme (dynamical Born–Oppenheimer approximation ) together with its ramifications and some recent generalizations, focusing on mathematically rigorousresults.

The success of this approximation scheme is rooted in...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Adiabatic decoupling :

In a complex system (either classical or quantum), the dynamical decoupling between the slow and the fast degrees of freedom.

Adiabatic perturbation theory :

A mathematical algorithm which exploits the adiabatic decoupling of degrees of freedom in order to provide an approximated (but yet accurate) description of the slow part of the dynamics. In the framework of QMD, it is used to approximately describe the dynamics of nuclei, the perturbative parameter ε being related to the small electron/nucleus mass ratio.

Electronic structure problem:

The problem consisting in computing, at fixed positions of thenuclei, the energies (eigenvalues) and eigenstates corresponding to the electrons. An approximate solution is usually obtained numerically.

Molecular dynamics :

The dynamics of the nuclei in a molecule. While a first insight in the problem can be obtained by using classical mechanics (Classical Molecular Dynamics), a complete picture requires quantum mechanics (Quantum Molecular Dynamics) Perturbation Theory in Quantum Mechanics. This contribution focuses on the latter viewpoint.

Bibliography

Primary Literature

  1. Berry MV, Lim R (1990) The Born–Oppenheimer electric gauge force is repulsive near degeneracies. J Phys A 23:L655–L657

    ADS  Google Scholar 

  2. Born M, Oppenheimer R (1927) Zur Quantentheorie der Molekeln. Ann Phys (Leipzig) 84:457–484

    ADS  MATH  Google Scholar 

  3. Brummelhuis R, Nourrigat J (1999) Scattering amplitude for Dirac operators. Comm Partial Differ Equ 24(1–2):377–394

    MathSciNet  MATH  Google Scholar 

  4. Combes JM (1977) The Born–Oppenheimer approximation. Acta Phys Austriaca 17:139–159

    Google Scholar 

  5. Combes JM, Duclos P, Seiler R (1981) The Born–Oppenheimer approximation. In: Velo G, Wightman A (eds) Rigorous Atomic and Molecular Physics. Plenum, New York, pp 185–212

    Google Scholar 

  6. de Verdière YC (2004) The level crossing problem in semi‐classical analysis. II. The Hermitian case. Ann Inst Fourier (Grenoble) 54(5):1423–1441

    Google Scholar 

  7. de Verdière YC, Lombardi M, Pollet C (1999) The microlocal Landau–Zener formula. Ann Inst H Poincaré Phys Theor 71:95–127

    Google Scholar 

  8. de Verdière YC (2003) The level crossing problem in semi‐classical analysis. I. The symmetric case. Proceedings of the international conference in honor of Frédéric Pham (Nice, 2002). Ann Inst Fourier (Grenoble) 53(4):1023–1054

    Google Scholar 

  9. Emmrich C, Weinstein A (1996) Geometry of the transport equation in multicomponent WKB approximations. Commun Math Phys 176:701–711

    MathSciNet  ADS  MATH  Google Scholar 

  10. Faure F, Zhilinskii BI (2000) Topological Chern indices in molecular spectra. Phys Rev Lett 85:960–963

    ADS  Google Scholar 

  11. Faure F, Zhilinskii BI (2001) Topological properties of the Born–Oppenheimer approximation and implications for the exact spectrum. Lett Math Phys 55:219–238

    MathSciNet  MATH  Google Scholar 

  12. Faure F, Zhilinskii BI (2002) Topologically coupled energy bands in molecules. Phys Lett 302:242–252

    MATH  Google Scholar 

  13. Fermanian–Kammerer C, Gérard P (2002) Mesures semi‐classiques et croisement de modes. Bull Soc Math France 130:123–168

    Google Scholar 

  14. Fermanian–Kammerer C, Lasser C (2003) Wigner measures and codimension 2 crossings. J Math Phys 44:507–527

    Google Scholar 

  15. Folland GB (1989) Harmonic analysis in phase space. Princeton University Press, Princeton

    MATH  Google Scholar 

  16. Hagedorn GA (1980) A time dependent Born–Oppenheimer approximation. Commun Math Phys 77:1–19

    MathSciNet  ADS  MATH  Google Scholar 

  17. Hagedorn GA (1986) High order corrections to the time‐dependent Born–Oppenheimer approximation. I. Smooth potentials. Ann Math (2) 124(3):571–590

    MathSciNet  Google Scholar 

  18. Hagedorn GA (1987) High order corrections to the time‐independent Born–Oppenheimer approximation I: Smooth potentials. Ann Inst H Poincaré Sect. A 47:1–16

    MathSciNet  MATH  Google Scholar 

  19. Hagedorn GA (1988) High order corrections to the time‐independent Born–Oppenheimer approximation II: Diatomic Coulomb systems. Comm Math Phys 116:23–44

    MathSciNet  ADS  Google Scholar 

  20. Hagedorn GA (1988) High order corrections to the time‐dependent Born–Oppenheimer approximation. II. Coulomb systems. Comm Math Phys 117(3):387–403

