Skip to main content

Section 5 - Detection of gene transfer in the environment

  • Reference work entry
  • First Online:
Molecular Microbial Ecology Manual

Natural transformation in aquatic environments

Introduction

Transformation is a process in which competent cells take up DNA and incorporate it into their genome. It is one of the mechanisms by which genes may be spread through natural populations [ 27]. A wide variety of bacteria express competence (the physiological ability to take up DNA) during normal growth. Frischer et al. [ 9] found up to 16% of isolates taken from Tampa Bay were naturally competent. When competent cells come into contact with a source of DNA, this is bound to the cell and taken up. As well as DNA in free solution, competent bacteria can take up DNA associated with particulate matter [ 15, 16, 29], cellular debris [ 14], heat inactivated cells [ 23, 30] and intact, live donor cells [ 1, 23, 24, 28].

Transformation is generally most efficient with homologous chromosomal DNA. Once inside the cell it can be integrated into the host's chromosome by normal recombination processes [ 5, 7]. However, in many cases...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The sediment to be used can be autoclaved or non-sterile, depending on the purpose of the study. We have only observed transfer in autoclaved sediments. If non-sterile sediments are to be used, there will be a high level of resistance to kanamycin and streptomycin amongst the indigenous flora. Hopefully, colony hybridization would identify transformants.

  2. 2.

    There is usually a background level of resistance to kanamycin and streptomycin in most marine microbial communities. Therefore, it is imperative to verify plasmid acquisition, both by colony hybridization of controls and treatment plates and also by selecting individual hybridizing colonies for further study. Miniprep, restriction analysis, and Southern hybridization of these clones may still yield equivocal results. Restriction profiles of pQSR50 are often changed, either from marine bacterial methylation systems or by plasmid rearrangement [ 10].

  3. 3.

    Again, seawater to be used can be nonsterile, sterile filtered, or autoclaved, sterile filtered. The volumes can be scaled up and the experiments performed in situ using Fenwall Gas Permeable Tissue Culture Bags (Fenwall Scientific). It may be difficult to enumerate the donor population on LB containing kanamycin and streptomycin because of the high level of indigenous resistant organisms found in some environments. However, in our experience, there are usually no indigenous organisms that can grow on the KSNR plates.

  4. 4.

    For strain NF1815/RP4 use: 5 ml LB + tetracycline (Tc) - 20 μg/ml at 37 °C with 200 rpm agitation.

  5. 5.

    Use appropriate antibiotics if other bacterial strains or plasmids are being used.

  6. 6.

    Sand is inoculated in batch. One batch is inoculated with both donor and recipient and two additional ones are inoculated only with donor and only with recipient (controls) (see Fig. 4).

References

  1. Albritton W L, Setlow J K, Slaney L (1982) Transfer of Haemophilus influenzae chromosomal genes by cell-to-cell contact. J Bacteriol 152: 1066–1070.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Bale M J, Fry J C, Day M J (1987) Plasmid transfer between strains of shape Pseudomonas aeruginosa on membrane filters attached to river stones. J Gen Microbiol 133: 3099–3107.

    CAS  PubMed  Google Scholar 

  3. Bale M J, Day M J, Fry J C (1988) Novel method for studying plasmid transfer in undisturbed river epilithon. Appl Environ Microbiol 54: 2756–2758.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. De Vos W M, Venema G (1981) Fate of plasmid DNA in transformation of Bacillus subtilis protoplasts. Mol Gen Genet 182: 39–43.

    Article  PubMed  Google Scholar 

  5. De Vos W M, Venema G (1982) Transformation of Bacillus subtilis competent cells: identification of a protein involved in recombination. Mol Gen Genet 187: 439–445.

    Article  PubMed  Google Scholar 

  6. Doran J L, Single W H, Roy K L, Hiratsuka K, Page W J (1987) Plasmid transformation of Azotobacter vinelandii OP. J Gen Microbiol 113: 2059–2072.

    Google Scholar 

  7. Dubnau D (1991) Genetic competence in Bacillus subtilis. Microbiol Rev 55: 395–424.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Graham J B, Istock C A (1978) Genetic exchange in Bacillus subtilis in soil. Mol Gen Genet 166: 287–290.

    CAS  PubMed  Google Scholar 

  9. Frischer M E, Thurmond J M, Paul J H (1990) Natural plasmid transformation in a high-frequency-of-transformation marine Vibrio strain. Appl Environ Microbiol 56: 3439–3444.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Frischer M E, Stewart G J, Paul J H (1994) Plasmid transfer to indigenous marine bacterial populations by natural transformation. FEMS Microb Ecol 15: 127–136.

    Article  CAS  Google Scholar 

  11. Fry J C (1989) Analysis of variance and regression in aquatic bacteriology. Binary 1: 83–88.

    Google Scholar 

  12. Jeffrey W H, Paul J H, Stewart G J (1990) Natural transformation of a marine Vibrio species by plasmid DNA. Microbial Ecol 19: 259–269.

    Article  CAS  Google Scholar 

  13. Jiang S C, Thurmond J M, Pichard S L, Paul J H (1992) Concentration of microbial populations from aquatic environments by vortex flow filtration. Mar Ecol Progr Ser 80: 101–107.

    Article  Google Scholar 

  14. Juni E (1972) Interspecies transformation of Acinetobacter: Genetic evidence for a ubiquitous genus. J Bacteriol 112: 917–931.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Lorenz M G, Wackernagel W (1990) Natural genetic transformation of Pseudomonas stutzeri by sand-adsorbed DNA. Arch Microbiol 154: 380–385.

    Article  CAS  PubMed  Google Scholar 

  16. Lorenz M G, Aardema B W, Wackernagel W (1988) Highly efficient genetic transformation of Bacillus subtilis attached to sand grains. J Gen Microbiol 134: 107–112.

    CAS  PubMed  Google Scholar 

  17. Maniatis T, Fritsch E F, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  18. Meyer R, Hinds M, Brosch M (1982) Properties of R1162, a broad-host-range, high-copy-number plasmid. J Bacteriol 150: 552–562.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Meyer R, Laux R, Boch G, Hinds M, Bayly R, Shapiro J A (1982) Broad-host-range IncP-4 plasmid R1162: effects of deletions and insertions on plasmid maintenance and host range. J Bacteriol 152: 140–150.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Paul J H (1982) Use of Hoechst dyes 33258 and 33342 for enumeration of attached and planktonic bacteria. Appl Environ Microbiol 43: 939–944.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Paul J H, Jeffrey W H, David A W, DeFlaun M F, Cazares L H (1989) Turnover of extracellular DNA in eutrophic and oligotrophic freshwater environments of southwest Florida. Appl Environ Microbiol 55: 1823–1828.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Paul J H, Frischer M E, Thurmond J M (1991) Gene transfer in marine water column and sediment microcosms by natural plasmid transformation. Appl Environ Microbiol 57: 1509–1515.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Paul J H, Frischer M E, Thurmond J M (1992) Intergenic natural plasmid transformation between E. coli and a marine Vibrio species. Mol Ecol 1: 37–46.

    Article  CAS  PubMed  Google Scholar 

  24. Rochelle P A, Day M J, Fry J C (1988) Occurrence, transfer and mobilization in epilithic strains of Acinetobacter of mercury-resistance plasmids capable of transformation. J Gen Microbiol 134: 2933–2941.

    CAS  PubMed  Google Scholar 

  25. Rochelle P A, Fry J C, Day M J (1989) Plasmid transfer between Pseudomonas spp. within epilithic films in a rotating disc microcosm. FEMS Microbiol Ecol 62: 127–136.

    Article  Google Scholar 

  26. Sokal R R, Rohlf F J (1981) Biometry. Freeman, San Francisco, USA.

    Google Scholar 

  27. Stewart G J, Carlson C A (1986) The biology of natural transformation. Ann Rev Microbiol 40: 211–235.

    Article  CAS  Google Scholar 

  28. Stewart G J, Carlson C A, Ingraham J L (1983) Evidence for an active role of donor cells in natural transformation of Pseudomonas stutzeri. J Bacteriol 156: 30–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Stewart G J, Sinigalliano C D, Garko K A (1991) Binding of exogenous DNA to marine sediments and the effect of DNA/sediment binding on natural transformation of Pseudomonas stutzeri strain ZoBell in sediment columns. FEMS Microbiol Ecol 85: 1–8.

