Skip to main content

Methane Hydrates, Carbon Cycling, and Environmental Change

  • Reference work entry
Encyclopedia of Paleoclimatology and Ancient Environments

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Overview

Enormous amounts of methane reside as solid gas hydrate and free gas bubbles in the pore space of marine sediment along continental margins. Most of this methane has formed through the microbial breakdown of organic matter originally deposited on the seafloor. At present, a small fraction escapes to ocean waters through seafloor venting. Reaction with dissolved sulfate consumes additional methane in pore waters of shallow sediment. These potentially important carbon fluxes, which remain absent from most global carbon cycle models, could change dramatically though time because the stability and distribution of gas hydrate and free gas depend on external conditions, particularly ocean temperature. Chemical anomalies in sediment or sedimentary rocks may document such variations in methane release and hint at an under-appreciated mechanism for past climate change.

Chemistry and theoretical occurrence

At relatively low temperatures, high pressures and high gas concentration,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Bowen, G.J., Clyde, W.C., Koch, P.L., Ting, S.Y., Alroy, J., Tsubamoto, T., Wang, Y.Q., and Wang, Y., 2002. Mammalian dispersal at the Paleocene/Eocene boundary. Science, 295, 2062–2065.

    Google Scholar 

  • Beerling D.J., Lomas M.R., and Grocke D.R., 2002. On the nature of methane gas-hydrate dissociation during the Toarcian and Aptian oceanic anoxic events. Am. J. Sci., 302, 28–49.

    Google Scholar 

  • Berner, R.A., 2002. Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. Proc. Natl. Acad. Sci. USA, 99, 4172–4177.

    Google Scholar 

  • Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B.B., Witte, U., and Pfannkuche, O., 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623–626.

    Google Scholar 

  • D’Hondt, S., Rutherford, S., and Spivack, A.J., 2002. Metabolic activity of subsurface life in deep-sea sediments. Science, 295, 2067–2070.

    Google Scholar 

  • Dickens, G.R., 2000. Methane oxidation during the late Palaeocene thermal maximum. Bull. Soc. Géol. France, 171, 37–49.

    Google Scholar 

  • Dickens, G.R., 2001. The potential volume of oceanic methane hydrates with variable external conditions. Org. Geochem., 32, 1132–1193.

    Google Scholar 

  • Dickens, G.R., 2003. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Planet. Sci. Lett., 213, 169–182.

    Google Scholar 

  • Dickens, G.R., and Francis, J.M., 2004. Comment: A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion. Earth Planet. Sci. Lett., 217, 197–200.

    Google Scholar 

  • Dickens, G.R., and Quinby-Hunt, M.S., 1997. Methane hydrate stability in pore water: A simple theoretical approach for geophysical applications. J. Geophys. Res., 102, 773–783.

    Google Scholar 

  • Dickens, G.R., Paull, C.K., Wallace, P., and ODP Leg 164 Scientific Party, 1997. Direct measurement of in situ gas volumes in a large gas hydrate reservoir. Nature, 385, 426–428.

    Google Scholar 

  • Heeschen, K.U., Trehu, A.M., Collier, R.W., Suess, E., and Rehder, G., 2003. Distribution and height of methane bubble plumes on the Cascadia Margin characterized by acoustic imaging. Geophys. Res. Lett., 30, Art. No. 1643.

    Google Scholar 

  • Hesselbo, S.P., Gröcke, D.R., Jenkyns, H.C., Bjerrum, C.J., Farrimond, P., Bell, H.S.M., and Green, O.R., 2000. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature, 406, 392–395.

    Google Scholar 

  • Hinrichs K.-U., Hmelo L.R., and Sylva, S.P., 2003. Molecular fossil record of elevated methane levels in late Pleistocene coastal waters. Science, 299, 1214–1217.

    Google Scholar 

  • Holbrook, W.S., Hoskins, H., Wood, W.T., Stephen, R.A., Lizarralde, D., and Leg 164 Science Party, 1996. Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling. Science, 273, 1840–1843.

    Google Scholar 

  • Katz, M.E., Pak, D.K., Dickens, G.R., and Miller, K.G., 1999. The source and fate of massive carbon input during the Latest Paleocene Thermal Maximum. Science, 286, 1531–1533.

    Google Scholar 

  • Kayen, R.E., and Lee, H., 1991. Pleistocene slope instability of gas hydrate-laden sediment on the Beaufort Sea Margin. Mar. Geotech., 10, 125–141.