    MathSciNet  ADS  Google Scholar 

  21. Hagedorn GA (1989) Adiabatic expansions near eigenvalue crossings. Ann Phys 196:278–295

    MathSciNet  ADS  MATH  Google Scholar 

  22. Hagedorn GA (1992) Classification and normal forms for quantum mechanical eigenvalue crossings. Méthodes semi‐classiques, vol 2 (Nantes, 1991). Astérisque 210(7):115–134

    MathSciNet  Google Scholar 

  23. Hagedorn GA (1994) Molecular propagation through electron energy level crossings. Mem Amer Math Soc 111:1–130

    MathSciNet  Google Scholar 

  24. Hagedorn GA, Joye A (2007) Mathematical analysis of Born–Oppenheimer approximations. Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon's 60th birthday, In: Proc Sympos Pure Math 76, Part 1, Amer Math Soc, Providence, RI, pp 203–226

    Google Scholar 

  25. Herrin J, Howland JS (1997) The Born–Oppenheimer approximation: straight-up and with a twist. Rev Math Phys 9:467–488

    MathSciNet  MATH  Google Scholar 

  26. Kato T (1950) On the adiabatic theorem of quantum mechanics. Phys Soc Jap 5:435–439

    ADS  Google Scholar 

  27. Klein M, Martinez A, Seiler R, Wang XP (1992) On the Born–Oppenheimer expansion for polyatomic molecules. Commun Math Phys 143:607–639

    MathSciNet  ADS  MATH  Google Scholar 

  28. Klein M, Martinez A, Wang XP (1993) On the Born–Oppenheimer approximation of wave operators in molecular scattering theory. Comm Math Phys 152:73–95

    MathSciNet  ADS  MATH  Google Scholar 

  29. Klein M, Martinez A, Wang XP (1997) On the Born–Oppenheimer approximation of diatomic wave operators II. Sigular potentials. J Math Phys 38:1373–1396

    MathSciNet  ADS  MATH  Google Scholar 

  30. Lasser C, Teufel S (2005) Propagation through conical crossings: an asymptotic transport equation and numerical experiments. Commun Pure Appl Math 58:1188–1230

    MathSciNet  MATH  Google Scholar 

  31. Littlejohn RG, Flynn WG (1991) Geometric phases in the asymptotic theory of coupled wave equations. Phys Rev 44:5239–5255

    MathSciNet  ADS  Google Scholar 

  32. Martinez A, Sordoni V (2002) A general reduction scheme for the time‐dependent Born–Oppenheimer approximation. Comptes Rendus Acad Sci Paris 334:185–188

    MathSciNet  MATH  Google Scholar 

  33. Mead CA, Truhlar DG (1979) On the determination of Born–Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei. J Chem Phys 70:2284–2296

    ADS  Google Scholar 

  34. Nenciu G, Sordoni V (2004) Semiclassical limit for multistate Klein–Gordon systems: almost invariant subspaces and scattering theory. J Math Phys 45:3676–3696

    MathSciNet  ADS  MATH  Google Scholar 

  35. von Neumann J, Wigner EP (1929) Über das Verhalten von Eigenwerten bei adiabatischen Prozessen. Phys Z 30:467–470

    MATH  Google Scholar 

  36. Panati G, Spohn H, Teufel S (2003) Space‐adiabatic perturbation theory. Adv Theor Math Phys 7:145–204

    MathSciNet  Google Scholar 

  37. Sjöstrand J (1993) Projecteurs adiabatiques du point de vue pseudodifferéntiel. Comptes Rendus Acad Sci Paris, Série I 317:217–220

    Google Scholar 

  38. Sordoni V (2003) Reduction scheme for semiclassical operator‐valued Schrödinger type equation and application to scattering. Comm Partial Differ Equ 28(7–8):1221–1236

    MathSciNet  MATH  Google Scholar 

  39. Spohn H, Teufel S (2001) Adiabatic decoupling and time‐dependent Born–Oppenheimer theory. Commun Math Phys 224:113–132

    MathSciNet  ADS  MATH  Google Scholar 

  40. Varandas AJC, Brown FB, Mead CA, Truhlar DG, Blais NC (1987) A double many-body expansion of the two lowest‐energy potential surfaces and nonadiabatic coupling for H3. J Chem Phys 86:6258–6269

    ADS  Google Scholar 

  41. Weigert S, Littlejohn RG (1993) Diagonalization of multicomponent wave equations with a Born–Oppenheimer example. Phys Rev A 47:3506–3512

    ADS  Google Scholar 

  42. Yin L, Mead CA (1994) Magnetic screening of nuclei by electrons as an effect of geometric vector potential. J Chem Phys 100:8125–8131

    ADS  Google Scholar 

Books and Reviews

  1. Bohm A, Mostafazadeh A, Koizumi A, Niu Q, Zwanziger J (2003) The geometric phase in quantum systems. Texts and monographs in physics. Springer, Heidelberg

    Google Scholar 

  2. Teufel S (2003) Adiabatic perturbation theory in quantum dynamics. Lecture notes in mathematics, vol 1821. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Panati, G. (2009). Perturbation Theory and Molecular Dynamics. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_399

Download citation

Publish with us

Policies and ethics