Skip to main content

Boolean Modeling of Biological Networks

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

Boolean Networks (BN) are a class of discrete dynamical systems that can be characterized by the interaction of a set of Booleanvariables. Random Boolean Networks (RBN), which are ensembles of random network structures, were first introduced by Stuart Kauffman in 1969 asa simple model class for studying dynamical properties of gene regulatory networks [1,2]. Since then, Boolean Networks have been used as generic models fordynamics of complex systems of interacting entities, such as social and economic networks, neural networks, as well as gene and protein interactionnetworks. Despite their conceptual simplicity, Boolean Networks exhibit complex nonlinear behaviors that are, to this day, a challenging object ofinvestigation for theoretical physicists and mathematicians. Further, a discretization of gene expression is often regarded as an experimentallyjustifiable simplification [3,4], making Booleannetwork models attractive tools for the application oriented...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Connectivity matrix:

In a Boolean network model, the information about who is interacting with whom is stored in the connectivity matrix. This static wiring diagram can be described by parameters from graph theory, such as the degree distributions of its elements or nodes.

Activity, sensitivity :

Boolean functions define how elements of a network interact. Activity and sensitivity are parameters describing the dynamic properties of single network elements or nodes. The activity of a node measures its influence on another node and conversely, the sensitivity of a node measures how sensitive it is to random changes in one of its inputs.

Phase transition and criticality:

Regarding the propagation of perturbations, one can distinguish between an ordered phase, where perturbations will not influence the network dynamics and an chaotic phase, where small perturbations will increase over time. Networks that operate at the transition of these two phases, such that perturbations are neither attenuated nor amplified on average, are called critical.

Attractors:

In Boolean networks, dynamically stable patterns are called attractors. In their biological context, attractors may be interpreted as different cell types in models of cell differentiation or as cell states in models of cell signaling. Analyzing the influence of perturbations on attractor dynamics is thus of pivotal biological interest.

Relevant and irrelevant nodes :

Only the perturbation of certain elements will move the system from one attractor to another. These dynamically relevant nodes are potential lever points for system intervention.

Bibliography

  1. Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructedgenetic sets. J Theor Biol 22:437–467

    MathSciNet  Google Scholar 

  2. Kauffman SA (1993) The Origins of Order. Oxford University Press, NewYork

    Google Scholar 

  3. Thomas R (1973) Boolean formalization of genetic control circuits. J TheorBiol 42:563–585

    Google Scholar 

  4. Yuh CH, Bolouri H, Bower JM, Davidson EH (2001) A logical model ofcis‐regulatory control in a eukaryotic system. In: Bower JM, Bolouri H (eds) Computational Modeling of Genetic and Biochemical Networks. MITPress, Cambridge, pp 73–100

    Google Scholar 

  5. Jacob F, Monod J (1961) On the regulation of gene activity. Cold Spring HarborSymposia on Quantitative Biology

    Google Scholar 

  6. Kauffman SA (2004) The ensemble approach to understand genetic regulatorynetworks. Physica A 340:733–740

    MathSciNet  ADS  Google Scholar 

  7. Ramo P, Kesseli J, Yli-Harja O (2006) Perturbation avalanches and criticality ingene regulatory networks. J Theor Biol 242:164–170

    MathSciNet  Google Scholar 

  8. Shmulevich I, Kauffman SA, Aldana M (2005) Eukaryotic cells are dynamicallyordered or critical but not chaotic. Proc Natl Acad Sci USA 102:13439–13444

    ADS  Google Scholar 

  9. Nykter M, Price ND, Aldana M, Ramsey SA, Kauffman SA, Hood L, Yli-Harja O,Shmulevich I (2008) Gene Expression Dynamics in the Macrophage Exhibit Criticality. Proc Natl Acad Sci USA105(6):1897–1900

    ADS  Google Scholar 

  10. Drossel B (2007) Random Boolean networks. In: Schuster HG (ed) Annual Reviewof Nonlinear Dynamics and Complexity, vol 1. Wiley, Weinheim

    Google Scholar 

  11. Bastolla U, Parisi G (1998) Relevant elements,magnetization and dynamicalproperties in Kauffman networks: A numerical study. Physica D 115:203–218

    ADS  MATH  Google Scholar 

  12. Bastolla U, Parisi G (1998) The modular structure of Kauffmannetworks. Physica D 115:219–233

    ADS  MATH  Google Scholar 

  13. Socolar JES, Kauffman SA (2003) Scaling in Ordered and Critical Random BooleanNetworks. Phys Rev Lett 90:068702

    ADS  Google Scholar 

  14. Paul U, Kaufman V, Drossel B (2006) Properties of attractors of canalyzingrandom Boolean networks. Phys Rev E 73:026118

    ADS  Google Scholar 

  15. Derrida B, Pomeau Y (1986) Random networks of automata: A simple annealedapproximation. Europhys Lett 1:45–49

    ADS  Google Scholar 

  16. Derrida B, Stauffer D (1986) Phase transition in two dimensional Kauffmancellular automata. Europhys Lett 2:739–745

    ADS  Google Scholar 

  17. Flyvbjerg H (1988) An order parameter for networks of automata. J Phys A:Math Theor 21:955–960

    MathSciNet  ADS  Google Scholar 

  18. Luque B, Sole R (2000) Lyapunov exponents in random Boolean networks. PhysicaD 284:33–45

    Google Scholar 

  19. Shmulevich I, Kauffman SA (2004) Activities and Sensitivities in BooleanNetwork Models. Phys Rev Lett 93:048701

    ADS  Google Scholar 

  20. Mihaljev T, Drossel (2006) Scaling in a general class of critical randomBoolean networks. Phys Rev E 74:046101

    ADS  Google Scholar 

  21. Samuelson B, Troein C (2003) Superpolynomial Growth in the Number ofAttractors in Kauffman Networks. Phys Rev Lett 90:098701