    Article  CAS  Google Scholar 

  30. Williams H G, Day M J, Fry J C (1992) Natural transformation on agar and in river epilithon. In: Gauthier M J (ed) Gene Transfers and Environment, pp. 69–76. Springer Verlag, Berlin Heidelberg.

    Chapter  Google Scholar 

  31. Winstanley C, Morgan J AW, Pickup R W, Jones J G, Saunders J R. (1989) Differential regulation of lambda PL and PR promoters by a cI represser in a broad-host-range thermoregulated plasmid marker system. Appl Environ Microbiol 55: 771–777.

    CAS  PubMed Central  PubMed  Google Scholar 

References

  1. Baur B, Hanselman K, Schlimme W & Jenni B (1996) Genetic transformation in freshwater: Escherichia coli is able to develop natural competence. Appl. Environ. Microbiol. 62: 3673–3678.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Berndt C, Meier P, & Wackernagel W (2003) DNA restriction is a barrier to natural transformation in Pseudomonas stutzeri JM300. Microbiol. 149: 895–901.

    Article  CAS  Google Scholar 

  3. Bertolla F, & Simonet P (1999) Horizontal gene transfer in the environment; natural transformation as a putative process for gene transfer between transgenic plants and microorganisms. Res. Microbiol. 150: 375–384.

    Article  CAS  PubMed  Google Scholar 

  4. Bertolla F, Frostegard A, Brito B, Nesme X & Simonet P (1999) During infection of its hosts, the plant pathogen Ralstonia solanacearum naturally develops a state of competence and exchanges genetic material. Molec. Plant-Microbe Interact. 12: 467–472.

    Article  CAS  Google Scholar 

  5. Bertolla F, Pepin R, Passelegue-Robe E, Paget E, Simkin A, Nesme, X & Simonet P (2000) Plant genome complexity may be a factor limiting in situ the transfer of transgenic plant genes to the phytopathogen Ralstonia solanacearum. Appl. Environ. Microbiol. 66: 4161–4167.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ceccherini M, Pote J, Kay E, Van V T, Marechal J, Pietramellara G, Nannipieri P, Vogel T M & Simonet P (2003) Degradation and transformability of DNA from transgenic leaves. Appl. Environ. Microbiol. 69: 673–678.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Conner A J, Glare T R & Nap J-P (2003) The release of genetically modified crops into the environment, part II. Overview of ecological risk assessment. Plant J. 33: 19–46.

    Article  PubMed  Google Scholar 

  8. Davison J (1999) Genetic exchange between bacteria in the environment. Plasmid 42: 73–91.

    Article  CAS  PubMed  Google Scholar 

  9. De Vries J & Wackernagel W (1998) Detection of nptII (kanamycin resistance) genes in genomes of transgenic plants by marker-rescue transformation. Mol. Gen. Genet. 257: 606–613.

    Article  PubMed  Google Scholar 

  10. De Vries J & Wackernagel W (2002) Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination. Proc. Natl. Acad. Sci. USA 99: 2094–2099.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. De Vries J, Meier P & Wackernagel W (2001) The natural transformation of the soil bacteria Pseudomonas stutzeri and Acinetobacter sp. by transgenic plant DNA strictly depends on homologous sequences in the recipient cells. FEMS Microb. Lett. 195: 211–215.

    Article  Google Scholar 

  12. Dröge M, Puhler A & Selbitschka W (1999) Horizontal gene transfer among bacteria in terrestrial and aquatic habitats as assessed by microcosm and field studies. Biol. Fertil. Soils 29: 221–245.

    Article  Google Scholar 

  13. Eisen J (2000) Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. Curr. Opin. Genet. Develop. 10: 606–611.

    Article  CAS  Google Scholar 

  14. Gebhard F & Smalla K (1998) Transformation of Acinetobacter sp. strain BD413 by transgenic sugar beet DNA. Appl. Environ. Microbiol. 64: 1550–1554.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Gebhard F & Smalla K (1999) Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer. FEMS Microbiol. Ecol. 28: 261–272.

    Article  CAS  Google Scholar 

  16. Graham J B & Istock C A (1979) Gene exchange and natural selection cause Bacillus subtilis to evolve in soil culture. Science 204: 637–639.

    Article  CAS  PubMed  Google Scholar 

  17. Heinemann J A (2000) Horizontal transfer of genes between microorganisms. In Encyclopedia of Microbiology 2nd ed. Ed. J Lederberg pp 698–706. Academic Press, San Diego, CA.

    Google Scholar 

  18. Kay E, Vogel T, Bertolla F, Nalin R & Simonet, P (2002) In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Appl. Environ. Microbiol. 68: 3345–3351.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kruse H & Jansson, J (1997) The use of antibiotic resistance genes as marker genes in genetically modified organisms. Norwegian Pollution Control Authority Report 97:03, Oslo, Norway. ISBN 82-7655-052-5.

    Google Scholar 

  20. Lorenz M G & Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58, 563–602.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Majewski J & Cohan F M (1998) The effect of mismatch repair and heteroduplex formation on sexual isolation in Bacillus. Genetics 148: 13–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Majewski J Zawadzki P, Pickerill P, Cohan F M & Dowson C G (2000) Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J. Bacteriol. 182: 1016–1023.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Maynard Smith J, Feil E J & Smith N H (2000) Population structure and evolutionary dynamics of pathogenic bacteria. BioEssays 22: 1115–1122.

    Article  Google Scholar 

  24. Meier P & Wackernagel W (2003) Monitoring the spread of recombinant DNA from field plots with transgenic sugar beet plants by PCR and natural transformation of Pseudomonas stutzeri. Transgenic Res. 12: 293–304.

    Article  CAS  PubMed  Google Scholar 

  25. Nielsen K M, van Weerelt M D M, Berg T N, Bones A M, Hagler A N & van Elsas J D (1997a) Natural transformation and availability of transforming DNA to Acinetobacter calcoaceticus in soil microcosms. Appl. Environ. Microbiol. 63: 1945–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Nielsen K M, Bones A M & van Elsas J D (1997b) Induced natural transformation of Acinetobacter calcoaceticus in soil microcosms Appl. Environ. Microbiol. 63: 3972–3977.

    CAS  Google Scholar 

  27. Nielsen K M, Gebhard F, Smalla K, Bones A M & van Elsas J D (1997c) Evaluation of possible horizontal gene transfer from transgenic plants to the soil bacterium Acinetobacter calcoaceticus BD413. Theor. Appl. Genet. 95: 815–821.

    Article  CAS  Google Scholar 

  28. Nielsen K M, Bones A, Smalla K & van Elsas J D (1998) Horizontal gene transfer from transgenic plants to terrestrial bacteria—a rare event? FEMS Microbiol. Rev. 22: 79–103.

    Article  CAS  PubMed  Google Scholar 

  29. Nielsen K M, Smalla K & van Elsas J D (2000a) Natural transformation of Acinetobacter sp. strain BD413 with cell lysates of Acinetobacter sp., Pseudomonas fluorescens and Burkholderia cepacia in soil microcosms. Appl. Environ. Microbiol. 66: 206–212.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Nielsen K M, van Elsas J D & Smalla K (2000b) Transformation of Acinetobacter sp. BD413 (pFG4Δ nptII) with transgenic plant DNA in soil microcosms and effects of kanamycin on selection of transformants. Appl. Environ. Microbiol. 66, 1237–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Nielsen K M & Townsend J (2001) Environmental exposure, horizontal transfer and selection of transgenes in bacterial populations. In Enhancing Biocontrol Agents and Handling Risks Ed. M. Vurro et al. pp 145–158. NATO Science series 339, IOS Press, Amsterdam.

