Skip to main content

Abstract

Compressive sensing is a new type of sampling theory, which predicts that sparse signals and images can be reconstructed from what was previously believed to be incomplete information. As a main feature, efficient algorithms such as 1-minimization can be used for recovery. The theory has many potential applications in signal processing and imaging. This chapter gives an introduction and overview on both theoretical and numerical aspects of compressive sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 679.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  1. Achlioptas D (2001) Database-friendly random projections. In: Proceedings of the 20th annual ACM SIGACT-SIGMOD-SIGART symposium on principles of database systems, Santa Barbara, 21–23 May 2001, pp 274–281

    Google Scholar 

  2. Affentranger F, Schneider R (1992) Random projections of regular simplices. Discrete Comput Geom 7(3):219–226

    Article  MathSciNet  MATH  Google Scholar 

  3. Baraniuk R (2007) Compressive sensing. IEEE Signal Process Mag 24(4):118–121

    Article  Google Scholar 

  4. Baraniuk RG, Davenport M, DeVore RA, Wakin M (2008) A simple proof of the restricted isometry property for random matrices. Constr Approx 28(3):253–263

    Article  MathSciNet  MATH  Google Scholar 

  5. Berinde R, Gilbert A, Indyk P, Karloff H, Strauss M (2008) Combining geometry and combinatorics: a unified approach to sparse signal recovery. In: Proceedings 46th Annual Allerton Conference on Communication, Control, and Computing, pp 798–805

    Google Scholar 

  6. Blanchard JD, Cartis C, Tanner J, Thompson A (2009) Phase transitions for greedy sparse approximation algorithms. Preprint

    Google Scholar 

  7. Blumensath T, Davies M (2009) Iterative hard thresholding for compressed sensing. Appl Comput Harmon Anal 27(3):265–274

    Article  MathSciNet  MATH  Google Scholar 

  8. Bobin J, Starck J-L, Ottensamer R (2008) Compressed sensing in astronomy. IEEE J Sel Top Signal Process 2(5):718–726

    Article  Google Scholar 

  9. Boyd S, Vandenberghe L (2004) Convex Optim- ization. Cambridge University Press, Cambridge

    Google Scholar 

  10. Bungartz H-J, Griebel M (2004) Sparse grids. Acta Numerica 13:147–269

    Article  MathSciNet  Google Scholar 

  11. Candès E, Wakin M (2008) An introduction to compressive sampling. IEEE Signal Process Mag 25(2):21–30

    Article  Google Scholar 

  12. Candès EJ (2006) Compressive sampling. In: Proceedings of the International congress of mathematicians, Madrid

    Google Scholar 

  13. Candès EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inform Theory 52(2):489–509

    Article  MathSciNet  MATH  Google Scholar 

  14. Candès EJ, Recht B (2009) Exact matrix completion via convex optimization. Found Comput Math 9:717–772

    Article  MathSciNet  MATH  Google Scholar 

  15. Candès EJ, Romberg J, Tao T (2006) Stable signal recovery from incomplete and inaccurate measurements. Commun Pure Appl Math 59(8):1207–1223

    Article  MATH  Google Scholar 

  16. Candès EJ, Tao T (2006) Near optimal signal recovery from random projections: universal encoding strategies? IEEE Trans Inform Theory 52(12):5406–5425

    Article  MathSciNet  Google Scholar 

  17. Capalbo M, Reingold O, Vadhan S, Wigderson A (2002) Randomness conductors and constant-degree lossless expanders. In: Proceedings of the thirty-fourth annual ACM, ACM, Montreal, pp 659–668 (electronic)

    Google Scholar 

  18. Chen SS, Donoho DL, Saunders MA (1999) Atomic decomposition by basis pursuit. SIAM J Sci Comput 20(1):33–61

    Article  MathSciNet  MATH  Google Scholar 

  19. Christensen O (2003) An introduction to frames and Riesz bases: applied and numerical harmonic analysis. Birkhäuser, Boston

    MATH  Google Scholar 

  20. Cline AK (1972) Rate of convergence of Lawson’s algorithm. Math Comput 26:167–176

    MathSciNet  MATH  Google Scholar 

  21. Cohen A, Dahmen W, DeVore RA (2009) Compressed sensing and best k-term approximation. J Am Math Soc 22(1):211–231

    Article  MathSciNet  MATH  Google Scholar 

  22. Cormode G, Muthukrishnan S (2006) Combinatorial algorithms for compressed sensing, SIROCCO, Springer, Heidelberg

    Google Scholar 

  23. Daubechies I, DeVore R, Fornasier M, Güntürk C (2010) Iteratively re-weighted least squares minimization for sparse recovery. Commun Pure Appl Math 63(1):1–38

    Article  MATH  Google Scholar 

  24. Do Ba K, Indyk P, Price E, Woodruff D (2010) Lower bounds for sparse recovery. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA10), pp 1190–1197.

