Skip to main content

Seismicity, Statistical Physics Approaches to

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

A fundamental challenge in many scientific disciplines concerns upscaling, that is, of determining the regularities and laws of evolution atsome large scale from those known at a lower scale: biology (from molecules to cells, from cells to organs); neurobiology (from neurons to brainfunction), psychology (from brain to emotions, from evolution to understanding), ecology (from species to the global web of ecological interactions),condensed matter physics (from atoms and molecules to organized phases such as solid, liquid, gas, and intermediate structures), social sciences (fromindividual humans to social groups and to society), economics (from producers and consumers to the whole economy), finance (from investors to the globalfinancial markets), Internet (from e-pages to the world wide web 2.0), semantics (from letters and words to sentences and meaning), and so on. Earthquakephysics is no exception, with the challenge of understanding the transition from the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Chaos:

Chaos occurs in dynamical systems with two ingredients: (i) nonlinear recurrent re-injection of the dynamics into a finite domain in phase space and (ii) exponential sensitivity of the trajectories in phase space to initial conditions.

Continuous phase transitions:

If there is a finite discontinuity in the first derivative of the thermodynamic potential, then the phase transition is termed first-order. During such a transition, a system either absorbs or releases a fixed amount of latent heat (e.?g. the freezing/melting of water/ice). If the first derivative is continuous but higher derivatives are discontinuous or infinite, then the phase transition is called continuous, of the second kind, or critical. Examples include the critical point of the liquid–gas transition, the Curie point of the ferromagnetic transition, or the superfluid transition [127,235].

Critical exponents:

Near the critical point, various thermodynamic quantities diverge as power laws with associated critical exponents. In equilibrium systems, there are scaling relations that connect some of the critical exponents of different thermodynamic quantities [32,127,203,216,235].

Critical phenomena:

Phenomena observed in systems that undergo a continuous phase transition. They are characterized by scale invariance: the statistical properties of a system at one scale are related to those at another scale only through the ratio of the two scales and not through any one of the two scales individually. The scale invariance is a result of fluctuations and correlations at all scales, which prevents the system from being separable in the large scale limit at the critical point [32,203,235].

Declustering:

In studies of seismicity, declustering traditionally refers to the deterministic identification of fore-, main- and aftershocks in sequences (or clusters) of earthquakes clustered in time and space. Recent, more sophisticated techniques, e.?g. stochastic declustering, assign to earthquakes probabilities of being triggered or spontaneous.

Dynamical scaling and exponents:

Non-equilibrium critical phase transitions are also characterized by scale invariance, scaling functions and critical exponents. Furthermore, some evidence supports the claim that universality classes also exist for non-equilibrium phase transitions (e.?g. the directed percolation and the Manna universality class in sandpile models), although a complete classification of classes is lacking and may in fact not exist at all. Much interest has recently focused on directed percolation, which, as the most common universality class of absorbing state phase transitions, is expected to occur in many physical, chemical and biological systems [85,135,203].

Finite size scaling:

If a thermodynamic or other quantity is investigated at the critical point under a change of the system size, the scaling behavior of the quantity with respect to the system size is known as finite size scaling [32]. The quantity may refer to a thermodynamic quantity such as the free energy or it may refer to an entire probability distribution function. At criticality, the sole length scale in a finite system is the upper cut-off s c, which diverges in the thermodynamic limit \( { L \to \infty } \). Assuming a lower cut-off \( { s_0 \ll s_\text{c},s } \), a finite size scaling ansatz for the distribution \( { P(s;s_\text{c}) } \) of the observable variable s, which depends on the upper cut-off s c is then given by:

$$ P(s;s_\text{c})=a s^{-\tau} G(s/s_\text{c}) \quad \text{for}\quad s, s_\text{c} \gg s_0\:, $$
(1)

where the parameter a is a non-universal metric factor, t is a universal (critical) exponent, and G is a universal scaling function that decays sufficiently fast for \( { s \gg s_\text{c} } \) [32,36]. Pruessner [163] provides a simple yet instructive and concise introduction to scaling theory and how to find associated exponents. System-specific corrections appear to sub-leading order.

Fractal:

A deterministic or stochastic mathematical object that is defined by its exact or statistical self-similarity at all scales. Informally, it often refers to a rough or fragmented geometrical shape which can be subdivided into parts which look approximately the same as the original shape. A fractal is too irregular to be described by Euclidean geometry and has a fractal dimension that is larger than its topological dimension but less than the dimension of the space it occupies.

Mean-Field:

An effective or average interaction field designed to approximately replace the interactions from many bodies by one effective interaction which is constant in time and space, neglecting fluctuations.

Mechanisms for power laws:

Power laws may be the hallmark of critical phenomena, but there are a host of other mechanisms that can lead to power laws (see Chapter 14 of [203] for a list of power law mechanisms as well as [37,143]). Observations of scale invariant statistics therefore do not necessarily imply SOC, of course. Power laws express the existence of a symmetry (scale invariance) and there are many mechanisms by which a symmetry can be obtained or restored.

Non-equilibrium phase transitions:

In contrast to systems at equilibrium, non-equilibrium phase transitions involve dynamics, energy input and dissipation. Detailed balance is violated and no known equivalent of the partition function exists, from which all thermodynamic quantities of interest derive in equilibrium. Examples of non-equilibrium phase transitions include absorbing state phase transitions, reaction-diffusion models, and morphological transitions of growing surfaces [85,135].

Phase transitions:

In (equilibrium) statistical mechanics, a phase transition occurs when there is a singularity in the free energy or one of its derivatives. Examples include the freezing of water, the transition from ferromagnetic to paramagnetic behavior in magnets, and the transition from a normal conductor to a superconductor [127,235].

Renormalization group theory:

A mathematical theory built on the idea that the critical point can be mapped onto a fixed point of a suitably chosen transformation on the system's Hamiltonian. It provides a foundation for understanding scaling and universality and provides tools for calculating exponents and scaling functions. Renormalization group theory provides the basis for our understanding of critical phenomena [32,216,235]. It has been extended to non-Hamiltonian systems and provides a general framework for constructing theories of the macro-world from the microscopic description.

Self-organized criticality (SOC):

Despite two decades of research since its inception by [13] and the ambitious claim by [11] that, as a mechanism for the ubiquitous power laws in Nature, SOC was “How Nature Works”, a commonly accepted definition along with necessary and sufficient conditions for SOC is still lacking [93,163,203]. A less rigorous definition may be the following: Self-organized criticality refers to a non-equilibrium, critical and marginally stable steady-state, which is attained spontaneously and without (explicit) tuning of parameters. It is characterized by power law event distributions and fractal geometry (in some cases) and may be expected in slowly driven, interaction-dominated threshold systems [93]. Some authors additionally require that temporal and/or spatial correlations decay algebraically (e.?g. [84], but see [163]). Definitions in the literature range from broad (simply the absence of characteristic length scales in non-equilibrium systems) to narrow (the criticality is due to an underlying continuous phase transition with all of its expected properties) (see, e.?g., [162] for evidence that precipitation is an instance of the latter definition of SOC in which a non-linear feedback of the order parameter on the control parameter turns a critical phase transition into a self-organized one attracting the dynamics [198]).