    Google Scholar 

  32. Nielsen K M, van Elsas J D & Smalla K (2001) Dynamics, horizontal transfer and selection of novel DNA in bacterial populations in the phytosphere of transgenic plants. Ann. Microbiol. 51: 79–94.

    CAS  Google Scholar 

  33. Nielsen K M (2003) An assessment of factors affecting the likelihood of horizontal transfer of recombinant plant DNA to bacterial recipients in the soil and phytosphere. Collection of Biosafety Reviews vol. 1: 96–149.

    Google Scholar 

  34. Nielsen K M, Ray J L, & Heinemann, J A (2003) What are the effects of horizontal transfer of recombinant plant DNA into bacteria?—the need to develop a population genetic approach. In press (Plant and Soil).

    Google Scholar 

  35. Ochman H Lawrence J G & Groisman E A (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299–304.

    Article  CAS  PubMed  Google Scholar 

  36. Paget E & Simonet P (1994) On the track of natural transformation in soil. FEMS Microbiol. Ecol. 15, 109–118.

    Article  CAS  Google Scholar 

  37. Paget E, Lebrun M, Freyssinet G & Simonet P (1998) The fate of recombinant plant DNA in soil. Eur. J. Soil. Biol. 34: 81–88.

    Article  CAS  Google Scholar 

  38. Palmen R & Hellingwerf K J (1997) Uptake and processing of DNA by Acinetobacter calcoaceticus—a review. Gene 192: 179–190.

    Article  CAS  PubMed  Google Scholar 

  39. Prudhomme M, Libante V & Claverys J P (2002) Homologous recombination at the border: insertion-deletions and the trapping of foreign DNA in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 99: 2100–2105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Townsend J P, Nielsen K M, Fisher D S & Hartl D L (2003) Horizontal acquisition of divergent chromosomal DNA in bacteria: effects of mutator phenotypes. Genetics 164: 13–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Vulic M, Dionisio F, Taddei F & Radman M (1997) Molecular keys to speciation: DNA polymorphism and the control of gene exchange in enterobacteria. Proc. Natl. Acad. Sci. USA 94: 9763–9767.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Widmer F, Seidler R J & Watrud L S (1996) Sensitive detection of transgenic plant marker gene persistence in soil microcosms. Mol. Ecol. 5: 603–613.

    Article  CAS  Google Scholar 

  43. Widmer F, Seidler R J, Donegan K K & Reed G L (1997) Quantification of transgenic marker gene persistence in the field. Mol. Ecol. 6: 1–7.

    Article  CAS  Google Scholar 

  44. Williams H G, Day M J, Fry J C & Stewart, G J (1996) Natural transformation in river epilithon. Appl. Environ. Microbiol. 62: 2994–2998.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Woegerbauer M, Jenni B, Thalhammer F, Graninger W & Burgmann H (2002) Natural genetic transformation of clinical isolates of Escherichia coli in urine and water. Appl. Environ. Microbiol. 68: 440–443.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Zawadazki P, Roberts M S & Cohen F M (1995) The Log-linear relationship between sexual isolation and sequence divergence in Bacillus transformation is robust. Genetics 140: 917–932.

    Google Scholar 

  47. Yin X & Stotzky G (1997) Gene transfer among bacteria in natural environments. Adv. Appl. Microbiol. 45: 153–212.

    Article  CAS  PubMed  Google Scholar 

References

  1. Awong J, Britton G, Chaundry R (1990) Microcosms for assessing survival ofgenetically engineered microorganisms in aquatic environments. Appl Environ Microbiol 56: 977–983.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Barkay T, Kroer N, Rasmussen L D, Sorensen S J (1995) Conjugal Transfer at Natural-Population Densities in a Microcosm Simulating an Estuarine Environment. FEMS Microbiology Ecology 16: 43–53.

    Article  CAS  Google Scholar 

  3. Barkay T, Liebert C, Gillman M (1993) Conjugal gene transfer to aquatic bacteria detected by the generation of a new phenotype. Appl Environ Microbiol 59: 807–814.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Chalfie M, Tu Y, Euskirchen G, Ward W W, Prasher D C (1994) Green fluorescent protein as a marker for gene expression. Science 263: 802–5.

    Article  CAS  PubMed  Google Scholar 

  5. Christensen B B, Sternberg C, Andersen J B, Molin O S (1998) In situ detection of gene transfer in a model biofilm engaged in degradation of benzyl alcohol. APMIS Suppl 84: 25–8.

    Article  Google Scholar 

  6. Christensen B B, Sternberg C, Molin S (1996) Bacterial plasmid conjugation on semi-solid surfaces monitored with the green fluorescent protein (GFP) from Aequorea victoria as a marker. Gene 173 1: 59–65.

    Article  CAS  PubMed  Google Scholar 

  7. Cormack B P, Valdivia R H, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173 1: 33–8.

    Article  CAS  PubMed  Google Scholar 

  8. Dahlberg C, Bergstrom M, Hermansson M (1998) In Situ Detection of High Levels of Horizontal Plasmid Transfer in Marine Bacterial Communities. Appl Environ Microbiol 64: 2670–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Davey H M, Kell D B (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol Rev 60: 641–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. de Lipthay, J R, Barkay T, Sørensen S J (2001) Enhanced degradation of phenoxyacetic acid in soil by horizontal transfer of the tfdA gene encoding a 2,4-Dichlorophenoxyacetic acid dioxygenase. FEMS Microbiol Ecol 35: 75–84.

    Article  PubMed  Google Scholar 

  11. de Lorenzo, V, Herrero M, Jakubzik U, Timmis K N (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. Journal of Bacteriology 172: 6568–6572.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Ferrari B C, Oregaard G, Sørensen S J (2004) Recovery of GFP-Labelled bacteria for culturing and molecular analysis after cell sorting using a benchtop flow cytometer. Microbial Ecology Accepted January.

    Google Scholar 

  13. Fulthorpe R R, Wyndham R C (1992) Involvement of a chlorobenzoatecatabolic transposon, Tn5271, in community adaptation to chlorobiphenyl, chloroaniline, and 2,4-dichloro-phenoxyacetic acid in a freshwater ecosystem. Appl Environ Microbiol 58: 314–325.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Geisenberger O, Ammendola A, Christensen B B, Molin S, Schleifer K H, Eberl L (1999) Monitoring the conjugal transfer of plasmid RP4 in activated sludge and in situ identification of the transconjugants. FEMS Microbiol Lett 174: 9–17.

    Article  CAS  PubMed  Google Scholar 

  15. Genthner F J, Chatterjee P, Barkay T, Bourquin A W (1988) Capacity of aquatic bacteria to act as recipients of plasmid DNA. Appl Environ Microbiol 54: 115–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Goodman A E, Hild E, Marshall K C, Hermansson H (1993) Conjugative plasmid transfer between bacteria under simulated marine oligotrophic conditions. Appl Environ Microbiol 59: 1035–1040.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Hoagland, D R, Arnon, D I (1950) The water culture method for growing plants without soil. California Agricultural Experimental Station. Circular 347. California Agricultural Experimental Station.

    Google Scholar 

  18. Jannasch H W, Jones G E (1959) Bacterial Populations in Sea Water as Determined by Different Methods of Enumeration. Limnology and Oceanography 4: 128–139.

    Article  Google Scholar 

  19. Jones G W, Baines L, Genthner F J (1991) Heterotrophic bacteria of the freshwater neuston and their ability to act as plasmid recipients under nutrients deprived conditions. Microb Ecol 22: 15–25.

    Article  CAS  PubMed  Google Scholar 

  20. Kroer N, Barkay T, Sørensen S, Weber D (1998) Effect of root exudates and bacterial metabolic activity on conjugal gene transfer in the rhizosphere of a marsh plant. FEMS Microbiol Ecol 25: 375–384.

    Article  CAS  Google Scholar 

  21. Kroer N, Coffin R B (1992) Microbial trophic interactions in aquatic microcosms designed for testing genetically engineered microorganisms: A field comparison. Microb Ecol 23: 143–157.

