Skip to main content

Visual Cortex Models for Object Recognition

  • Reference work entry
  • First Online:
Computer Vision
  • 260 Accesses

Related Concepts

Object Class Recognition (Categorization)

Definition

Visual cortex model-based methods aim to develop algorithms for object detection, representation and recognition that attempt to mimic human visual systems.

Background

Object recognition is difficult Like other natural tasks that our brain performs effortlessly, visual recognition has turned out to be difficult to reproduce in artificial systems. In its general form, it is a highly challenging computational problem which is likely to play a significant role in eventually making intelligent machines. Not surprisingly, it is also an open and key problem for neuroscience.

Within object recognition, it is common to distinguish two main tasks: identification, for instance, recognizing a specific face among other faces, and categorization, for example, recognizing a car among other object classes. We will discuss both of these tasks below, and use “recognition” to include both.

Models of the visual cortexOver the last...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amit Y, Mascaro M (2003) An integrated network for invariant visual detection and recognition. Vis Res 43(19): 2073–2088

    Article  Google Scholar 

  2. Bruce C, Desimone R, Gross C (1981) Visual properties of neurons in a polysensory area in the superior temporal sulcus of the macaque. J Neurophysiol 46:369–384

    Google Scholar 

  3. Carpenter G, Grossberg S (1987) A massively parallel architecture for a self-organizing neural pattern recognition. Comput Vis Graph Image Process 37:54–115

    Article  MATH  Google Scholar 

  4. Chikkerur S, Serre T, Poggio T (2009) A Bayesian inference theory of attention: neuroscience and algorithms, MIT-CSAIL-TR-2009-047/CBCL-280. Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  5. Epshtein B, Lifshitz I, Ullman S (2008) Image interpretation by a single bottom-up top-down cycle. PNAS 105(38):14298–14303

    Article  Google Scholar 

  6. Fukushima K (1975) Cognition: a self-organizing multilayered neural network. Biol Cyber 20(3–4):121–136

    Article  Google Scholar 

  7. Hawkins J, Blakeslee S (2004) On intelligence. Times Books, New York

    Google Scholar 

  8. Hung C, Kreiman G, Poggio T, DiCarlo J (2005) Fast read-out of object identity from macaque inferior temporal cortex. Science 310:863–866

    Article  Google Scholar 

  9. Lee TS, Mumford D (2003) Hierarchical Bayesian inference in the visual cortex. J Opt Soc Am A Opt Image Sci Vis 20(7):1434–1448

    Article  Google Scholar 

  10. Logothetis NK, Sheinberg DL (1996) Visual object recognition. Ann Rev Neurosci 19:577–621

    Article  Google Scholar 

  11. Logothetis NK, Pauls J, Bülthoff HH, Poggio T (1994) View-dependent object recognition by monkeys. Curr Biol 4:401–413

    Article  Google Scholar 

  12. Logothetis NK, Pauls J, Poggio T (1995) Shape representation in the inferior temporal cortex of monkeys. Curr Biol 5:552–563

    Article  Google Scholar 

  13. Lowe D (2004) Distinctive image features from scale-invariant key-points. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  14. Marr D (1982) Vision: a computational investigation into the human representation and visual information. W.H. Freeman, New York

    Google Scholar 

  15. Mel BW (1997) SEEMORE: combining color, shape and texture histogramming in a neurally-inspired approach to visual object recognition. Neural Comput 9: 777–804

    Article  Google Scholar 

  16. . Mutch J, Lowe D (2006) Multiclass object recognition using sparse, localized features. In: Proceedings of the IEEE conference on computer vision pattern recognition (CVPR), New York

    Google Scholar 

  17. Mutch J, Lowe DG (2008) Object class recognition and localization using sparse features with limited receptive fields. Int J Comput Vis (IJCV) 80(1):45–57

    Article  Google Scholar 

  18. Pinto N, Doukhan D, DiCarlo JJ, Cox DD (2009) A high-throughput screening approach to discovering good forms of biologically inspired visual representation. PLoS Comput Biol 5(11):1–12

    Article  MathSciNet  Google Scholar 

  19. Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2: 1019–1025

    Article  Google Scholar 

  20. Serre T, Oliva A, Poggio T (2007) A feedforward architecture accounts for rapid categorization. Proc Natl Acad Sci 104(15):6424

    Article  Google Scholar 

  21. Serre T, Kreiman G, Kouh M, Cadieu C, Knoblich U, Poggio T (2007) A quantitative theory of immediate visual recognition. Prog Brain Res 165:33–56

    Article  Google Scholar 

  22. . Thorpe S (2002) Ultra-rapid scene categorisation with a wave of spikes. In: Second international workshop on biologically motivated computer vision (BMCV), Tübingen, pp 1–15

    Google Scholar 

  23. Wallis G, Rolls ET (1997) A model of invariant object recognition in the visual system. Prog Neurobiol 51: 167–194

    Article  Google Scholar 

  24. Wersing H, Koerner E (2003) Learning optimized features for hierarchical models of invariant recognition. Neural Comput 15(7):1559–1588

    Article  MATH  Google Scholar 

  25. Zemel RS, Behrmann M, Mozer MC, Bavelier D (2002) Object recognition processes can and do operate before figure-ground organization. Exp Psychol 28(1):202–217

    Google Scholar 

  26. Zhang J, Zisserman A (2006) Dataset issues in object recognition. In: Ponce J, Hebert M, Schmid C, Zisserman A (eds) Toward category-level object recognition. Springer, Berlin, pp 29–48

    Google Scholar 

  27. Zhou H, Howard S, Friedman HS, von der Heydt R (2000) Coding of border ownership in monkey visual cortex. J Neurosci 20(17):6594–6611

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Poggio, T., Ullman, S. (2014). Visual Cortex Models for Object Recognition. In: Ikeuchi, K. (eds) Computer Vision. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-31439-6_794

Download citation

Publish with us

Policies and ethics