Spinodal decomposition:

In contrast to the slow process of phase separation via nucleation and slow growth of a new phase in a material inside the metasstable region near a first-order phase transition, spinodal decomposition is a non-equilibrium, rapid and critical-like dynamical process of phase separation that occurs quickly and throughout the material. It needs to be induced by rapidly quenching the material to reach a sub-area (sometimes a line) of the unstable region of the phase diagram which is characterized by a negative derivative of the free energy.

Statistical physics:

is the set of concepts and mathematical techniques allowing one to derive the large-scale laws of a physical system from the specification of the relevant microscopic elements and of their interactions.

Turbulence:

In fluid mechanics, turbulence refers to a regime in which the dynamics of the flow involves many interacting degrees of freedom, and is very complex with intermittent velocity bursts leading to anomalous scaling laws describing the energy transfer from injection at large scales to dissipation at small scales.

Universality:

In systems with little or no frozen disorder, equilibrium continuous phase transitions fall into a small set of universality classes that are characterized by the same critical exponents and by certain scaling functions that become identical near the critical point. The class depends only on the dimension of the space and the dimension of the order parameter. For instance, the critical point of the liquid–gas transition falls into the same universality class as the 3D Ising model. Even some phase transitions occurring in high-energy physics are expected to belong to the Ising class. Universality justifies the development and study of extremely simplified models (caricatures) of Nature, since the behavior of the system at the critical point can nevertheless be captured (in some cases exactly). However, non-universal features remain even at the critical point but are less important, e.?g. amplitudes of fluctuations or system-specific corrections to scaling that appear at sub-leading order [32,216,235,239].

Bibliography

  1. Abe S, Suzuki N (2004) Scale-free network of earthquakes. Europhys Lett65:581–586. doi:10.1209/epl/i2003-10108-1

    ADS  Google Scholar 

  2. Abe S, Suzuki N (2004) Small-world structure of earthquakenetwork. Physica A: Stat Mech Appl 337:357–362. doi:10.1016/j.physa.2004.01.059

    Google Scholar 

  3. Abe S, Suzuki N (2005) Scale-invariant statistics of period in directedearthquake network. Eur Phys J B 44:115–117. doi:10.1140/epjb/e2005-00106-7

    ADS  Google Scholar 

  4. Abe S, Suzuki N (2006) Complex earthquake networks: Hierarchical organizationand assortative mixing. Phys Rev E 74(2):026, 113–+. doi:10.1103/PhysRevE.74.026113

    ADS  Google Scholar 

  5. Aki K (1995) Earthquake prediction, societal implications. Rev Geophys33:243–248

    ADS  Google Scholar 

  6. Albert R, Barabási AL (2002) Statistical mechanics of complex networks, Rev ModPhys 74(1):47–97. doi:10.1103/RevModPhys.74.47

  7. Allègre CJ, Le Mouel JL, Provost A (1982) Scaling rules in rock fractureand possible implications for earthquake prediction. Nature 297:47–49. doi:10.1038/297047a0

  8. Baiesi M (2006) Scaling and precursor motifs in earthquakenetworks. Physica A: Stat Mech Appl 359:775–783. doi:10.1016/j.physa.2005.05.094

    Google Scholar 

  9. Baiesi M, Paczuski M (2004) Scale-free networks of earthquakes andaftershocks. Phys Rev E 69(6):066, 106. doi:10.1103/PhysRevE.69.066106

    ADS  Google Scholar 

  10. Baiesi M, Paczuski M (2005) Complex networks of earthquakes andaftershocks. Nonlin Proc Geophys 12:1–11

    ADS  Google Scholar 

  11. Bak P (1996) How Nature Works: The Science of Self-OrganizedCriticality. Springer, New York, p 212

    Google Scholar 

  12. Bak P, Tang C (1989) Earthquakes as a self-organized criticalphenomena. J Geophys Res 94(B11):15635–15637

    ADS  Google Scholar 

  13. Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: Anexplanation of the \( { 1/f } \) noise. Phys RevLett 59(4):381–384. doi:10.1103/PhysRevLett.59.381

  14. Bak P, Christensen K, Danon L, Scanlon T (2002) Unified scaling law forearthquakes. Phys Rev Lett 88(17):178,501. doi:10.1103/PhysRevLett.88.178501

    ADS  Google Scholar 

  15. Bakun, WH, Aagaard B, Dost B, Ellsworth WL, Hardebeck JL, Harris RA, Ji C,Johnston MJS, Langbein J, Lienkaemper JJ, Michael AJ, Murray JR, Nadeau RM, Reasenberg PA, Reichle MS, Roeloffs EA, Shakal A, Simpson RW, Waldhauser F(2005) Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. Nature 437:969–974.doi:10.1038/nature04067

    ADS  Google Scholar 

  16. Barabási AL, Albert R (1999) Emergence of Scaling in Random Networks. Science286(5439):509–512. doi:10.1126/science.286.5439.509

  17. Barabási AL, Albert R, Jeong H (1999) Mean-field theory fore scale-free randomnetworks. Physica A 272:173–187. doi:10.1016/S0378-4371(99)00291-5

  18. Barton CC, La Pointe PR (eds) (1995) Fractals in the Earth Sciences. PlenumPress, New York, London

    Google Scholar 

  19. Barton CC, La Pointe PR (eds) (1995) Fractals in petroleum geology and earthprocesses. Plenum Press, New York, London

    Google Scholar 

  20. Båth M (1965) Lateral inhomogeneities in the upper mantle. Tectonophysics2:483–514

    Google Scholar 

  21. Ben-Zion Y, Rice JR (1993) Earthquake failure sequences along a cellularfault zone in a 3-dimensional elastic solid containing asperity and nonasperity regions. J Geophys Res93:14109–14131

    ADS  Google Scholar 

  22. Ben-Zion Y, Rice JR (1995) Slip patterns and earthquake populations alongdifferent classes of faults in elastic solids. J Geophys Res 100:12959–12983

    ADS  Google Scholar 

  23. Ben-Zion Y, Rice JR (1997) Dynamic simulations of slip on a smooth faultin an elastic solid. J Geophys Res 102:17771–17784

    ADS  Google Scholar 

  24. Ben-Zion Y, Dahmen K, Lyakhovsky V, Ertas D, Agnon A (1999)Self-driven mode switching of earthquake activity on a fault system. Earth Planet Sci Lett 172:11–21

    ADS  Google Scholar 

  25. Bird P, Kagan YY (2004) Plate-tectonic analysis of shallow seismicity:Apparent boundary width, beta, corner magnitude, coupled lithosphere thickness, and coupling in seven tectonic settings. Bull Seismol Soc Am94(6):2380–2399

    Google Scholar 

  26. Bowman DD, King GCP (2001) Stress transfer and seismicity changes before largeearthquakes. C Royal Acad Sci Paris, Sci Terre Planetes 333:591–599

    Google Scholar 

  27. Bowman DD, King GCP (2001) Accelerating seismicity and stress accumulationbefore large earthquakes. Geophys Res Lett 28:4039–4042

    ADS  Google Scholar 

  28. Bowman DD, Oullion G, Sammis CG, Sornette A, Sornette D (1998) Anobservational test of the critical earthquake con-cept. J Geophys Res 103:24359–24372