    Article  CAS  PubMed  Google Scholar 

  22. Kroer N, Coffin R B, Jørgensen N OJ, (1994) (1994) Comparison of microbial trophic interactions in aquatic microcosms designed for the testing of introduced microorganisms. Environ Tox Chem 13: 247–257.

    Article  CAS  Google Scholar 

  23. Lebaron P, Parthuisot N, Catala P (1998) Comparison of blue nucleic acid dyes for flow cytometric enumeration of bacteria in aquatic systems. Appl Environ Microbiol 64: 1725–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Lebaron P, Servais P, Agogue H, Courties C, Joux F (2001) Does the High Nucleic Acid Content of Individual Bacterial Cells Allow Us To Discriminate between Active Cells and Inactive Cells in Aquatic Systems? Appl. Environ. Microbiol. 67: 1775–1782.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Liang L L, Sinclair J L, Mallory L M, Alexander M (1982) Fate in model ecosystems of microbial species of potential use in genetic engineering. Appl Environ Microbiol 44: 708–714.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Mancini P, Fertels S, Nave D, Gealt M A (1987) Mobilization of plasmid pHSV106 from Escherichia coli HB101 in a laboratory-scale waste treatment facility. Appl Environ Micorbiol 53: 665–671.

    CAS  Google Scholar 

  27. Marie D, Simon N, Guillou L, Partensky F, Vaulot, D. (2000) Flow Cytometry Analysis of Marine Picoplankton, p. 421–454. In R. A. Diamond and S. DeMaggio (ed.), In Living Color (Protocols in Flow Cytometry and Cell Sorting). Springer.

    Google Scholar 

  28. Müller-Hill B TF, Geisler N, Gho D, Kania J, Kathmann P, Me1402021763er H, Schlotmann M, Schmitz A, Triesch I, Beyreuther, K. (1975) The active sites of lac repressor protein, p. 211. In H. Sund and G. Blauer (ed.), Protein-ligand interactions. Walter de Gruyter, plBerlin.

    Google Scholar 

  29. Munro P M, Gauthier M J, Lamond F M (1987) Changes in Echerichia coli cells starved in seawater or grown in seawater-wastewater mixtures. Appl Environ. Microbiol 53: 1476–1488.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Normander B, Christensen B B, Molin S, Kroer N (1998) Effect of bacterial distribution and activity on conjugal gene transfer on the phylloplane of the bush bean (Phaseolus vulgaris). Appl Environ Microbiol 64: 1902–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. O'Morchoe S B, Ogunseitan O, Sayler G S, Miller R V (1988) Conjugal transfer of R68.45 and FP5 between Pseudomonas aeruginosa strains in a freshwater environment. Appl Environ Micorbiol 54: 1923–1929.

    Google Scholar 

  32. Oliver J D (1995) The viable but non-culturable state in the human pathogen Vibrio vulnificus. FEMS Microbiol Lett 133: 203–8.

    Article  CAS  PubMed  Google Scholar 

  33. Pettibone G W, Sullivan S A, Shiaris H P (1987) Comparative survival of antibiotic-resistant and sensitive fecal indicator bacteria in estuarine water. Appl Environ Microbiol 53: 1241–1245.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Pritchard P H, Bourquin A W (1984) The use of microcosms for evaluation of interactions between pollutants and microorganisms. Adv Microb Ecol 7: 133–215.

    CAS  Google Scholar 

  35. Ravatn R, Zehnder A JB, van der Meer, J R (1998) Low-frequency horizontal transfer of an element containing the chlorocatechol degradation genes from Pseudomonas sp. strain B13 to Pseudomonas putida F1 and to indigenous bacteria in laboratory-scale activated-sludge microcosms. Appl Environ Microbiol 64: 2126–2132.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Reanney D C, Gowland P C, Slater H, (1983) Genetic interactions among microbial communities, p. 379–421. In A. T. Bull and J. H. Slater (ed.), Microbial Interactions and Communities, vol. 1. Academic Press Inc., NY.

    Google Scholar 

  37. Sandaa R A, Enger, ø (1994) Transfer in marine sediments of the naturally occurring plasmid pRAS1 encoding multiple antibiotic resistance. Appl Environ Microbiol 60: 4234–4238.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Saouter E, Gillman M, Turner R, Barkay T (1995) Development of field validation of a microcosm to simulate the mercury cycle in a contaminated pond. Environ Toxicol Chem 14: 69–77.

    Article  CAS  Google Scholar 

  39. Scanferlato V S, Orvos D R, Cairns Jr., J, Lacy G H (1989) Genetically engineered Erwinia carotovora in aquatic microcosms: Survival and effects on functional groups of indigenous bacteria. Appl Environ Microbiol 55: 1477–1482.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Sengeløv G, Kristensen K J, Sørensen A H, Kroer N, Sørensen S J (2001) Effect of genomic location on horizontal transfer of a recombinant gene cassette between Pseudomonas strains in the rhizosphere and spermosphere of barley seedlings. Curr Microbiol 42: 160–7.

    Article  PubMed  Google Scholar 

  41. Shapiro H M (2000) Microbial analysis at the single-cell level: tasks and techniques. J Microbiol Methods 42: 3–16.

    Article  CAS  PubMed  Google Scholar 

  42. Sieracki M E, Cucci T L, Nicinski J (1999) Flow cytometric analysis of 5-cyano-2,3-ditolyl tetrazolium chloride activity of marine bacterioplankton in dilution cultures. Appl Environ Microbiol 65: 2409–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Silver S, Walderhaug M (1992) Gene regulation of plasmid-and chromosome-determined inorganic ion transport in bacteria. Microbiol Rev 56: 195–228.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Sinclair J L, Alexander M (1984) Role of resistance to starvation in bacterial survival in sewage and lake water. Appl Environ Microbiol 48: 410–415.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Smit E, van Elsas, J D, van Veen, J A, de Vos, W M (1991) Detection of plasmid transfer from Pseudomonas fluorescens to indigenous bacteria in soil by using bacteriophage fR2f for donor counterselection. Appl Environ Microbiol 57: 3482–3488.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Snaidr J, Fuchs B, Wallner G, Wagner M, Schleifer K H, Amann R (1999) Phylogeny and in situ identification of a morphologically conspicuous bacterium, Candidatus Magnospira bakii, present at very low frequency in activated sludge. Environ Microbiol 1: 125–35.

    Article  CAS  PubMed  Google Scholar 

  47. Sobecky P A, Schell M A, Moran M A, Hodson R E (1992) Adaptation of model genetically engineered microorganisms to lake water: growth rate enhancements and plasmid loss. Appl Environ Microbiol 58: 3630–3637.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Sørensen S J (1991) Survival of Escehrichia coli K12 in Seawater. FEMS Microbiol Ecol 85: 161–167.

    Article  Google Scholar 

  49. Sørensen S J, Sørensen A H, Hansen L H, Oregaard G. D.V (2003) Direct detection and quantification of horizontal gene transfer by using flow cytometry and gfp as a reporter gene. Current Microbiology 47: 129–133.

    Article  CAS  PubMed  Google Scholar 

  50. Steen H B (2000) Flow cytometry of bacteria: glimpses from the past with a view to the future. J Microbiol Methods 42: 65–74.

    Article  CAS  PubMed  Google Scholar 

  51. Summers A O, Barkay T (1989) Metal resistance genes in the environment, p. 287–308. In S. B. Levy and R. V. Miller (ed.), Gene Transfer in the Environment. McGraw-Hill Publishing Co., NY.

    Google Scholar 

  52. Sundin G W, Demezes D H, Bender C L (1994) Genetic and plasmid diversity within natural populations of Pseudomonas syringae with various exposures to copper and streptomycin bactericides. Appl Environ Microbiol 60: 4421–4431.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Top E M, Holben W, Forney L (1995) Characterization of diverse 2,4-dichlorophenoxyacetic acid-degradative plasmids isolated from soil by complementation. Appl Environ Microbiol 61: 1691–1698.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Top E M, Maltseva O V, Forney L J (1996) Capture of catabolic plasmid that encodes 2,4-dichlorophenoxyacetic acid:a-ketoglutaric acid dioxygenase (TfdA) by genetic complementation. Appl Environ Microbiol 62: 2470–2476.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Trevors J T, Barkay T, Bourquin A W (1987) Gene transfer among bacteria in soil and aquatic environments: a review. Canadian Journal of Microbiology 33: 191–198.