    Google Scholar 

  25. Donoho D, Logan B (1992) Signal recovery and the large sieve. SIAM J Appl Math 52(2): 577–591

    Article  MathSciNet  MATH  Google Scholar 

  26. Donoho DL (2006) Compressed sensing. IEEE Trans Inform Theory 52(4):1289–1306

    Article  MathSciNet  Google Scholar 

  27. Donoho DL (2006) For most large underdetermined systems oflinear equations the minimal l 1 solution is also the sparsest solution. Commun Pure Appl Anal 59(6):797–829

    Google Scholar 

  28. Donoho DL (2006) High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension. Discrete Comput Geom 35(4):617–652

    Article  MathSciNet  MATH  Google Scholar 

  29. Donoho DL, Elad M (2003) Optimally sparse representation in general (nonorthogonal) dictionaries via \({\ell}^{1}\) minimization. Proc Natl Acad Sci USA 100(5):2197–2202

    Article  MathSciNet  MATH  Google Scholar 

  30. Donoho DL, Huo X (2001) Uncertainty principles and ideal atomic decompositions. IEEE Trans Inform Theory 47(7):2845–2862

    Article  MathSciNet  MATH  Google Scholar 

  31. Donoho DL, Tanner J (2005) Neighborliness of randomly projected simplices in high dimensions. Proc Natl Acad Sci USA 102(27): 9452–9457

    Article  MathSciNet  MATH  Google Scholar 

  32. Donoho DL, Tanner J (2009) Counting faces of randomly-projected polytopes when the projection radically lowers dimension. J Am Math Soc 22(1):1–53

    Article  MathSciNet  MATH  Google Scholar 

  33. Donoho DL, Tsaig Y (2008) Fast solution of l1-norm minimization problems when the solution may be sparse. IEEE Trans Inform Theory 54(11):4789–4812

    Article  MathSciNet  Google Scholar 

  34. Dorfman R (1943) The detection of defective members of large populations. Ann Statist 14:436–440

    Article  Google Scholar 

  35. Duarte M, Davenport M, Takhar D, Laska J, Ting S, Kelly K, Baraniuk R (2008) Single-pixel imaging via compressive sampling. IEEE Signal Process Mag 25(2):83–91

    Article  Google Scholar 

  36. Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Statist 32(2):407–499

    Article  MathSciNet  MATH  Google Scholar 

  37. Elad M, Bruckstein AM (2002) A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Trans Inform Theory 48(9):2558–2567

    Article  MathSciNet  MATH  Google Scholar 

  38. Fannjiang A, Yan P, Strohmer T (in press), Compressed remote sensing of sparse object. SIAM J Imaging Sci

    Google Scholar 

  39. Fornasier M (2010) Numerical methods for sparse recovery. In: Fornasier M (ed) Theoretical foundations and numerical methods for sparse recovery. Radon Series on Computational and Applied Mathematics, de Gruyter, Berlin, pp 218–236

    Google Scholar 

  40. Fornasier M, Langer A, Schönlieb CB (to appear, A convergent overlapping domain decomposition method for total variation minimization. Numer Math

    Google Scholar 

  41. Fornasier M, March R (2007) Restoration of color images by vector valued BV functions and variational calculus. SIAM J Appl Math 68(2):437–460

    Article  MathSciNet  MATH  Google Scholar 

  42. Fornasier M, Ramlau R, Teschke G (2009) The application of joint sparsity and total variation minimization algorithms to a real-life art restoration problem. Adv Comput Math 31(1–3):157–184

    Article  MathSciNet  MATH  Google Scholar 

  43. Foucart S (to appear) A note on guaranteed sparse recovery via \({\ell}_{1}\)-minimization. Appl Comput Harmon Anal

    Google Scholar 

  44. Foucart S, Pajor A, Rauhut H, Ullrich T (to appear) The Gelfand widths of \({\ell}_{\mathrm{p}}\)-balls for \(0 < \mathrm{p} \leq 1\). J Complexity. doi:10.1016/j.jco.2010.04.004

    Google Scholar 

  45. Foucart S, Rauhut H (in preparation) A mathematical introduction to compressive sensing. Applied and Numerical Harmonic Analysis, Birkhäuser, Boston