    Google Scholar 

  • Kennett, J.P., Cannariato, K.G., Hendy, I.L., and Behl, R.J., 2000. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials. Science, 288, 128–133.

    Google Scholar 

  • Kennett, J.P., Cannariato, K.G., Hendy, I.L., and Behl, R.J., 2002. Methane Hydrates in Quaternary Climate Change. Washington, DC: American Geophysical Union, 216pp.

    Google Scholar 

  • Kent, D.V., Cramer, B.S., Lanci, L., Wang, D., Wright, J.D., and Van der Voo, R., 2003. A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion. Earth Planet. Sci. Lett., 211, 13–26.

    Google Scholar 

  • Kvenvolden, K.A., 1999. Potential effects of gas hydrate on human welfare. Proc. Natl. Acad. Sci. USA, 96, 3420–3426.

    Google Scholar 

  • Kvenvolden, K.A., and Lorenson, T.D., 2001. The global occurrence of natural gas hydrate. In Paull, C.K., and Dillon, W.P. (eds.), Natural Gas Hydrates: Occurrence, Distribution and Detection. Washington, DC: American Geophysical Union. Geophysical Monograph Series 124, pp. 3–18.

    Google Scholar 

  • Marchesi, J.R., Weightman, A.J., Cragg, B.A., Parkes, R.J., and Fry, J.C., 2001. Methanogen and bacterial diversity and distribution in deep gas hydrate sediments from the Cascadia Margin as revealed by 16S rRNA molecular analysis. FEMS Microbiol. Ecol., 34, 221–228.

    Google Scholar 

  • Milkov, A.V., Claypool, G.E., Lee, Y.-J., Xu, W., Dickens, G.R., Borowski, W.S., and ODP Leg 204 Scientific Party, 2003. In situ methane concentrations at Hydrate Ridge offshore Oregon: New constraints on the global gas hydrate inventory from an active margin. Geology, 31, 833–836.

    Google Scholar 

  • Paull, C.K., and Matsumoto, R., 2000. Leg 164 overview, in Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX: Ocean Drilling Program. vol. 164, pp. 3–10.

    Google Scholar 

  • Paull, C.K., Ussler W., and III, Dillon, W.P., 1991. Is the extent of glaciation limited by marine gas-hydrates? Geophys. Res. Lett., 18, 432–434.

    Google Scholar 

  • Paull, C., Brewer, P., Ussler, W., Peltzer, E., Rehder, G., and Clague, D., 2002. An experiment demonstrating that marine slumping is a mechanism to transfer methane from seafloor gas-hydrate deposits into the upper ocean and atmosphere. Geo-Mar. Lett., 22, 198–203.

    Google Scholar 

  • Schmidt, G.A., and Shindell, D.T., 2003. Atmospheric composition, radiative forcing, and climate change as a consequence of a massive methane release from gas hydrates. Paleoceanography, 18, article 10.1029/2002PA000757.

    Google Scholar 

  • Schmitz, B., Peucker-Ehrenbrink, B., Heilmann-Clausen, C., Aberg, G., Asaro, F., and Lee, C.T.A., 2004. Basaltic explosive volcanism, but no comet impact, at the Paleocene-Eocene boundary: High-resolution chemical and isotopic records from Egypt, Spain and Denmark. Earth Planet. Sci. Lett., 225, 1–17.

    Google Scholar 

  • Severinghaus, J.P., and Brook, E.J., 1999. Abrupt climate change at the end of the last glacial period inferred from air trapped in polar ice. Science, 286, 930–933.

    Google Scholar 

  • Shipboard Scientific Party, (2002). Leg 204 Preliminary Report. ODP Prelim. Rpt., 104 [Online]. Available from World Wide Web: http://www-odp.tamu.edu/publications/prelim/204_prel/204PREL.PDF.

  • Sloan, E.D. Jr., 1998. Clathrate Hydrates of Natural Gases. New York: Marcel Dekker, 705pp.

    Google Scholar 

  • Valentine, D.L., Blanton, D.C., Reeburgh, W.S., and Kastner, M., 2001. Water column methane oxidation adjacent to an area of active hydrate dissociation, Eel River Basin. Geochim. Cosmochim. Acta, 65, 2633–2640.

    Google Scholar 

  • Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Dickens, G.R., Forswall, C. (2009). Methane Hydrates, Carbon Cycling, and Environmental Change. In: Gornitz, V. (eds) Encyclopedia of Paleoclimatology and Ancient Environments. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4411-3_140

Download citation

Publish with us

Policies and ethics