    Article  CAS  Google Scholar 

  56. Veal D A, Deere D, Ferrari B, Piper J, Attfield P V (2000) Fluorescence staining and flow cytometry for monitoring microbial cells. J Immunol Methods 243: 191–210.

    Article  CAS  PubMed  Google Scholar 

  57. Wagner M, Amann R, Lemmer H, Schleifer K H (1993) Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl Environ Microbiol 59: 1520–5.

    CAS  PubMed Central  PubMed  Google Scholar 

References

  1. Bale M J, Fry J C, Day M J (1987) Plasmid transfer between strains of Pseudomonas aeruginosa on membrane filters attached to river stones. J Gen Microbiol 133:3099–3107.

    CAS  PubMed  Google Scholar 

  2. Bale M J, Day M J, Fry J C (1988) Novel method for studying plasmid transfer in undisturbed river epilithon. Appl Environ Microbiol 54: 2756–2758.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Fry J C (1990) Direct methods and biomass estimation. In: Norris J R, Grigorova R (eds) Methods in Microbiology, volume 22: Techniques in Microbial Ecology, pp. 41–85. Academic Press, London.

    Google Scholar 

  4. Fry J C (1993) Biological data analysis: A practical approach. IRL press.

    Google Scholar 

  5. Fry J C, Day M J, Cousland B (1991) Transfer, survival and spread of genetically manipulated organisms (GMOs) in river sediments, soil and agricultural environments. In: Vassarotti A, Magnien E (eds) Biotechnology R&D in the EC, vol II, Detailed final report of BAP contractors.

    Google Scholar 

  6. Fry J C and Day M J (1992) Plasmid transfer in epilithon. In: Fry J C, Day M J (eds) Bacterial genetics in natural environments, pp. 55–80. Chapman and Hall.

    Google Scholar 

  7. Gerchakov S M and Hatcher P G (1972) Improved technique for analysis of carbohydrates in sediments. Limnol Oceanog 17: 938–943.

    Article  CAS  Google Scholar 

  8. Hill K E, Weightman A J, Fry J C (1992) Isolation and screening of plasmids from epilithic bacteria which mobilise recombinant plasmid pD10. Appl Environ Microbiol 58: 1292–1300.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Hill K E, Fry J C, Weightman A J (1994) Gene transfer in the aquatic environment: persistance and mobilisation of the catabolic recombinant plasmid pD10 in the epilithon. Microbiol 140: 1555–1563.

    Article  CAS  Google Scholar 

  10. Jackman P JH (1987) Microbial systematics based on electrophorectic whole-cell protein patterns. In: Colwell R, Grogorova R (eds) Methods in Microbiology, pp. 210–225. Academic Press.

    Google Scholar 

  11. Jackman P JH (1994) GelManager for Windows version 1.5, Biosystematica, 1 Mill Cottage, Tavistock, United Kingdom, PL19 9NS.

    Google Scholar 

  12. Kado C I, Lui S T (1981) Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol. 145:1365–1373.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. King D O, Ward W K, Raney D E (1964) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Medicine 44:301.

    Google Scholar 

  14. Kjelleberg S. Humphreys B A, Marshall K C (1982) Effect of interfaces on small, starved marine bacteria. Appl Environ Microbiol 43:1166–1172.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Krueger C L, Sheikh W (1987) A new selective medium for isolating Pseudomonas sp. from water. Appl Environ Microbiol 53:895–897.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Lilley A K, Fry J C, Day M J, Bailey M J (1994) In situ transfer of an exogenously isolated plasmid between Pseudomonas spp. in sugar beet rhizosphere. Microbiol 140:27–33.

    Article  CAS  Google Scholar 

  17. Lock M A, Wallace R R, Costerton J W, Ventullo R M, Charlton S E (1984) River epilithon: toward a structural-functional model. Oikos 42:10–22.

    Article  Google Scholar 

  18. de Lorenzo V, Herrero M, Jakubzik U, Timmis K N (1990) Mini-Tn5 transposon derivates for insertion mutagensis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. Journal of Bacteriology 172: 6568–6572.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Nuttall D (1982) The populations, characterisation and activity of suspended bacteria in the Welsh River Dee. J Appl Bacteriol 53: 49–59.

    Article  CAS  PubMed  Google Scholar 

  20. Reasonner D J, Geldreich E E (1985) A new medium for the enumeration and subculture of bacteria from metable water. Appl Environ Microbiol 49: 1–7.

    Google Scholar 

  21. Rochelle P A, Fry J C, Day M J, Bale M J (1986) An accurate method for estimating sizes of small and large plasmids and DNA fragments by gel electrophoresis. J Gen Microbiol 132: 53–59.

    CAS  PubMed  Google Scholar 

  22. Rochelle P A, Fry J C and Day M J (1989) Plasmid transfer between Pseudomonas spp. within epilithic films in a rotating disc microcosm. FEMS Microbiol Ecol 62: 127–136.

    Article  Google Scholar 

  23. Sambrook J, Fritsch E F, Maniatis T (1989) Molecular Cloning, A laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Habor, NY.

    Google Scholar 

  24. Schäfer A, Kalinowski J, Simon R, Seep-Felhaus A H, Pühler A (1990) High-frequency conjugal plasmid transfer from gram-negative Escherichia coli to various Gram-positive coryneform bacteria. J Bacteriol 172: 1663–1666.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Slater J H, Lovatt D, Weightman A J, Senior E, Bull A T (1979) The growth of Pseudomonas putida on chlorinated aliphatic acids and its dehologenase activity. J Gen Microbiol 114:125–136.

    Article  CAS  Google Scholar 

  26. Smit E, Van Elsas J D (1990) Determination of plasmids transfer frequency in soil: Consequences of bacterial mating on selective agar media. Current Microbiol 21: 151–157.

    Article  CAS  Google Scholar 

  27. Smit E, Van Elsas J D, Van Veen J A, De Vos W M (1991) Detection of plasmid transfer from Pseudomonas-fluorescens to indigenous bacteria in soil by using bacteriophage Φ-R2F for donor counterselection. Appl Environ Microbiol 57:3482–3488.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Sugino A, Peebles C L, Kreuzer K N, Cozzarelli N R (1977) Mechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc Natl Acad Sci USA 74: 4767–4771.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Wheatcroft R, Williams P A (1981) Rapid methods for the study of both stable and unstable plasmids in Pseudomonas. J Gen Microbiol 124:433–437.

    CAS  PubMed  Google Scholar 

References

  1. Christensen B B, Sternberg C, Andersen J B, Eberl L, Moller S, Givskov M, Molin S (1998) Establishment of new genetic traits in a microbial biofilm community. Appl Environ Microbiol 64: 2247–2255.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Christensen B B, Sternberg C, Molin S (1996) Bacterial plasmid conjugation on semi-solid surfaces monitored with the green fluorescent protein from Aequora victoria as a marker. Gene 173: 59–65.

    Article  CAS  PubMed  Google Scholar 

  3. Clewell D D (1993) Bacterial Conjugation. New York: Plenum Publishing Corporation

    Book  Google Scholar 

  4. Dahlberg C, Bergstrom M, Andreasen M, Christensen B B, Molin S, Hermansson M (1998a) Interspecies bacterial conjugation by plasmids from marine environments visualised by gfp expression. Mol. Microbiol Evol 15: 385–390.