    MathSciNet  ADS  Google Scholar 

  22. Kaufman V, Mihaljev T, Drossel B (2005) Scaling in critical random Booleannetworks. Phys Rev E 72:046124

    ADS  Google Scholar 

  23. Krawitz P, Shmulevich I (2007) Basin Entropy in Boolean NetworkEnsembles. Phys Rev Lett 98:158701

    ADS  Google Scholar 

  24. Harvey I, Bossomaier T (1997) Time out of joint: Attractors in asynchronousrandom Boolean networks. In: Husbands P, Harvey I (eds) Fourth European Conference on Artificial Life. MIT Press, Cambridge, pp67–75

    Google Scholar 

  25. Klemm K, Bornholdt S (2005) Stable and unstable attractors in Booleannetworks. Phys Rev E 72:055101

    MathSciNet  ADS  Google Scholar 

  26. Greil F, Drossel B (2005) Dynamics of Critical Kauffman Networks underAsynchronous Stochastic Update. Phys Rev Lett 95:048701

    ADS  Google Scholar 

  27. Albert R, Barabasi AL (2002) Statistical mechanics of complex networks. RevMod Phys 74:47–97

    MathSciNet  ADS  MATH  Google Scholar 

  28. Aldana M, Cluzel P (2003) A natural class of robust networks. Proc NatlAcad Sci USA 100(15):8710–8714

    ADS  Google Scholar 

  29. Barrera LO, Ren B (2006) The transcriptional regulatory code of eukaryoticcells – insights from genome‐wide analysis of chromatin organization and transcription factor binding. Curr Opin Cell Biol18(3):291–298

    Google Scholar 

  30. Harris SE, Sawhill BK, Wuensche A, Kauffman SA (2002) A Model ofTranscriptional Regulatory Networks Based on Biases in the Observed Regulation Rules. Complexity 7(4):23–40

    Google Scholar 

  31. Shmulevich I, Lähdesmäki H, Dougherty ER, Astola J, Zhang W (2003) The role ofcertain Post classes in Boolean network models of genetic networks. Proc Natl Acad Sci USA 100(19):10734–10739

    Google Scholar 

  32. Kauffman S, Peterson C, Samuelsson B, Troein C (2004) Genetic networks withcanalyzing Boolean rules are always stable. Proc Natl Acad Sci USA 101(49):17102–17107

    ADS  Google Scholar 

  33. Chaves M, Sontag ED, Albert R (2006) Methods of robustness analysis forBoolean models of gene control networks. IEE Proc Syst Biol 153:154–167

    Google Scholar 

  34. Dassow G, Meir E, Munro EM, Odell GM (2000) The segment polarity network isa robust develomental module. Nature 406:188–192

    ADS  Google Scholar 

  35. Chaves M, Albert R, Sontag D (2005) Robustness and fragility of Boolean modelsfor genetic regulatory networks. J Theor Biol 235:431–449

    MathSciNet  Google Scholar 

  36. Albert R, Othmer HG (2003) The topology of the regulatory interactionspredicts the expression pattern of the Drosophila segment polarity genes. J Theor Biol 223:1–18

    MathSciNet  Google Scholar 

  37. Faure A, Naldi A, Chaouiya C, Thieffry D (2006) Dynamical analysis ofa generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14):124–131

    Google Scholar 

  38. Saez‐Rodriguez J, Simeoni L, Lindquist JA, Hemenway R, Bommhardt U,Arndt B, Haus UU, Weismantel R, Gilles ED, Klamt S, Schraven B (2007) A logical model provides insights into T cell receptor signaling. PLoS ComputBiol 3(8):1580–1590

    Google Scholar 

  39. Klamt S, Saez‐Rodriguez J, Lindquist JA, Simeoni L, Gilles ED (2006)A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinf 7:56

    Google Scholar 

  40. Akutsu T, Miyano S, Kuhara S (2000) Inferring qualitative relations in genericnetworks and in metabolic pathways. Bioinformatics 16(8):727–734

    Google Scholar 

  41. Martin S, Zhang Z, Martino A, Faulon JL (2007) Boolean Dynamics of the GeneticRegulatory Networks Inferred from Microarray Time Series Data. Bioinformatics 23(7):866–874

    Google Scholar 

  42. Shmulevich I, Dougherty E, Zhang W (2002) From Boolean to ProbabilisticBoolean Networks as Models of Genetic Regulatory Networks. Proc IEEE 90(11):1778–1792

    Google Scholar 

  43. Lähdesmäki H, Shmulevich I, Yli-Harja O (2003) On Learning Gene RegulatoryNetworks Under the Boolean Network Model. Mach Learn 52:147–167

    Google Scholar 

  44. Shmulevich I (2007) Genomic Signal Processing. Princeton University Press,Princeton

    MATH  Google Scholar 

  45. Datta A, Pal R, Choudhary A, Dougherty ER (2007) Control Approaches forProbabilistic Gene Regulatory Networks. IEEE Signal Process Mag 24:1:54–63

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Krawitz, P., Shmulevich, I. (2009). Boolean Modeling of Biological Networks. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_40

Download citation

Publish with us

Policies and ethics