    Google Scholar 

  46. Fuchs JJ (2004) On sparse representations in arbitrary redundant bases. IEEE Trans Inform Theory 50(6):1341–1344

    Article  MathSciNet  Google Scholar 

  47. Garnaev A, Gluskin E (1984) On widths of the Euclidean ball. Sov Math Dokl 30: 200–204

    MATH  Google Scholar 

  48. Gilbert AC, Muthukrishnan S, Guha S, Indyk P, Strauss M (2002) Near-optimal sparse Fourier representations via sampling. In: Proceedings of the STOC’02, Association for Computing Machinery, New York, pp 152–161

    Google Scholar 

  49. Gilbert AC, Muthukrishnan S, Strauss MJ (2003) Approximation of functions over redundant dictionaries using coherence. In: Proceedings of the fourteenth annual ACM-SIAM symposium on discrete algorithms, SIAM and Association for Computing Machinery, Baltimore, 12–14 January 2003, pp 243–252

    Google Scholar 

  50. Gilbert AC, Strauss M, Tropp JA, Vershynin R (2007) One sketch for all: fast algorithms for compressed sensing. In: Proceedings of the ACM Symposium on the Theory of Computing (STOC), San Diego

    Google Scholar 

  51. Gluskin E (1984) Norms of random matrices and widths of finite-dimensional sets. Math USSR-Sb 48:173–182

    Article  MATH  Google Scholar 

  52. Gorodnitsky I, Rao B (1997) Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans Signal Process 45(3): 600–616

    Article  Google Scholar 

  53. Gribonval R, Nielsen M (2003) Sparse representations in unions of bases. IEEE Trans Inform Theory 49(12):3320–3325

    Article  MathSciNet  Google Scholar 

  54. Horn R, Johnson C (1990) Matrix analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  55. Johnson WB, Lindenstrauss J (eds) (2001) Handbook of the geometry of Banach spaces, vol 1. North-Holland, Amsterdam

    MATH  Google Scholar 

  56. Kashin B (1977) Diameters of some finite-dimensional sets and classes of smooth functions. Math USSR, Izv 11:317–333

    Article  MATH  Google Scholar 

  57. Lawson C (1961) Contributions to the theory of linear least maximum approximation. PhD thesis, University of California, Los Angeles

    Google Scholar 

  58. Ledoux M, Talagrand M (1991) Probability in Banach spaces. Springer, Berlin/Heidelberg/ New York

    MATH  Google Scholar 

  59. Logan B (1965) Properties of high-pass signals. PhD thesis, Columbia University, New York

    Google Scholar 

  60. Lorentz GG, von Golitschek M, Makovoz Y (1996) Constructive approximation: advanced problems. Springer, Berlin

    Book  MATH  Google Scholar 

  61. Mallat SG, Zhang Z (1993) Matching pursuits with time-frequency dictionaries. IEEE Trans Signal Process 41(12):3397–3415

    Article  MATH  Google Scholar 

  62. Marple S (1987) Digital spectral analysis with applications. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  63. Mendelson S, Pajor A, Tomczak Jaegermann N (2009) Uniform uncertainty principle for Bernoulli and subgaussian ensembles. Constr Approx 28(3):277–289

    Article  MathSciNet  Google Scholar 

  64. Natarajan BK (1995) Sparse approximate solutions to linear systems. SIAM J Comput 24:227–234

    Article  MathSciNet  MATH  Google Scholar 

  65. Nesterov Y, Nemirovskii A (1994) Interior-point polynomial algorithms in convex programming. In: Volume 13 of SIAM studies in applied mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia

    Google Scholar 

  66. Novak E (1995) Optimal recovery and n-widths for convex classes of functions. J Approx Theory 80(3):390–408

    Article  MathSciNet  MATH  Google Scholar 

  67. Osborne M, Presnell B, Turlach B (2000) A new approach to variable selection in least squares problems. IMA J Numer Anal 20(3): 389–403

    Article  MathSciNet  MATH  Google Scholar 

  68. Osborne M, Presnell B, Turlach B (2000) On the LASSO and its dual. J Comput Graph Stat 9(2):319–337

    Article  MathSciNet  Google Scholar 

  69. Pfander GE, Rauhut H (2010) Sparsity in time-frequency representations. J Fourier Anal Appl 16(2):233–260

    Article  MathSciNet  MATH  Google Scholar 

  70. Pfander GE, Rauhut H, Tanner J (2008) Identification of matrices having a sparse representation. IEEE Trans Signal Process 56(11): 5376–5388

    Article  MathSciNet  Google Scholar 

  71. Prony R (1795) Essai expérimental et analytique sur les lois de la Dilatabilité des uides élastique et sur celles de la Force expansive de la vapeur de leau et de la vapeur de lalkool, à différentes températures. J École Polytech 1:24–76