    Article  CAS  Google Scholar 

  5. Dahlberg C, Bergstrom M, Hermansson M (1998b) In situ detection of high levels of horizontal plasmid tranfer in marine bacterial communities. Appl Environ Microbiol 64: 2670–2675.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. DiGiovanni G D, Neilson J W, Pepper I L, Sinclair N A (1996) Gene transfer of Alcaligenes eutrophus JMP134 plasmid pJP4 to indigenous soil recipients. Appl Environ Microbiol 62: 2521–2526.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Fry J C, Day M J (1990) Bacterial genetics in natural environments. Chapman and Hall, London.

    Book  Google Scholar 

  8. Gauthier M J (1992) Gene transfers and environment. Springer-Verlag, Berlin.

    Book  Google Scholar 

  9. Hausner M and Wuertz S (1999) High rates of conjugation in bacterial biofilms as determined by quantitive in situ analysis. Appl Environ Microbiol 65: 3710–3713.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Henschke R B and Schmidt F RJ (1990) Plasmid mobilization from genetically engineered bacteria to members of the indigenous soil microflora. Curr Microbiol 20: 105–110.

    Article  CAS  Google Scholar 

  11. Krasovsky V N, Stotzky G (1987) Conjugation and genetic recombination in Escherichia coli in sterile and non-sterile soil. Soil Biol Biochem 19: 631–638.

    Article  Google Scholar 

  12. Kroer N, Barkay T, Sorensen S, Weber D (1998) Effect of root exudates and bacterial metabolic activity on conjugative gene transfer in the rhizosphere of a marsh plant. FEMS Microbiol Ecol 25: 375–384.

    Article  CAS  Google Scholar 

  13. Levy S B, Miller R (1989) Gene Transfer in the Environment. MeGraw-Hill, New York.

    Google Scholar 

  14. Mergeay M, Lejeune P, Sadouk A, Gerits J, Fabry L (1937) Shuttle transfer (or retrotransfer) of chromosomal markers mediated by plasmid pULBI13. Mol Gen Genet 209:61–70.

    Article  Google Scholar 

  15. Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14: 255–261.

    Article  CAS  PubMed  Google Scholar 

  16. Molin S, Klemm P, Poulsen L K, Gerdes K, Andersson P (1987) Conditional suicide system for containment of bacteria and plasmids. Biotechnology 5: 1315–1318.

    CAS  Google Scholar 

  17. Normander B, Christensen B B, Molin S, Kroer N (1998) Effect of bacterial distribution and activity on conjugal gene transfer on the phylloplane of the bush bean ( Phaseolus vulgaris). Appl Environ Microbiol 64: 1902–1909.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Richaume A, Angle J S, Sadowski M J (1989) Influence of soil variables on in situ plasmid transfer from Escherichia coli to Rhizobium fredii. Appl Environ Microbiol 55:1730–1734.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Richaume A, Smit E, Faurie G, Van Elsas J D (1992) Influence of soil type on the transfer of RP4p from Pseudomonas fluorescens to indigenous bacteria. FEMS Microbiol Ecol 101: 281–292.

    Article  CAS  Google Scholar 

  20. Smit E, Van Elsas J D, Van Veen J A, De Vos W M (1991) Detection of plasmid transfer from Pseudomonas fluorescens to indigenous bacteria in soil using bacteriophage ΦR2f for donor counterselection. Appl Environ Microbiol 57: 3482–3488.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Smit E, Van Elsas J D (1990) Determination of plasmid transfer frequency in soil: consequences of bacterial mating on selective agar media. Curr Microbiol 21: 151–157.

    Article  CAS  Google Scholar 

  22. Smit E, Van Elsas J D (1992) Methods for studying conjugative gene transfer in soil. In: Genetic interactions between microorganisms in the natural environment. (Wellington E MH, Van Elsas J D, eds.) Pergamon Press, London.

    Google Scholar 

  23. Smit E, Venne D, Van Elsas J D (1993) Effect of co-transfer and retrotransfer on the mobilization of a genetically engineered IncQ plasmid between bacteria on filters and in soil. Appl Environ Microbiol 59: 2257–2263.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Stotzky G (1989) Gene transfer among bacteria in soil. In: Levy S B, Miller R Y (eds), Gene Transfer in tbc Natural Environment, pp. 165–222, McGraw-Hill, New York.

    Google Scholar 

  25. Thomas C M (1989) Promiscuous plasrmids of gram-negative bacteria. London: Academic Press.

    Google Scholar 

  26. Top E, Mergeay M, Springael D, Verstraete W (1990) Gene escape model: transfer of heavy metal resistance genes from Echerichia coli to Alcaligenes eutrophus on agar plates and in soil samples. Appi Environ Microbiol 56: 2471–2479.

    CAS  Google Scholar 

  27. Van Elsas, J D, Bailey M J (2002) The ecology of transfer of mobile genetic elements. FEMS Microbiol. Ecol. 42: 187–197.

    Article  PubMed  Google Scholar 

  28. Van Elsas J D, Fry J, Hirsch P, Molin S (2000) Ecology of plasmid transfer and spread. In: Thomas C M (Ed) The horizontal gene pool: bacterial plasmid and gene spread. Amsterdam, The Netherlands: Harwood Scientific Publishers, 175–206.

    Google Scholar 

  29. Van Elsas J D, Govaert J M, Van Veen J A (1987) Transfer of plasmid pFT30 between bacilli in soil as influenced by bacterial population dynamics and soil conditions. Soil Biol Biochem 19: 639–647.

    Article  Google Scholar 

  30. Van Elsas J D, McSpadden-Gardener B B, Wolters A C, Smit E (1998) Isolation, characterization and transfer of cryptic gene-mobilizing plasmids in the wheat rhizosphere. Appl Environ Microbiol 64: 880–889.

    PubMed Central  PubMed  Google Scholar 

  31. Van Elsas J D, Trevors J T, Starodub M E (1988) Bacterial conjugation between pseudomonads in the rhizosphere of wheat. FEMS Microbiol Ecol 53: 299–306.

    Article  Google Scholar 

  32. Van Elsas J D, Turner S, Bailey M J (2003) Horizontal gene transfer in the phytosphere. New Phytologist 157: 525–537.

    Article  Google Scholar 

  33. Wellington E M, Cresswell N, Herron P R (1992) Gene transfer between Streptomyces in soil. Gene 115: (1–2) 193–198.

    Article  CAS  PubMed  Google Scholar 

  34. Wellington E MH, Cresswell N, Saunders V A (1990) Growth and survival of Streptomyeete inoculants and extent of plasmid transfer in sterile and non-sterile soil. Appl Environ Microbiol 56: 1413–1419.

    CAS  PubMed Central  PubMed  Google Scholar 

References

  1. Ackermann H W (1983) Current problems in bacterial virus taxonomy. In: Mathews R EF (ed) A Critical Appraisal of Viral Taxonomy, pp 105–122. CRC Press, Boca Raton, Florida.

    Google Scholar 

  2. Anand R, Southern E M (1990) Pulse field electrophoresis. In: Rickwood D, Hames B D (eds) Gel Electrophoresis of Nucleic Acids, pp 101–123. IRL press, Oxford University Press.

    Google Scholar 

  3. Andrews A T (1991) Electrophoresis of nucleic acids. In: Brown T A (ed) Essential Molecular Biology, volume I, pp 89–126. IRL press, Oxford University Press.

    Google Scholar 

  4. Berg B, Borsheim K Y, Bratbak G, Heldal M (1989) High abundance of viruses found aquatic environments. Nature 340: 467–468.

    Article  Google Scholar 

  5. Brayton P R, Tamplin M L, Huk A, Colwell R R (1987) Enumeration of Vibrio cholera 01 in Bangladesh water by flourescent-antibody direct viable count. Appl Environ Microbiol 53: 2862–2865.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Dhillion T S, Dhillion E KS (1970) Incidence of lysogeny, colicinology and drug resistance in enterobacteria isolated from sewage and from rectum of humans and some domesticated species. Appl Environ Microbiol 41: 894–902.

    Google Scholar 

  7. Douglas J (1975) Bacteriophages. Chapman & Hall, London.

    Book  Google Scholar 

  8. Ewart D L, Painter M JB (1980) Enumeration of bacteriophage and host bacteria in sewage and activated sludge treatment processes. Appl Environ Microbiol 39: 576–83.