    ADS  Google Scholar 

  29. Brehm DJ, Braile LW (1998) Intermediate-term earthquake prediction usingprecursory events in the New Madrid Seismic Zone. Bull Seismol Am Soc 88(2):564–580

    Google Scholar 

  30. Bufe CG, Varnes DJ (1993) Predictive modeling of the seismic cycle of thegreater San Francisco Bay region. J Geophys Res 98:9871–9883

    ADS  Google Scholar 

  31. Burridge R, Knopoff L (1964) Body force equivalents for seismicdislocation. Seism Soc Am Bull 54:1875–1888

    Google Scholar 

  32. Cardy JL (1996) Scaling and Renormalization in Statistical Physics. CambridgeUniversity Press, Cambridge

    Google Scholar 

  33. Carlson JM, Langer JS (1989) Properties of earthquakes generated by faultdynamics. Phys Rev Lett 62:2632–2635

    ADS  Google Scholar 

  34. Carlson JM, Langer JS, Shaw BE (1994) Dynamics of earthquake faults. Rev ModPhys 66:657–670

    ADS  Google Scholar 

  35. Chelidze TL (1982) Percolation and fracture. Phys Earth Planet Interiors28:93–101

    ADS  Google Scholar 

  36. Christensen K, Farid N, Pruessner G, Stapleton M (2008) On thefinite-size scaling of probability density functions. Eur Phys B 62:331–336

    ADS  Google Scholar 

  37. Clauset A, Shalizi CR, Newman MEJ (2007) Power-law distributions in empiricaldata. E-print arXiv:0706.1062

    Google Scholar 

  38. Cochard A, Madariaga R (1994) Dynamic faulting under rate-dependentfriction. Pure Appl Geophys 142:419–445

    ADS  Google Scholar 

  39. Cochard A, Madariaga R (1996) Complexity of seismicity due to highlyrate-dependent friction. J Geophys Res 101:25321–25336

    ADS  Google Scholar 

  40. Corral A (2003) Local distributions and rate fluctuations ina unified scaling law for earthquakes. Phys Rev E 68(3):035, 102. doi:10.1103/PhysRevE.68.035102

    MathSciNet  ADS  Google Scholar 

  41. Corral A (2004) Universal local versus unified global scaling laws in thestatistics of seismicity. Physica A 340:590–597

    ADS  Google Scholar 

  42. Corral A (2004) Long-term clustering, scaling, and universality in thetemporal occurrence of earthquakes. Phys Rev Lett 92:108, 501

    ADS  Google Scholar 

  43. Corral A (2005) Mixing of rescaled data and bayesian inference forearthquake recurrence times. Nonlin Proc Geophys 12:89–100

    ADS  Google Scholar 

  44. Corral A (2005) Renormalization-group transformations andcorrelations of seismicity. Phys Rev Lett 95:028, 501

    ADS  Google Scholar 

  45. Corral A (2006) Universal earthquake-occurrence jumps, correlationswith time, and anomalous diffusion. Phys Rev Lett 97:178, 501

    ADS  Google Scholar 

  46. Corral A, Christensen K (2006) Comment on “earthquakes descaled: Onwaiting time distributions and scaling laws”. Phys Rev Lett 96:109, 801

    ADS  Google Scholar 

  47. Dahmen K, Ertas D, Ben-Zion Y (1998) Gutenberg–Richter andcharacteristic earthquake behavior in simple mean-field models of heterogeneous faults. Phys Rev E 58:1494–1501.doi:10.1103/PhysRevE.58.1494

  48. Davidsen J, Goltz C (2004) Are seismic waiting time distributions universal?Geophys Res Lett 31:L21612. doi:10.1029/2004GL020892

    ADS  Google Scholar 

  49. Davidsen J, Paczuski M (2005) Analysis of the spatial distribution betweensuccessive earthquakes. Phys Rev Lett 94:048, 501. doi:10.1103/PhysRevLett.94.048501

    ADS  Google Scholar 

  50. Davidsen J, Grassberger P, Paczuski M (2006) Earthquake recurrence asa record breaking process. Geophys Res Lett 33:L11304. doi:10.1029/2006GL026122

    ADS  Google Scholar 

  51. Dhar D (1990) Self-organized critical state of sandpile automatonmodels. Phys Rev Lett 64:1613–1616

    MathSciNet  ADS  Google Scholar 

  52. Dhar D (1999) The Abelian sandpile and related models. Physica A263:4–25

    ADS  Google Scholar 

  53. Dieterich JH (1987) Nucleation and triggering of earthquake slip; effect ofperiodic stresses. Tectonophysics 144:127–139

    ADS  Google Scholar 

  54. Dieterich JH (1992) Earthquake nucleation on faults with rate-dependentand state-dependent strength. Tectonophysics 211:115–134

    ADS  Google Scholar 

  55. Dieterich J (1994) A constitutive law for rate of earthquake productionand its application to earthquake clustering. J Geophys Res 99:2601–2618

    ADS  Google Scholar 

  56. Dieterich J, Kilgore BD (1994) Direct observation of frictional constacts- Newinsight for state-dependent properties. Pure Appl Geophys 143:283–302

    ADS  Google Scholar 

  57. Dorogevtsev SN, Mendes JFF (2003) Evolution of Networks: From Biological Netsto the Internet and WWW. Oxford University Press, New York

    Google Scholar 

  58. Eckman JP (1981) Roads to Turbulence in Dissipative Dynamical Systems. Rev ModPhys 53:643–654

    ADS  Google Scholar 

  59. Ellsworth WL, Lindh AG, Prescott WH, Herd DJ (1981) The 1906 San FranciscoEarthquake and the seismic cycle. Am Geophys Union Maurice Ewing Monogr 4:126–140

    Google Scholar 

  60. Felzer KR, Becker TW, Abercrombie RE, Ekstrom G, Rice JR (2002) Triggering ofthe 1999 Mw 7.1 Hector Mine earthquake by aftershocks of the 1992 Mw 7.3 Landers earthquake. J Geophys Res 107(B09):2190

    Google Scholar 

  61. Fisher DS, Dahmen K, Ramanathan S, Ben-Zion Y (1997) Statistics of Earthquakesin Simple Models of Heterogeneous Faults. Phys Rev Lett 78:4885–4888.doi:10.1103/PhysRevLett.78.4885

    ADS  Google Scholar 

  62. Freund F, Sornette D (2007) Electro-Magnetic Earthquake Bursts andCritical Rupture of Peroxy Bond Networks in Rocks. Tectonophysics 431:33–47

    ADS  Google Scholar 

  63. Frisch U (1995) Turbulence. The legacy of A.N. Kolmogorov. CambridgeUniversity Press, Cambridge

    Google Scholar 

  64. Gabrielov A, Keilis-Borok V, Jackson DD (1996) Geometric Incompatibility ina Fault System. Proc Nat Acad Sci 93:3838–3842

    ADS  Google Scholar 

  65. Gabrielov A, Keilis-Borok V, Zaliapin I, Newman W (2000) Critical transitionsin colliding cascades. Phys Rev E 62:237–249

    ADS  Google Scholar 

  66. Gabrielov A, Zaliapin I, Newman W, Keilis-Borok V, (2000) Colliding cascadesmodel for earthquake prediction. Geophys J Int 143:427–437