    Google Scholar 

  72. Rauhut H (2007) Random sampling of sparse trigonometric polynomials. Appl Comput Harmon Anal 22(1):16–42

    Article  MathSciNet  MATH  Google Scholar 

  73. Rauhut H (2008) Stability results for random sampling of sparse trigonometric polynomials. IEEE Trans Inform Theory 54(12): 5661–5670

    Article  MathSciNet  Google Scholar 

  74. Rauhut H (2009) Circulant and Toeplitz matrices in compressed sensing. In: Proceedings of the SPARS’09, Saint-Malo

    Google Scholar 

  75. Rauhut H (2010) Compressive sensing and structured random matrices. In: Fornasier M (ed) Theoretical foundations and numerical methods for sparse recovery. Radon Series on Computational and Applied Mathematics, de Gruyter, Berlin

    Google Scholar 

  76. Recht B, Fazel M, Parillo P (to appear) Guaranteed minimum rank solutions to linear matrix equations via nuclear norm minimization. SIAM Rev

    Google Scholar 

  77. Romberg J (2008) Imaging via compressive sampling. IEEE Signal Process Mag 25(2): 14–20

    Article  Google Scholar 

  78. Rudelson M, Vershynin R (2008) On sparse reconstruction from Fourier and Gaussian measurements. Commun Pure Appl Math 61:1025–1045

    Article  MathSciNet  MATH  Google Scholar 

  79. Rudin L, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D 60(1–4):259–268

    Article  MATH  Google Scholar 

  80. Santosa F, Symes W (1986) Linear inversion of band-limited reflection seismograms. SIAM J Sci Stat Comput 7(4):1307–1330

    Article  MathSciNet  MATH  Google Scholar 

  81. Schnass K, Vandergheynst P (2008) Dictionary preconditioning for greedy algorithms. IEEE Trans Signal Process 56(5):1994–2002

    Article  MathSciNet  Google Scholar 

  82. Strohmer T, Heath RW Jr (2003) Grassmannian frames with applications to coding and communication. Appl Comput Harmon Anal 14(3):257–275

    Article  MathSciNet  MATH  Google Scholar 

  83. Strohmer T, Hermann M (2008) Compressed sensing radar. In: IEEE proceedings of the international conference on acoustic, speech, and signal processing, pp 1509–1512

    Google Scholar 

  84. Tadmor E (2009) Numerical methods for nonlinear partial differential equations. In: Meyers R (ed) Encyclopedia of complexity and systems science, Springer

    Google Scholar 

  85. Talagrand M (1998) Selecting a proportion of characters. Israel J Math 108:173–191

    Article  MathSciNet  MATH  Google Scholar 

  86. Tauboeck G, Eiwen D, Hlawatsch F, Rauhut H (2010) Compressive estimation of doubly selective channels: exploiting channel sparsity to improve spectral efficiency in multicarrier transmissions. J Sel Topics Signal Process 4(2): 255–271

    Article  Google Scholar 

  87. Taylor H, Banks S, McCoy J (1979) Deconvolution with the \({\ell}_{1}\)-norm. Geophys J Int 44(1):39–52

    Google Scholar 

  88. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B 58(1):267–288

    MathSciNet  MATH  Google Scholar 

  89. Traub J, Wasilkowski G, Woniakowski H (1988) Information-based complexity. Computer Science and Scientific Computing. Academic, New York

    MATH  Google Scholar 

  90. Tropp JA Needell D (2008) CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl Comput Harmon Anal 26: 301–321

    MathSciNet  Google Scholar 

  91. Tropp JA (2004) Greed is good: algorithmic results for sparse approximation. IEEE Trans Inform Theory 50(10):2231–2242

    Article  MathSciNet  Google Scholar 

  92. Tropp JA (2006) Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans Inform Theory 51(3): 1030–1051

    Article  MathSciNet  Google Scholar 

  93. Tropp JA, Laska JN, Duarte MF, Romberg JK, Baraniuk RG (2010) Beyond Nyquist: efficient sampling of sparse bandlimited signals. IEEE Trans Inform Theory 56(1):520–544

    Article  MathSciNet  Google Scholar 

  94. Unser M (2000) Sampling – 50 years after shannon. Proc IEEE 88(4):569–587

    Article  Google Scholar 

  95. Vybiral J (2008) Widths of embeddings in function spaces. J Complexity 24(4):545–570

    Article  MathSciNet  MATH  Google Scholar 

  96. Wagner G, Schmieder P, Stern A, Hoch J (1993) Application of nonlinear sampling schemes to cosy-type spectra. J Biomol NMR 3(5):569

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

Fornasier, M., Rauhut, H. (2011). Compressive Sensing. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92920-0_6

Download citation

Publish with us

Policies and ethics