    Google Scholar 

  9. GelManager for Windows ver 1.5, Jackman P JH (1994) Biosystematica, 1 Mill Cottage, Tavistock, United Kingdom, PL19 9NS.

    Google Scholar 

  10. Goldberg R B, Bender R A, Streicher S L (1974) Direct selection for P1-sensitive mutants of Enteric bacteria. J Bacteriol 118: 810–814.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Goodman A E, Marshall K C, Hermansson M (1994) Gene transfer among bacteria under conditions of nutrient depletion in simulated and natural aquatic environments. FEMS Microbiol Ecol 15: 55–60.

    Article  CAS  Google Scholar 

  12. Hermansson M, Linberg C (1994) Gene transfer in the marine environment. FEMS Microbiol Ecol 15: 47–54.

    Article  CAS  Google Scholar 

  13. Jackman P JH (1987) Microbial systematics based on electrophoretic whole-cell protein patterns. In: Colwell R, Grogorova R (eds) Methods in Microbiology, Volume 19, pp 210–225. Academic Press, London.

    Google Scholar 

  14. Kokjohn T A, Sayler G S, Miller R V (1991) Attachment and replication of Pseudomonas aeruginosa bacteriophages under conditions simulating aquatic environments. J Gen Microbiol 137: 661–666.

    Article  CAS  Google Scholar 

  15. Margolin M (1987) Generalised transduction. In: Neidhardt F C, Ingraham J L, Low K B, Magasanik B, Schaechter M, Umbarger H E (eds) Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol 2, chapter 68. American Society for Microbiology, Washington, DC.

    Google Scholar 

  16. Marsh P, Wellington E M (1994) Phage-host interactions in soil. FEMS Microbiol Ecol 15: 99–108.

    Article  CAS  Google Scholar 

  17. Merril C R, Goldman D, Sedman D, Ebert M H (1981) Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal-fluid proteins. Science 211: 1437–1438.

    Article  CAS  PubMed  Google Scholar 

  18. Sambrook J, Fritsch E F, Maniatis T (1989) Molecular Cloning: A Laboratory Manual, second edition, vol 1, chapter 6. Cold Spring Harbor Laboratory Press, NY.

    Google Scholar 

  19. Micheli M R, Bova R, Pascale E, D'Ambrosio E (1994) Reproducible DNA fingerprinting with the random amplified polymorphic DNA (RAPD) method. Nucl Acid Res 22: 1921–1922.

    Article  CAS  Google Scholar 

  20. Moebus K (1992) Further investigations on the concentration of marine bacteriophages in the water around Helgoland, with reference to the phage-host systems encountered. Helgoland, Meer.

    Google Scholar 

  21. Morrison W D, Miller R V, Sayler G S (1978) Frequency of F116-mediated transduction of Pseudomonas aeruginosa in a freshwater environment. Appl Environ Microbiol 36: 724–730.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Morrissey J H (1981) Silver staining for proteins in polyacrylamide gels: A modified procedure with enhanced uniform sensitivity. Analyt Biochem 117: 307–310.

    Article  CAS  PubMed  Google Scholar 

  23. Novick R P (1987) Plasmid incompatibility. Microbiol Rev 51: 381–395.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Oakley B R, Kirsch D R, Morris N R (1980) A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Analyt Biochem 105: 361–363.

    Article  CAS  PubMed  Google Scholar 

  25. Ogunseitan O A, Sayler G S, Miller R V (1990) Dynamic interactions of Pseudomonas aeruginosa and bacteriophages in lake water. Microbiol Ecol 19: 171–185.

    Article  CAS  Google Scholar 

  26. Ogunseitan O A, Sayler G S, Miller R V (1992) Application of DNA probes to analysis of bacteriophage distribution patterns in the environment. Appl Environ Microbiol 58: 2046–2052.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Price C, Bickle T A (1986) A possible role for DNA restriction in bacterial evolution. Microbiol Sci 3: 296–299.

    CAS  PubMed  Google Scholar 

  28. Primrose S B, Sealey N D, Logan K B, Nicholson J W (1982) Methods for studying aquatic bacteriophage ecology. Appl Environ Microbiol 43: 694–701.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Proctor L M, Okubo A, Fuhrman J A (1993) Calibrating estimates of phage-induced mortality in marine bacteria–ultrastructural studies of marine bacteriophage development from one-step growth experiments. Microbiol Ecol 25: 161–182.

    Article  CAS  Google Scholar 

  30. Proctor L M, Furhman J A (1990) Viral mortality of marine bacteria and cyanobacteria. Nature 343: 60–62.

    Article  Google Scholar 

  31. Ptashne M (1986) A Genetic Switch. Cell/Blackwell, Cambridge, MA.

    Google Scholar 

  32. Reanney D C, Ackermann H W (1982) Comparative biology and evolution of bacteriophages. Adv Virol Res 27: 205–280.

    Article  CAS  Google Scholar 

  33. Riedy M F, Hamilton III W J, Aquadro C F (1992) Excess of non-parental bands in offspring from known primate pedigrees assayed using RAPD PCR. Nucl Acid Res 20: 918.

    Article  CAS  Google Scholar 

  34. Ripp S, Miller R V (1995) Effects of suspended particulates on the frequency of transduction among Pseudomonas aeruginosa in a fresh-water environment. Appl Environ Microbiol 61: 1214–1219.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Ripp S, Ogunseitan O A, Miller R V (1994) Transduction of a fresh-water microbial community by a new Pseudomonas aeruginosa generalized transducing phage, UT1. Mol Ecol 3: 121–126.

    Article  CAS  PubMed  Google Scholar 

  36. Romig W R, Brodetsky A M (1961) Isolation and preliminary characterisation of bacteriophage of Bacillus subtilis. J Bacteriol 82: 135–141.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Saye D J, Ogunseitan O, Sayler G S, Miller R V (1987) Potential for transduction of plasmids in a natural fresh-water environment–effect of plasmid donor concentration and a natural microbial community on transduction in Pseudomonas aeruginosa. Appl Environ Microbiol 53: 987–995.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Saye D J, Ogunseitan O A, Sayler G S, Miller R V (1990) Transduction of linked chromosomal genes between Pseudomonas aeruginosa strains during incubation in situ in a fresh-water habitat. Appl Environ Microbiol 56: 140–145.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Schierwater B, Ender A. (1993) Different thermostable DNA polymerases may amplify different RAPD products. Nucl Acid Res 21: 4647–4648.

    Article  CAS  Google Scholar 

  40. Switzer R C, Merril C R, Shifrin S (1979) A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Analyt Biochem 98: 231–237.

    Article  CAS  PubMed  Google Scholar 

  41. Swofford D L, Olsen G J (1990) Phylogeny reconstruction. In: Hillis D M, Moritz C (eds) Molecular Systematics, pp 411–501. Sinauer Associates, Inc.

    Google Scholar 

  42. Weinbauer M G, Peduzzi P (1994) Frequency, size and distribution of bacteriophages in different marine bacterial morphotypes, Marine Ecology-Progress Series, vol 108, no 1–2, pp 11–20, Inter Research, Germany.

    Google Scholar 

  43. Weisberg R A (1987) Specialised transduction. In: Neidhardt F C, Ingraham J L, Low K B, Magasanik B, Schaechter M, Umbarger H E (eds) Escherichia coli and Samonella typhimurium: Cellular and Molecular Biology, vol 2, chapter 69. American Society for Microbiology, Washington, DC.

    Google Scholar 

  44. Williams S T, Mortimer A M, Manchester L. (1987) The ecology of soil bacteriophage. In: Goya S M, Gerba C P, Bitton G (eds) Phage Ecology, pp 157–179. John Wiley, New York.

    Google Scholar 

  45. Yarmolinsky M B, Sternberg N (1988) Bacteriophage P1. In: Calendar R (ed) The Bacteriophages, vol 1, pp 291–438. Plenum Press, New York.