    ADS  Google Scholar 

  67. Gallagher R, Appenzeller T (1999) Beyond Reductionism. Science284(5411):79

    Google Scholar 

  68. Geilikman MB, Pisarenko VF, Golubeva TV (1990) Multifractal Patterns ofSeismicity. Earth Planet Sci Lett 99:127–138

    ADS  Google Scholar 

  69. Gelfand IM, Guberman SA, Keilis-Borok VI, Knopoff L, Press F, Ranzman EY,Rotwain IM, Sadovsky AM (1976) Pattern recognition applied to earthquake epicenters in California. Phys Earth Planet Interiors11:227–283

    ADS  Google Scholar 

  70. Geller RJ, Jackson DD, Kagan YY, Mulargia F (1997) Earthquakes cannot bepredicted. Science 275:1616–1617

    Google Scholar 

  71. Gorshkov A, Kossobokov V, Soloviev A (2003) Recognition ofearthquake-prone areas. In: Keilis-Borok V, Soloviev A (eds) Nonlinear Dynamics of the Lithosphere and Earthquake Prediction. Springer,Heidelberg, pp 239–310 [122]

    Google Scholar 

  72. Hainzl S, Scherbaum F, Beauval C (2006) Estimating Background Activity Basedon Interevent-Time Distribution. Bull Seismol Soc Am 96(1):313–320. doi:10.1785/0120050053

    Google Scholar 

  73. Hanks TC (1992) Small earthquakes, tectonic forces. Science256:1430–1432

    ADS  Google Scholar 

  74. Hardebeck JL, Felzer KR, Michael AJ (2008) Improved tests reveal that theaccelerating moment release hypothesis is statistically insignificant. J Geophys Res113:B08310. doi:10.1029/2007JB005410

    ADS  Google Scholar 

  75. Harris RA, Arrowsmith JR (2006) Introduction to the Special Issue on the 2004Parkfield Earthquake and the Parkfield Earthquake Prediction Experiment. Bull Seismol Soc Am 96(4B):S1–10.doi:10.1785/0120050831

    Google Scholar 

  76. Helmstetter A (2003) Is earthquake triggering driven by smallearthquakes? Phys Rev Lett 91(5):058, 501. doi:10.1103/PhysRevLett.91.058501

    ADS  Google Scholar 

  77. Helmstetter A, Sornette D (2002) Subcritical and supercritical regimes inepidemic models of earthquake aftershocks. J Geophys Res 107(B10):2237. doi:10.1029/2001JB001580

    Google Scholar 

  78. Helmstetter A, Sornette D (2003) Foreshocks explained by cascades of triggeredseismicity. J Geophys Res (Solid Earth) 108(B10):2457 doi:10.1029/2003JB00240901

    ADS  Google Scholar 

  79. Helmstetter A, Sornette D (2003) Bath's law Derived from theGutenberg–Richter law and from Aftershock Properties. Geophys Res Lett 30:2069.doi:10.1029/2003GL018186

    ADS  Google Scholar 

  80. Helmstetter A, Sornette D (2004) Comment on “Power-Law Time Distributionof Large Earthquakes”. Phys Rev Lett 92:129801 (Reply is Phys Rev Lett 92:129802 (2004))

    ADS  Google Scholar 

  81. Helmstetter A, Sornette D, Grasso J-R (2003) Mainshocks are Aftershocks ofConditional Foreshocks: How do foreshock statistical properties emerge from aftershock laws. J Geophys Res 108(B10):2046.doi:10.1029/2002JB001991

    Google Scholar 

  82. Helmstetter A, Kagan YY, Jackson DD (2005) Importance of small earthquakes forstress transfers and earthquake triggering. J Geophys Res 110:B05508. doi:10.1029/2004JB003286

    Google Scholar 

  83. Helmstetter A, Kagan Y, Jackson D (2006) Comparison of short-term andlong-term earthquake forecast models for Southern California. Bull Seism Soc Am 96:90–106

    Google Scholar 

  84. Hergarten S (2002) Self-Organized Criticality in EarthSystems. Springer, Berlin

    Google Scholar 

  85. Hinrichsen H (2000) Non-equilibrium critical phenomena and phasetransitions into absorbing states. Adv Phys 49:815–958(144)

    ADS  Google Scholar 

  86. Holliday JR, Rundle JB, Tiampo KF, Klein W, Donnellan A (2006) Systematicprocedural and sensitivity analysis of the Pattern Informatics method for forecasting large (\( { M > 5 } \)) earthquake events in Southern California. Pure Appl Geophys163(11–12):2433–2454

    ADS  Google Scholar 

  87. Huang J, Turcotte DL (1990) Evidence for chaotic fault interactions in theseismicity of the San Andreas fault and Nankai trough. Nature 348:234–236

    ADS  Google Scholar 

  88. Huang J, Turcotte DL (1990) Are earthquakes an example of deterministic chaos?Geophys Rev Lett 17:223–226

    ADS  Google Scholar 

  89. Huang Y, Saleur H, Sammis CG, Sornette D (1998) Precursors, aftershocks,criticality and self-organized criticality. Europhys Lett 41:43–48

    ADS  Google Scholar 

  90. Ide K, Sornette D (2002) Oscillatory Finite-Time Singularities inFinance, Population and Rupture. Physica A307(1–2):63–106

    MathSciNet  ADS  Google Scholar 

  91. Jackson DD, Kagan YY (2006) The 2004 Parkfield Earthquake, the 1985Prediction, and Characteristic Earthquakes: Lessons for the Future. Bull Seismol Soc Am 96(4B):S397–409.doi:10.1785/0120050821

    Google Scholar 

  92. Jaumé SC, Sykes LR (1999) Evolving Towards a Critical Point:A Review of Accelerating Seismic Moment/Energy Release Prior to Large and Great Earthquakes. Pure Appl Geophys155:279–305

    Google Scholar 

  93. Jensen HJ (1998) Self-Organized Criticality: Emergent Complex Behaviorin Physical and Biological Systems. Cambridge University Press, Cambridge

    Google Scholar 

  94. Johansen A, Sornette D, Wakita G, Tsunogai U, Newman WI, Saleur H (1996)Discrete scaling in earthquake precursory phenomena: evidence in the Kobe earthquake, Japan J Phys I France 6:1391–1402

    Google Scholar 

  95. Johansen A, Saleur H, Sornette D (2000) New Evidence of Earthquake PrecursoryPhenomena in the 17 Jan. 1995 Kobe Earthquake, Japan. Eur Phys J B 15:551–555

    ADS  Google Scholar 

  96. Jones LM (1994) Foreshocks, aftershocks, and earthquake probabilities:accounting for the Landers earthquake. Bull Seismol Soc Am 84:892–899

    Google Scholar 

  97. Jordan TH (2006) Earthquake Predictability, Brick by Brick. Seismol Res Lett77(1):3–6

    Google Scholar 

  98. Kadanoff LP, Nagel SR, Wu L, Zhou S-M (1989) Scaling and universality inavalanches. Phys Rev A 39(12):6524–6537. doi:10.1103/PhysRevA.39.6524

    ADS  Google Scholar 

  99. Kagan YY (1981), Spatial distribution of earthquakes: The three-point momentfunction. Geophys J R Astron Soc 67:697–717

    Google Scholar 

  100. Kagan YY (1981) Spatial distribution of earthquakes: The four-point momentfunction. Geophys J Roy Astron Soc 67:719–733

    Google Scholar 

  101. Kagan YY (1987) Point sources of elastic deformation: Elementary sources,static displacements. Geophys J R Astron Soc 90:1–34

    Google Scholar 

  102. Kagan YY (1987) Point sources of elastic deformation: Elementary sources,dynamic displacements. Geophys J R Astron Soc 91:891–912

    Google Scholar 

  103. Kagan YY (1988) Multipole expansions of extended sources of elasticdeformation. Geophys J R Astron Soc 93:101–114

    Google Scholar 

  104. Kagan YY (1989) Earthquakes and fractals. Ann Rev Mater Sci: Fractal PhenomDisordered Syst 19:520–522

    Google Scholar 

  105. Kagan YY (1991) Likelihood analysis of earthquake catalogs. Geophys J Int106:135–148

    ADS  Google Scholar 

  106. Kagan YY (1992) Seismicity: Turbulence of solids. Nonlinear Sci Today2:1–13

    MathSciNet  Google Scholar 

  107. Kagan YY (1992) On the geometry of an earthquake fault system. Phys EarthPlanet Interiors 71:15–35

    ADS  Google Scholar 

  108. Kagan YY (1993) Statistics of characteristic earthquakes. Bull Seismol SocAm 83(1):7–24

    Google Scholar 

  109. Kagan YY (1994) Observational evidence for earthquakes as a nonlineardynamic process. Physica D 77:160–192

    ADS  Google Scholar 

  110. Kagan YY (1994) Comment on “The Gutenberg–Richter orchar-acteristic earthquake distribution, which is it?” by Wesnousky. Bull Seismol Soc Am 86:274–285

    Google Scholar 

  111. Kagan YY (1999) Is earthquake seismology a hard, quantitative science?Pure Appl Geophys 155:33–258

    ADS  Google Scholar 

  112. Kagan YY (2002) Aftershock Zone Scaling. Bull Seismol Soc Am92(2):641–655. doi:10.1785/0120010172

    Google Scholar 

  113. Kagan YY (2003) Accuracy of modern global earthquake catalogs. Phys EarthPlanet Interiors 135:173–209

    ADS  Google Scholar 

  114. Kagan YY (2006) Why does theoretical physics fail to explain and predictearthquake occurrence? In: Bhattacharyya P, Chakrabarti BK (eds) Modelling Critical and Catastrophic Phenomena in Geoscience: A Statistical PhysicsApproach. Lecture Notes in Physics, vol 705. Springer, Berlin, pp 303–359

    Google Scholar 

  115. Kagan YY (2007) Earthquake spatial distribution: the correlationdimension. Geophys J Int 168:1175–1194. doi:10.1111/j.1365-246X.2006.03251.x

    ADS  Google Scholar 

  116. Kagan YY, Knopoff L (1980) Spatial distribution of earthquakes: Thetwo-point correlation function. Geophys J R Astron Soc 62:303–320

    ADS  Google Scholar 

  117. Kagan YY, Knopoff L (1981) Stochastic synthesis of earthquakecatalogs. J Geophys Res 86(B4):2853–2862

    ADS  Google Scholar 

  118. Kagan YY, Knopoff L (1985) The first-order statistical moment of the seismicmoment tensor. Geophys J R Astron Soc 81:429–444

    Google Scholar 

  119. Kagan YY, Knopoff L (1985) The two-point correlation function of the seismicmoment tensor. Geophys J R Astron Soc 83:637–656

    Google Scholar 

  120. Keilis-Borok VI (ed) (1990) Intermediate-term earthquake prediction:models, algorithms, worldwide tests. Phys Earth Planet Interiors 61(1–2)

    Google Scholar 

  121. Keilis-Borok VI, Malinovskaya LN (1964) One regularity in the occurrence ofstrong earthquakes. J Geophys Res B 69:3019–3024

    Google Scholar 

  122. Keilis-Borok V, Soloviev A (2003) Nonlinear Dynamics of the Lithosphereand Earthquake Prediction. Springer, Heidelberg

    Google Scholar 

  123. Keilis-Borok VI, Knopoff L, Rotwain IM, Allen CR (1988)Intermediate-term prediction of occurrence times of strong earthquakes. Nature 335:690–694

    ADS  Google Scholar 

  124. King GCP, Bowman DD (2003) The evolution of regional seismicity betweenlarge earthquakes. J Geophys Res 108(B2):2096. doi:10.1029/2001JB000783

    Google Scholar 

  125. Klein W, Rundle JB, Ferguson CD (1997) Scaling and nucleation in models ofearthquake faults. Phys Rev Lett 78:3793–3796

    ADS  Google Scholar 

  126. Knopoff L (1996) The organization of seismicity on fault networks. Proc NatAcad Sci USA 93:3830–3837

    ADS  Google Scholar 

  127. Landau LD, Lifshitz EM (1980) Statistical Physics Course on TheoreticalPhysics, vol 5, 3rd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  128. Langer JS, Carlson JM, Myers CR, Shaw BE (1996) Slip complexity in dynamicalmodels of earthquake faults. Proc Nat Acad Sci USA 93:3825–3829

    ADS  Google Scholar 

  129. Lee MW, Sornette D, Knopoff L (1999) Persistence and Quiescence ofSeismicity on Fault Systems. Phys Rev Lett 83(N20):4219–4222

    ADS  Google Scholar 

  130. Levin SZ, Sammis CG, Bowman DD (2006) An observational test of the stressaccumulation model based on seismicity preceding the 1992 Landers, CA earthquake. Tectonophysics 413:39–52

    ADS  Google Scholar 

  131. Lindh AG (1990) The seismic cycle pursued. Nature348:580–581

    ADS  Google Scholar 

  132. Lindman M, Jonsdottir K, Roberts R, Lund B, Bdvarsson R (2005)Earthquakes descaled: On waiting time distributions and scaling laws. Phys Rev Lett 94:108, 501

    ADS  Google Scholar 

  133. Lindman M, Jonsdottir K, Roberts R, Lund B, Bdvarsson R (2006) Replyto comment by A. Corral and K. Christensen. Phys Rev Lett 96:109, 802

    ADS  Google Scholar 

  134. Livina VN, Havlin S, Bunde A (2006) Memory in the occurrence ofearthquakes. Phys Rev Lett 95:208, 501

    ADS  Google Scholar 

  135. Luebeck S (2004) Universal scaling behavior of non-equilbrium phasetransitions. Int J Mod Phys B 18:3977

    ADS  Google Scholar 

  136. Manna S (1991) Critical exponents of the sandpile models in twodimensions. Physica A179(2):249–268

    MathSciNet  ADS  Google Scholar 

  137. Mandelbrot BB (1982) The Fractal Geometry of Nature. W.H. Freeman, SanFrancisco

    Google Scholar 

  138. Marsan D (2005) The role of small earthquakes in redistributing crustalelastic stress. Geophys J Int 163(1):141–151. doi:10.1111/j.1365-246X.2005.02700.x

    ADS  Google Scholar 

  139. May RM (1976) Simple mathematical models with very complicateddynamics. Nature 261:459–467

    ADS  Google Scholar 

  140. Mega MS, Allegrini P, Grigolini P, Latora V, Palatella L, Rapisarda A,Vinciguerra S (2003) Power law time distributions of large earthquakes. Phys Rev Lett 90:18850

    Google Scholar 

  141. Michael AJ, Jones LM (1998) Seismicity alert probabilities at Parkfield,California, revisited. Bull Seismol Soc Am 88(1):117–130

    Google Scholar 

  142. Miltenberger P, Sornette D, Vanneste C (1993) Fault self-organization asoptimal random paths selected by critical spatiotemporal dynamics of earthquakes. Phys Rev Lett 71:3604–3607.doi:10.1103/PhysRevLett.71.3604

    ADS  Google Scholar 

  143. Mitzenmacher M (2004) A Brief History of Generative Models for PowerLaw and Lognormal Distributions. Internet Math 1(2):226–251

    MathSciNet  Google Scholar 

  144. Mogi K (1969) Some features of recent seismic activity in and near Japan 2:activity before and after great earthquakes. Bull Eq Res Inst Tokyo Univ 47:395–417

    Google Scholar 

  145. Molchan G (2005) Interevent time distribution in seismicity:A theoretical approach. Pure Appl Geophys 162:1135–1150. doi:10.1007/s00024-004-2664-5

    ADS  Google Scholar 

  146. Molchan G, Kronrod T (2005) On the spatial scaling of seismicityrate. Geophys J Int 162(3):899–909. doi:10.1111/j.1365-246X.2005.02693.x

    ADS  Google Scholar 

  147. Nature Debates (1999) Nature debates: Is the reliable prediction ofindividual earthquakes a realistic scientific goal? available fromhttp://www.nature.com/nature/debates/earthquake/equake_frameset.html

  148. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev45(2):167–256. doi:10.1137/S003614450342480

    MathSciNet  ADS  Google Scholar 

  149. Ogata Y (1988) Statistical models for earthquake occurrence and residualanalysis for point processes. J Am Stat Assoc 83:9–27

    Google Scholar 

  150. Ogata Y (1998) Space-time point-process models for earthquakeoccurrences. Ann Inst Stat Math 5(2):379–402

    Google Scholar 

  151. Olami Z, Feder HJS, Christensen K (1992) Self-organized criticality ina continuous, nonconservative cellular automaton modeling earthquakes. Phys Rev Lett 68(8):1244–1247

    ADS  Google Scholar 

  152. Osorio I, Frei MG, Sornette D, Milton J, Lai Y-C (2007) Seizures andearthquakes: Universality and scaling of critical far from equilibrium systems. submitted to Phys Rev Lett.http://arxiv.org/abs/0712.3929

  153. Ouillon G, Sornette D (2000) The critical earthquake concept applied to minerockbursts with time-to-failure analysis. Geophys J Int 143:454–468

    ADS  Google Scholar 

  154. Ouillon G, Sornette D (2004) Search for Direct Stress Correlation Signaturesof the Critical Earthquake Model. Geophys J Int 157:1233–1246

    ADS  Google Scholar 

  155. Ouillon G, Sornette D (2005) Magnitude-Dependent Omori Law: Theory andEmpirical Study. J Geophys Res 110:B04306. doi:10.1029/2004JB003311

    ADS  Google Scholar 

  156. Ouillon G, Sornette D, Castaing C (1995) Organization of joints and faultsfrom 1 cm to 100 km scales revealed by Optimized Anisotropic Wavelet Coefficient Method and Multifractal analysis. Nonlinear Process Geophys2:158–177

    ADS  Google Scholar 

  157. Ouillon G, Castaing C, Sornette D (1996) Hierarchical scaling offaulting. J Geophys Res 101(B3):5477–5487

    ADS  Google Scholar 

  158. Ouillon G, Ribeiro E, Sornette D (2007) Multifractal Omori Law forEarthquake Triggering: New Tests on the California, Japan and Worldwide Catalogs. submitted to Geophys J Int.http://arxiv.org/abs/physics/0609179

  159. Ouillon G, Ducorbier C, Sornette D (2008) Automatic reconstruction of faultnetworks from seismicity catalogs: Three-dimensional optimal anisotropic dynamic clustering. J Geophys Res 113:B01306.doi:10.1029/2007JB005032

    ADS  Google Scholar 

  160. Peixoto TP, Prado CP (2004) Distribution of epicenters in theOlami–Feder–Christensen model. Phys Rev E 69(2):025101.doi:10.1103/PhysRevE.69.025101

    ADS  Google Scholar 

  161. Peixoto TP, Prado CPC (2006) Network of epicenters of theOlami–Feder–Christensen model of earthquakes. Phys Rev E 74(1):016, 126doi:10.1103/PhysRevE.74.016126

    ADS  Google Scholar 

  162. Peters O, Neelin JD (2006) Critical phenomena in atmosphericprecipitation. Nature Phys 2:393–396. doi:10.1038/nphys314

    ADS  Google Scholar 

  163. Pruessner G (2004) Studies in self-organized criticality, Ph?D thesis,Imperial College London, available from http://www.ma.imperial.ac.uk/%7Epruess/publications/thesis_final/

  164. Raleigh CB, Sieh K, Sykes LR, Anderson DL (1982) Forecasting SouthernCalifornia Earthquakes. Science 217:1097–1104

    ADS  Google Scholar 

  165. Reynolds PJ, Klein W, Stanley HE (1977) Renormalization Group for Site andBond Percolation. J Phys C 10:L167–L172

    ADS  Google Scholar 

  166. Rhoades DA, Evison FF (2004) Long-range earthquake forecasting with everyearthquake a precursor according to scale. Pure Appl Geophys 161:47–72

    ADS  Google Scholar 

  167. Rhoades DA, Evison FF (2005) Test of the EEPAS forecasting model on theJapan earthquake catalogue. Pure Appl Geophys 162:1271–1290

    ADS  Google Scholar 

  168. Rice JR (1993) Spatio-temporal complexity of slip ona fault. J Geophys Res 98:9885–9907

    ADS  Google Scholar 

  169. Rundle JB, Klein W (1993) Scaling and critical phenomena in a cellularautomaton slider block model for earthquakes. J Stat Phys 72:405–412

    ADS  Google Scholar 

  170. Rundle JB, Klein W (1995) New ideas about the physics of earthquakes. RevGeophys 33:283–286

    ADS  Google Scholar 

  171. Rundle PB, Rundle JB, Tiampo KF, Sa Martins JS, McGinnis S, Klein W (2001)Nonlinear network dynamics on earthquake fault systems. Phys Rev Lett 87(14):148, 501.doi:10.1103/PhysRevLett.87.148501

    ADS  Google Scholar 

  172. Rundle JB, Turcotte DL, Shcherbakov R, Klein W, Sammis C (2003) Statisticalphysics approach to understanding the multiscale dynamics of earthquake fault systems. Rev Geophys 41(4):1019

    ADS  Google Scholar 

  173. Saichev A, Sornette D (2005) Distribution of the Largest Aftershocks inBranching Models of Triggered Seismicity: Theory of the Universal Bath's law. Phys Rev E 71:056127

    MathSciNet  ADS  Google Scholar 

  174. Saichev A, Sornette D (2005) Vere-Jones' self-similar branchingmodel. Phys Rev E 72:056, 122

    MathSciNet  ADS  Google Scholar 

  175. Saichev A, Sornette D (2006) Renormalization of branching models oftriggered seismicity from total to observable seismicity. Eur Phys J B 51:443–459

    ADS  Google Scholar 

  176. Saichev A, Sornette D (2006) “Universal” distribution ofinterearthquake times explained. Phys Rev Lett 97:078, 501

    ADS  Google Scholar 

  177. Saichev A, Sornette D (2007). Theory of earthquake recurrencetimes. J Geophys Res 112:B04313. doi:10.1029/2006JB004536

  178. Saleur H, Sammis CG, Sornette D (1996) Renormalization group theory ofearthquakes. Nonlinear Process Geophys 3:102–109

    ADS  Google Scholar 

  179. Saleur H, Sammis CG, Sornette D (1996) Discrete scaleinvariance, complex fractal dimensions and log-periodic corrections in earthquakes. J Geophys Res101:17661–17677

    ADS  Google Scholar 

  180. Sammis SG, Sornette D (2002) Positive Feedback, Memory and thePredictability of Earthquakes. Proc Nat Acad Sci USA V99:SUPP1:2501–2508

    ADS  Google Scholar 

  181. Scholz CH (1991) Earthquakes and faulting: Self-organized criticalphenomena with a characteristic dimension. In: Riste T, Sherrington D (eds) Spontaneous Formation of Space Time Structure and Criticality. Kluwer, Norwell, pp 41–56

    Google Scholar 

  182. Scholz CH (2002) The Mechanics of Earthquakes and Faulting, 2nd edn,Cambridge University Press, Cambridge

    Google Scholar 

  183. Scholz CH, Mandelbrot BB (eds) (1989) Fractals in Geophysics. Birkhäuser,Basel

    Google Scholar 

  184. Schorlemmer D, Wiemer S, Wyss M (2005) Variations in earthquake-sizedistribution across different stress regimes. Nature 437:539–542. doi:10.1038/nature04094

    ADS  Google Scholar 

  185. Schwartz DP, Coppersmith KJ (1984) Fault behavior and characteristicearthquakes: examples from the Wasatch and San Andreas Fault Zones. J Geophys Res 89:5681–5698

    ADS  Google Scholar 

  186. Shaw BE (1993) Generalized Omori law for aftershocks and foreshocks froma simple dynamics. Geophys Res Lett 20:907–910

    ADS  Google Scholar 

  187. Shaw BE (1994) Complexity in a spatially uniform continuum faultmodel. Geophys Res Lett 21:1983–1986

    ADS  Google Scholar 

  188. Shaw BE (1995) Frictional weakening and slip complexity in earthquakefaults. J Geophys Res 102:18239–18251

    ADS  Google Scholar 

  189. Shaw BE (1997) Model quakes in the two-dimensional waveequation. J Geophys Res 100:27367–27377

    ADS  Google Scholar 

  190. Shcherbakov R, Turcotte DL (2004) A modified form of Bath's law. BullSeismol Soc Am 94(5):1968–1975

    Google Scholar 

  191. Shnirman MG, Blanter EM (1998) Self-organized criticality ina mixed hierarchical system. Phys Rev Lett 81:5445–5448

    ADS  Google Scholar 

  192. Smalley RF Jr, Turcotte DL, Solla SA (1985) A renormalization groupapproach to the stick-slip behavior of faults. J Geophys Res 90:1894–1900

    ADS  Google Scholar 

  193. Sornette A, Sornette D (1989) Self-organized criticality andearthquakes. Europhys Lett 9:197–202

    ADS  Google Scholar 

  194. Sornette A, Sornette D (1999) Earthquake rupture as a critical point:Consequences for telluric precursors. Tectonophysics 179:327–334

    ADS  Google Scholar 

  195. Sornette A, Davy P, Sornette D (1990) Growth of fractal fault patterns. PhysRev Lett 65:2266–2269

    ADS  Google Scholar 

  196. Sornette A, Davy P, Sornette D (1990) Fault growth in brittle-ductileexperiments and the mechanics of continental collisions. J Geophys Res 98:12111–12139

    ADS  Google Scholar 

  197. Sornette D (1991) Self-organized criticality in plate tectonics. In:Proceedings of the NATO ASI. vol 349, “Spontaneous formation of space-time structures and criticality” Geilo, Norway 2–12 April1991. Riste T, Sherrington D (eds) Kluwer, Dordrecht, Boston, pp 57–106

    Google Scholar 

  198. Sornette D (1992) Critical phase transitions made self-organized:a dynamical system feedback mechanism for self-organized criticality. J Phys I France 2:2065–2073.doi:10.1051/jp1:1992267

    Google Scholar 

  199. Sornette D (1998) Discrete scale invariance and complex dimensions. PhysRep 297(5):239–270

    MathSciNet  ADS  Google Scholar 

  200. Sornette D (1999) Earthquakes: from chemical alteration to mechanicalrupture. Phys Rep 313(5):238–292

    MathSciNet  ADS  Google Scholar 

  201. Sornette D (2000) Mechanochemistry: an hypothesis for shallowearthquakes. In: Teisseyre R, Majewski E (eds) Earthquake Thermodynamics and Phase Transformations in the Earth's Interior. Int Geophys Series, vol 76. Cambridge University Press, Cambridge, pp 329–366, e-print athttp://xxx.lanl.gov/abs/cond-mat/9807400

  202. Sornette D (2002) Predictability of catastrophic events: material rupture,earthquakes, turbulence, financial crashes and human birth. Proc Nat Acad Sci USA 99:2522–2529

    ADS  Google Scholar 

  203. Sornette D (2004) Critical Phenomena in Natural Sciences: Chaos, Fractals,Selforganization and Disorder: Concepts and Tools, 2nd edn. Springer, Berlin, p 529

    Google Scholar 

  204. Sornette D, Helmstetter A (2002) Occurrence ofFinite-Time-Singularity in Epidemic Models of Rupture, Earthquakes and Starquakes. Phys Rev Lett 89(15):158501

    ADS  Google Scholar 

  205. Sornette D, Ouillon G (2005) Multifractal Scaling ofThermally-Activated Rupture Processes. Phys Rev Lett 94:038501

    ADS  Google Scholar 

  206. Sornette D, Pisarenko VF (2003) Fractal Plate Tectonics. Geophys Res Lett30(3):1105. doi:10.1029/2002GL015043

    ADS  Google Scholar 

  207. Sornette D, Sammis CG (1995) Complex critical exponents from renormalizationgroup theory of earthquakes: Implications for earthquake predictions. J Phys I France 5:607–619

    Google Scholar 

  208. Sornette D, Virieux J (1992) A theory linking large time tectonics andshort time deformations of the lithosphere. Nature 357:401–403

    ADS  Google Scholar 

  209. Sornette D, Werner MJ (2005) Constraints on the size of the smallesttriggering earthquake from the epidemic-type aftershock sequence model, Båth's law, and observed aftershock sequences. J Geophys Res110:B08304. doi:10.1029/2004JB003535

    ADS  Google Scholar 

  210. Sornette D, Werner MJ (2005) Apparent clustering and apparent backgroundearthquakes biased by undetected seismicity. J Geophys Res 110:B09303. doi:10.1029/2005JB003621

    ADS  Google Scholar 

  211. Sornette D, Davy P, Sornette A (1990) Structuration of the lithospherein plate tectonics as a self-organized critical phenomenon. J Geophys Res 95:17353–17361

    ADS  Google Scholar 

  212. Sornette D, Vanneste C, Sornette A (1991) Dispersion of b-valuesin Gutenberg–Richter law as a consequence of a proposed fractal nature of continental faulting. Geophys Res Lett18:897–900

    ADS  Google Scholar 

  213. Sornette D, Miltenberger P, Vanneste C (1994) Statistical physics of faultpatterns self-organized by repeated earthquakes. Pure Appl Geophys 142:491–527.doi:10.1007/BF00876052

    ADS  Google Scholar 

  214. Sornette D, Miltenberger P, Vanneste C (1995) Statistical physics of faultpatterns self-organized by repeated earthquakes: synchronization versus self-organized criticality. In: Bouwknegt P, Fendley P, Minahan J,Nemeschansky D, Pilch K, Saleur H, Warner N (eds) Recent Progresses in Statistical Mechanics and Quantum Field Theory. Proceedings of the conference‘Statistical Mechanics and Quantum Field Theory’, USC, Los Angeles, May 16–21, 1994. World Scientific, Singapore,pp 313–332

    Google Scholar 

  215. Sornette D, Utkin S, Saichev A (2008) Solution of the Nonlinear Theoryand Tests of Earthquake Recurrence Times. Phys Rev E 77:066109

    ADS  Google Scholar 

  216. Stanley HE (1999) Scaling, universality, and renormalization: Three pillarsof modern critical phenomena. Rev Mod Phys 71(2):S358–S366. doi:10.1103/RevModPhys.71.S358

    Google Scholar 

  217. Sykes LR, Jaumé S (1990) Seismic activity on neighboring faults asa long-term precursor to large earthquakes in the San Francisco Bay Area. Nature 348:595–599

    Google Scholar 

  218. Tiampo KF, Rundle JB, Klein W (2006) Stress shadows determined froma phase dynamical measure of historic seismicity. Pure Appl Geophys 163(11–12):2407–2416

    ADS  Google Scholar 

  219. Turcotte DL (1986) Fractals and fragmentation. J Geophys Res91:1921–1926

    ADS  Google Scholar 

  220. Turcotte DL (1997) Fractals and Chaos in Geology and Geophysics, 2ndedn. Cambridge University Press, Cambridge, p 398

    Google Scholar 

  221. Turcotte DL, Newman WI, Gabrielov A (2000) A statistical physicsapproach to earthquakes. In: Rundle JB, Turcotte DL, Klein W (eds) GeoComplexity and the Physics of Earthquake. American Geophysical Union, Washington,pp 83–96

    Google Scholar 

  222. Tumarkin AG, Shnirman MG (1992) Computational seismology25:63–71

    Google Scholar 

  223. Vere-Jones D (1977) Statistical theories of crack propagation. Math Geol9:455–481

    Google Scholar 

  224. Vere-Jones D (2005) A class of self-similar random measure. AdvAppl Probab 37(4):908–914

    MathSciNet  Google Scholar 

  225. Vere-Jones D (2006) The development of statistical seismology:A personal experience. Tectonophysics 413(1–2):5–12

    ADS  Google Scholar 

  226. Vere-Jones D, Robinson R, Yang W (2001) Remarks on the accelerated momentrelease model: problems of model formulation, simulation and estimation. Geophys J Int 144:517–531.doi:10.1046/j.1365-246X.2001.01348.x

    ADS  Google Scholar 

  227. Voight B (1988) A method for prediction of volcanic eruptions. Nature332:125–130

    ADS  Google Scholar 

  228. Voight B (1989) A relation to describe rate-dependent materialfailure. Science 243:200–203

    ADS  Google Scholar 

  229. Werner MJ (2007) On the fluctuations of seismicity and uncertainties inearthquake catalogs: Implications and methods for hypothesis testing. Ph?D thesis, University of California, Los Angeles

    Google Scholar 

  230. Werner MJ, Sornette D (2007) Comment on “Analysis of the SpatialDistribution Between Successive Earthquakes” by Davidsen and Paczuski. [Phys Rev Lett 94:048501 (2005)]. Phys Rev Lett99::179801

    ADS  Google Scholar 

  231. Werner MJ, Sornette D (2008) Magnitude Uncertainties Impact Seismic RateEstimates, Forecasts and Predictability Experiments. J Geophys Res 113:B08302.doi:10.1029/2007JB005427

    ADS  Google Scholar 

  232. Wesnousky SG (1994) The Gutenberg–Richter or characteristic earthquakedistribution, which is it? Bull Seismol Soc Am 84(6):1940–1959

    Google Scholar 

  233. Wiemer S, Katsumata K (1999) Spatial variability of seismicity parameters inaftershock zones. J Geophys Res 104:13135–13152. doi:10.1029/1999JB900032

    ADS  Google Scholar 

  234. Wilson K (1979) Problems in physics with many scales of length. Sci Am241:140–157

    Google Scholar 

  235. Yeomans JM (1992) Statistical Mechanics of Phase Transitions. OxfordUniversity Press Inc, New York

    Google Scholar 

  236. Zaliapin I, Keilis-Borok V, Ghil M (2003) A Boolean delay equationmodel of colliding cascades. Part I: Multiple seismic regimes. J Stat Phys 111:815–837

    Google Scholar 

  237. Zaliapin I, Keilis-Borok V, Ghil M (2003) A Boolean delay equationmodel of colliding cascades. Part II: Prediction of critical transitions. J Stat Phys 111:839–861

    Google Scholar 

  238. Zaliapin I, Gabrielov A, Keilis-Borok V, Wong H (2008) Clustering analysisof seismicity and aftershock identification. Phys Rev Lett 101:018501. doi:10.1103/PhysRevLett.101.018501

    ADS  Google Scholar 

  239. Zee A (2003) Quantum Field Theory in a Nutshell. PrincetonUniversity Press, Princeton

    Google Scholar 

  240. Zhuang J, Ogata Y, Vere-Jones D (2002) Stochastic declustering of space-timeearthquake occurrences. J Am Stat Assoc 97:369–380

    MathSciNet  Google Scholar 

  241. Zhuang J, Ogata Y, Vere-Jones D (2004) Analyzing earthquake clusteringfeatures by using stochastic reconstruction. J Geophys Res 109:B05301. doi:10.1029/2003JB002879

    ADS  Google Scholar 

  242. Zöller G, Hainzl S (2002) A systematic spatiotemporal test of thecritical point hypothesis for large earthquakes. Geophys Rev Lett 29:53–1

    Google Scholar 

  243. Zöller G, Hainzl S, Kurths J (2001) Observation of growing correlationlength as an indicator for critical point behavior prior to large earthquakes. J Geophys Res 106:2167–2176.doi:10.1029/2000JB900379

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Sornette, D., Werner, M.J. (2009). Seismicity, Statistical Physics Approaches to. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_467

Download citation

Publish with us

Policies and ethics