    Chapter  Google Scholar 

  46. Zinder N D, Lederberg J (1952) Genetic exchange in Salmonella. J Bacteriol 64: 679–699.

    CAS  PubMed Central  PubMed  Google Scholar 

References

  1. Adams M H (1959) Bacteriophages. Interscience Publishers Inc. New York.

    Google Scholar 

  2. Fægri A, Torsvik V L, Goskøyr J (1987) Bacterial and fungal activities in soil: separation of bacteria and fungi by a rapid fractionated centrifugation technique. Soil Biol Biochem 9: 105–112.

    Article  Google Scholar 

  3. Fry J C (1989) Analysis of variance and regression and aquatic bacteriology. Binary 1: 83–88.

    Google Scholar 

  4. Germida J J (1986) Population dynamics of Azospirillum brasilense and its bacteriophage in soil. Plant Soil 90: 117–128.

    Article  Google Scholar 

  5. Germida J J, Khachatourians G G (1988) Transduction of Escherichia coli in soil. Can J Microbiol 34: 190–193.

    Article  CAS  PubMed  Google Scholar 

  6. Hahn D, Amann R I, Ludwig W, Akkermans A DL, Schleifer K H (1992) Detection of micro-organisms in soil after in situ hybridistaion with rRNA-targeted, fluorescently labelled oligonucleotides. J Gen Microbiol 138: 879–887.

    Article  CAS  PubMed  Google Scholar 

  7. Herron P R, Wellington E MH (1990) New method for the extraction of streptomycete spores from soil and application to the study of lysogeny in sterile amended and nonsterile soil. Appl Environ Microbiol 56: 1406–1412.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Herron P R, Wellington E MH (1992) Extraction of Streptomyces spores from soil and detection of rare gene transfer events. In: Wellington E MH, van Elsas J D (ed) Genetic Interactions Among Micro-organisms in Natural Environments, pp. 104–112. Pergamon Press, UK.

    Google Scholar 

  9. Herron P R, Wellington E MH (1994) Population dynamics of phage-host interactions and phage conversion of streptomycetes in soil. FEMS Microbiol Ecol 14: 25–32.

    Article  Google Scholar 

  10. Hopwood D A, Bibb M J, Chater K F, Kieser T, Bruton C J, Kieser H M, Lydiate D J, Smith C P, Ward J M, Schrempf H (1985) Genetic manipulation of streptomyces: a laboratory manual. The John Innes Foundation, Norwich, UK.

    Google Scholar 

  11. Lanning S, Williams S T (1982) Methods for the direct isolation and enumeration of actinophages in soil. J Gen Microbiol 138: 2063–2071.

    Google Scholar 

  12. MacDonald R M (1986) Sampling soil microfloras: dispersion of soil by ion exchange and extraction of specific micro-organisms from suspension. Soil Biol Biochem 18: 399–406.

    Article  Google Scholar 

  13. Marsh P, Wellington E MH (1992) Interactions between actinophage and their streptomycete hosts in soil and the fate of phage borne genes. In: Gauthier, M J (ed) Gene Transfers and Environment, pp. 135–142. Springer Verlag, Berlin.

    Chapter  Google Scholar 

  14. Marsh P, Toth I K, Meijer M, Schilhabel M B, Wellington E MH (1993) Survival of the temperate actinophage ΦC31 in soil and the effects of competition and selection on lysogens. FEMS Microbiol Ecol 13: 13–22.

    CAS  Google Scholar 

  15. Miller R V and Sayler G S (1992) Bacteriophage-host interactions in aquatic systems. In: Wellington E MH, van Elsas J D (ed) Genetic Interactions among Micro-organisms in the Natural Environment, pp. 176–193. Pergamon Press, UK.

    Chapter  Google Scholar 

  16. Ogunseitan O A, Sayler G S, Miller R V (1992) Application of DNA probes to analysis of bacteriophage distribution patterns in the environment. Appl Environ Microbiol, 58: 2046–2052.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Petersen R G (1985) Separation of means. In: Design and analysis of experiments: Statistics Textbooks and Monographs, Vol 66, pp. 72–111. Marcel Dekker, New York, USA.

    Google Scholar 

  18. Reanney D C (1968) An assay for Bacillus stearothermophilus using thermophillic virus. New Zealand J Agricul Res 11: 763–770.

    Article  Google Scholar 

  19. Saye D J, Ogunseitan O, Sayler G S, Miller R V (1987) Potential for transduction of plasmids in a natural freshwater environment: effect of plasmid donor concentration and a natural microbial community on transduction in Pseudomonas aeruginosa, 53: 987–995.

    CAS  Google Scholar 

  20. Saye D J, Ogunseitan O A, Sayler G S, Miller R V (1990) Transduction of linked chromosomal genes between Pseudomonas aeruginosa strains during incubation in situ in a freshwater habitat. Appl Environ Microbiol 56: 14–145.

    Google Scholar 

  21. Schmieger H (1990). Phage genetics and ecology. In: Fry J C, Day M J, (eds) Bacterial Genetics in Natural Environments, pp. 41–44. Chapman and Hall, UK.

    Chapter  Google Scholar 

  22. Schneider J, Korn-Wendisch F, Kutzner H J (1990) ΦDSC623, a temperate actinophage of Streptomyces coelicolor Müuller, and its relatives ΦSC347 and ΦSC681. J Gen Microbiol 136: 767–772.

    Article  CAS  PubMed  Google Scholar 

  23. Schneider J, Kutzner H J (1989) Distribution of modules among the central regions of the genomes of several actinophages of Faenia and Saccharopolyspora. J Gen Microbiol 135: 1678.

    Google Scholar 

  24. Thompson I P, Young C S, Cook C A, Lethbridge G, Burns R G (1992) Survival of two ecologically distinct bacteria (Flavobacterium and Arthrobacter) in unplanted and rhizosphere soil. Soil Biol Bioch 24: 1–14.

    Article  Google Scholar 

  25. Turpin P E, Dhir V K, Maycroft K A, Rowlands C, Wellington E MH (1992) The effect of Streptomyces species on the survival of Salmonella in soil. FEMS Microbiol Ecol 101: 271–280.

    Article  Google Scholar 

  26. Turpin P E, Maycroft K A, Bedford J, Rowlands C, Wellington E MH (1993) A rapid luminescent based MPN method for the enumeration of Salmonella typhimurium in environmental samples. Lett Appl Microbiol 16: 24–27.

    Article  Google Scholar 

  27. Turpin P E, Maycroft K A, Rowlands C, Wellington E MH (1993) An ion exchange based extraction method for the detection of Salmonellas in soil. J Appl Bacteriol 74: 181–190.

    Article  CAS  PubMed  Google Scholar 

  28. Wellington E MH, Cresswell N, Saunders V A (1990) Growth and survival of streptomycete inoculants and extent of plasmid transfer in sterile and non sterile soil. Appl Environ Microbiol 56: 1413–1419.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. William S T, Manchester L, Mortimer A M (1986) The ecology of soil bacteriophage. In: Goyal S M, Gerba C P Bitton, G (eds) Phage Ecology, pp. 157–180. John Wiley, USA.

    Google Scholar 

  30. Zeph L R, Onaga M A, Stotzky G (1988) Transduction of Escherichia coli by bacteriophage PI in soil. Appl Environ Microbiol 54: 1731–1737.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Zeph L R, Stotzky G (1989) Use of a biotinylated DNA probe to detect bacteria transduced by bacteriophage PI in soil. Appl Environ Microbiol 55: 661–665.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. A. Kowalchuk F. J. de Bruijn I. M. Head A. D. Akkermans J. D. van Elsas

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this entry

Cite this entry

Paul, J.H., Williams, H.G. (2004). Section 5 - Detection of gene transfer in the environment. In: Kowalchuk, G.A., de Bruijn, F.J., Head, I.M., Akkermans, A.D., van Elsas, J.D. (eds) Molecular Microbial Ecology Manual. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2177-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2177-0_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2176-3

  • Online ISBN: 978-1-4020-2177-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics