Skip to main content

Hazardous Waste Incineration Ashes and Their Utilization

  • Reference work entry
Encyclopedia of Sustainability Science and Technology

Definition of the Subject

This chapter deals with hazardous solid residues , usually called ashes , from waste incineration. What is to be considered hazardous in this context shows geographical and temporal variability. Currently, hazardous waste incineration ashes are mostly dumped, or disposed of, in landfills or ash lagoons. There is however also substantial, but geographically variable, utilization of such ashes, mostly in construction, including civil engineering (e.g., in roads and embankments) and there have been proposals for wider utilization. Much research has been done on better and wider utilization of hazardous waste incineration ashes, but little thereof has found its way to actual commercial practice. At the end of the chapter, the matter will be raised whether current waste incineration can be...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ash:

Solid incineration residue.

Hazard:

Potential to do harm.

MSWI:

Municipal solid waste incinerator.

Risk:

Chance that harm occurs.

WTE incinerator:

Waste-to-energy incinerator, incinerator also producing useful energy (e.g., electricity).

Bibliography

  1. Johannessen KM (1996) The regulation of municipal waste incineration ash: a legal review and update. J Hazard Mater 47:383–393

    Article  CAS  Google Scholar 

  2. Reijnders L (2005) Disposal, uses and treatments of combustion ashes: a review. Resour Conserv Recycl 43:313–336

    Article  Google Scholar 

  3. Cyr M, Coutand M, Clastres PJ (2007) Technological and environmental behavior of sewage sludge ash (SSA) in cement-based materials. Cem Concr Res 37:1278–1289

    Article  CAS  Google Scholar 

  4. Murakami T, Suzuki Y, Nagasawa H, Yamamoto T, Koseki T, Hirose H, Okamoto S (2009) Combustion characteristics of sewage sludge in an incineration plant to energy recovery. Fuel Process Technol 90:778–783

    Article  CAS  Google Scholar 

  5. Sawell SE, Chandler AJ, Eighmy TT, Hartlen J, Hjelmar O, Kosson D, van der Sloot HA, Vehlow J (1995) An international perspective on the characterization and management of residues from MSW incinerators. Biomass Bioenergy 9:377–386

    Article  CAS  Google Scholar 

  6. Römbke J, Moser T, Moser H (2009) Ecotoxicological characterization of 12 incineration ashes using 6 laboratory tests. Waste Manage 29:2475–2482

    Article  CAS  Google Scholar 

  7. Gidarakos E, Petrantonaki M, Anastasadou K, Schramm K (2009) Characterization and hazard evaluation of bottom ash produced from incinerated hospital waste. J Hazard Mater 172:935–942

    Article  CAS  Google Scholar 

  8. Coutand M, Cyr M, Deydier E, GR Clastres (2008) Characteristics of industrial and laboratory meat and bone meal ashes and their potential applications. J Hazard Mater 150:522–532

    Article  CAS  Google Scholar 

  9. Karamalidis AK, Voudrias EA (2009) Leaching and immobilization behavior of Zn and Cr from cement-based stabilization/solidification of ash produced from incineration of refinery oily sludge. Environ Eng Sci 26:81–96

    Article  CAS  Google Scholar 

  10. Sakanakura H (2005) Diffusion test of 20 kinds of waste molten slags and competitive materials. J Mater Cycles Waste Manage 7:71–77

    Article  CAS  Google Scholar 

  11. Chiang K, Hu Y (2010) Water washing effects on metals emission reduction during municipal solid waste incinerator (MSWI) fly ash melting process. Waste Manage. doi:10.1016/j.wasman.2009.12.009

    Google Scholar 

  12. Tian S, Yu M, Wang W, Wang Q, Wu Z (2009) Investigating the speciation of copper in secondary fly ash by x-ray absorption spectroscopy. Environ Sci Technol 43:9084–9088

    Article  CAS  Google Scholar 

  13. Donatello S, Tyrer M, Cheeseman CR (2010) EU landfill waste acceptance criteria and EU hazardous waste directive compliance testing of incinerated sewage sludge ash. Waste Manage 20:63–71

    Article  CAS  Google Scholar 

  14. Nie Y (2008) Development and prospects of municipal solid waste (MSW) incineration in China. Front Environ Sci Eng Chin 2:1–7

    Article  CAS  Google Scholar 

  15. Barbosa R, Lapa N, Boavida D, Lopes H, Gulyurtlu I, Mendes B (2009) Co-combustion of coal and sewage sludge: chemical and ecotoxicological properties of ashes. J Hazard Mater 170:902–919

    Article  CAS  Google Scholar 

  16. Wiles CC (1996) Municipal solid waste combustion ash: state-of-the-knowledge. J Hazard Mater 47:325–346

    Article  CAS  Google Scholar 

  17. Reich J (2003) Slag from hazardous waste incineration: reduction of heavy metal leaching. Waste Manage Res 21:110–118

    Article  CAS  Google Scholar 

  18. Zhao I, Zhang F, Chen M, Liu Z, Wu DBJ (2010) Typical pollutants in bottom ashes from a medical waste incinerator. J Hazard Mater 173:181–185

    Article  CAS  Google Scholar 

  19. Chandler AJ, Eighmy TT, Hartlen J, Hjelmar O, Kosson DS, Sawell SE, van der Sloot HA, Vehlow J (1997) Municipal solid waste incinerator residues. Elsevier, Amsterdam

    Google Scholar 

  20. Durnusoglu E, Bakoglu M, Karademir A, Kirli L (2009) Adsorbable organic halogens (AOX) in solid residues from hazardous and clinical waste incineration. J Environ Sci Health A 41:1699–1714

    Google Scholar 

  21. Neuer-Etscheidt K, Nordsieck HO, Liu Y, Kettrup A, Zimmermann R (2006) PCDD/F and other micropollutants in MSWI crude gas and ashes during plant start-up and shut down processes. Environ Sci Technol 40:342–349

    Article  CAS  Google Scholar 

  22. Rubli S, Medilanski E, Belevi H (2000) Characterization of total organic carbon in solid residues provides insight into sludge incineration processes. Environ Sci Technol 34:1772–1777

    Article  CAS  Google Scholar 

  23. Quina MJ, Bordado JC, Quinta-Ferreira RM (2008) Treatment and use of air pollution control residues from MSW incineration: an overview. Waste Manage 28:2097–2121

    Article  CAS  Google Scholar 

  24. Freyssinet P, Piantone P, Azaroual M, Itard Y, Clozel-Lecloup B, Guyonnet D, Baubron JC (2002) Chemical changes and leachate mass balance of municipal solid waste bottom ash submitted to weathering. Waste Manage 22:159–172

    Article  CAS  Google Scholar 

  25. Dugenies S, Combrisson J, Casablanca H, Grenier-Loustalot MF (1999) Municipal solid waste incineration bottom ash: characterization and kinetic studies of organic matter. Environ Sci Technol 33:1110–1115

    Article  Google Scholar 

  26. Liu Y, Li Y, Li X, Jiang Y (2008) Leaching behavior of heavy metals and PAHs from MSWI bottom ash in a long-term static immersing experiment. Waste Manage 28:1126–1136

    Article  CAS  Google Scholar 

  27. Okrent D (1999) On intergenerational equity and its clash with intragenerational equity and on the need for policies to guide regulation of disposal of wastes and other activities posing very long-term risks. Risk Anal 19:877–901

    CAS  Google Scholar 

  28. Dellinger B, D’Alessio AD, D’Anna AD, Ciajolo A, Gullett B, Henry H, Keener M, Lighty J, Lomicki S, Lucas D, Oberdörster G, Pitea D, Suk W, Sarofim A, Smith KR, Stoeger T, Tolbert P, Wyzga R, Zimmermann R (2008) Combustion byproducts and their health effects. Environ Eng Sci 25:1107–1114

    Article  CAS  Google Scholar 

  29. Shih S, Wang Y, Chang J, Jang J, Kuo F, Wang L, Chang-Chien G (2006) Comparisons of levels of polychlorinated dibenzo-p-dioxins/benzofurans in the surrounding environment and workplace of two municipal solid waste incinerators. J Hazard Mater B 137:1817–1830

    Article  CAS  Google Scholar 

  30. Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state on nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89

    Article  CAS  Google Scholar 

  31. Chen H, Chen I, Chia T (2010) Occupational exposure and DNA strand breakage of workers in bottom ash recovery and fly ash treatment plants. J Hazard Mater 174:23–27

    Article  CAS  Google Scholar 

  32. Lin K, Chen B (2006) Understanding biotoxicity for reusability of municipal solid waste incinerator (MSWI) ash. J Hazard Mater A 138:9–15

    Article  CAS  Google Scholar 

  33. Chou J, Wey M, Liang H, Chang S (2009) Biotoxicity evaluation of fly ash and bottom ash from different municipal solid waste incinerators. J Hazard Mater 168:197–202

    Article  CAS  Google Scholar 

  34. Takeuchi M, Kawahata H, Gupta LP, Itouga M, Sakakibara H, Ohta H, Komai T, Ono Y (2009) Chemistry of fly ash and cyclone ash leachate from waste materials and effects of ash leachates on bacterial growth, nitrogen–transformation activity, and metal accumulation. J Hazard Mater 165:967–973

    Article  CAS  Google Scholar 

  35. Shoji R, Nakayama H, Sakai Y, Mohri S, Yamada M (2008) Evaluation of the ecotoxicity of solid wastes using rapid leaching test and bioassays. J Environ Sci Health A 43:1048–1053

    Article  CAS  Google Scholar 

  36. Triffault-Bouchet G, Clement B, Blake G (2005) Ecotoxicological assessment of pollutant flux released from bottom ash reused in road construction. Aquat Ecosyst Health Manage 8:405–414

    Article  CAS  Google Scholar 

  37. Reijnders L (2009) Are soil pollution risks established by governments the same as actual risks? Appl Environ Soil Sci ID 237038:1–7

    Google Scholar 

  38. Clement B, Triffault-Bouchet G, Lottmann A, Carbonel J (2005) Are percolates released from solid waste incineration bottom ashes safe for lentic ecosystems? A laboratory ecotoxicological approach based on 100 litre indoor microcosms. Aquat Ecosyst Health Manage 8:427–439

    Article  CAS  Google Scholar 

  39. Michalzik B, Ilgen G, Hertel F, Hantsch S, Bilitewski B (2007) Emissions of organo-metal compounds via the leachate and gas pathway from two differently pre-treated municipal waste materials – a landfill study. Waste Manage 27:497–509

    Article  CAS  Google Scholar 

  40. Sabbas T, Poletti A, Pomi R, Astrup T, Hjelmar O, Mostbauer P, Cappai G, Magel G, Salhofer S, Speiser C, Heuss-Ambicher S, Klein R, Lechner P (2003) Management of municipal solid waste incineration residues. Waste Manage 23:61–88

    Article  CAS  Google Scholar 

  41. Kim Y, Osako M (2004) Effect of adsorption capacity of dissolved humic matter on leachability of dioxins from raw and treated fly ashes of municipal solid waste incinerators. Arch Environ Contam Toxicol 46:8–16

    Article  CAS  Google Scholar 

  42. Todorovic J, Ecke H (2006) Treatment of MSWI residues for utilization as secondary construction minerals: a review of methods. Miner Energy 20(4–5):45–59

    Article  Google Scholar 

  43. Lidelöw S, Lagerkvist A (2007) Evaluation of leachate emissions from crushed rock and municipal solid waste incineration bottom ash used in road construction. Waste Manage 27:1356–1365

    Article  CAS  Google Scholar 

  44. Apul D, Gardner K, Eighmy T, Linder E, Frizzell T, Roberson R (2005) Probabilistic modeling of one-dimensional water movement and leaching from highway embankments containing secondary materials. Environ Eng Sci 22:156–169

    Article  CAS  Google Scholar 

  45. Kosson DS, van der Sloot HA, Sanchez F, Garrabrants AC (2002) An integrated framework for evaluating leaching in waste management and utilization of secondary materials. Environ Eng Sci 19:159–204

    Article  CAS  Google Scholar 

  46. Dabo D, Badreddine R, de Windt L, Drouadaine I (2009) Ten-year chemical evolution of leachate and municipal solid waste incineration bottom ash used in a test road site. J Hazard Mater 172:904–913

    Article  CAS  Google Scholar 

  47. Reijnders L (2007) Cleaner phosphogypsum, coal combustion ashes and waste incineration ashes for application in building materials: a review. Build Environ 42:1036–1042

    Article  Google Scholar 

  48. Aguiar del Toro M, Calmano W, Ecke H (2009) Wet extraction of heavy metals and chloride from MSWI and straw combustion ashes. Waste Manage 29:2494–2499

    Article  CAS  Google Scholar 

  49. Sakanakura H (2007) Formation and durability of dithiocarbamic metals in stabilized air pollution control residue from municipal solid waste incineration and melting processes. Environ Sci Technol 41:1717–1722

    Article  CAS  Google Scholar 

  50. Bosshard RP, Bachofen R, Brandl H (1996) Metal leaching from fly ash from municipal waste incineration by Aspergillus niger. Environ Sci Technol 30:3066–3071

    Article  CAS  Google Scholar 

  51. Yang J, Wang QH, Wang Q, Wu TJ (2008) Comparison of one-step and two-step bioleaching for heavy metal removal from municipal solid waste incineration fly ash. Environ Eng Sci 25:783–789

    Article  CAS  Google Scholar 

  52. Bayuseno A, Schmahl WW, Müllejans T (2009) Hydrothermal processing of MSWI fly ash – towards new stable minerals and fixation of heavy metals. J Hazard Mater 167:250–259

    Article  CAS  Google Scholar 

  53. Fraissler G, Jollet M, Mattenberger H, Brunner T, Obernberger I (2009) Thermodynamic equilibrium calculations concerning the removal of heavy metals from sewage sludge ash by chlorination. Chem Eng Process 48:152–164

    Article  CAS  Google Scholar 

  54. Bo D, Zhang F, Zhao L (2009) Influence of supercritical water treatment on heavy metals in medical waste incineration ash. J Hazard Mater 170:66–71

    Article  CAS  Google Scholar 

  55. Guo X, Xiang D, Duan G, Mou P (2010) A review of mechanochemistry applications in waste management. Waste Manage 30:4–10

    Article  CAS  Google Scholar 

  56. Siddique R (2008) Waste materials and by-products in concrete. Springer, London

    Google Scholar 

  57. Yao J, Li W, Kong Q, Wu Y, He R, Shen D (2010) Content, mobility and transfer behavior of heavy metals in MSWI bottom ash in Zhejang province, China. Fuel 89:616–622

    Article  CAS  Google Scholar 

  58. Huang C, Yang W, Ma H, Song Y (2006) The potential of recycling and reusing municipal solid waste incinerator ash in Taiwan. Waste Manage 26:979–987

    Article  Google Scholar 

  59. Pan JR, Huang C, Kao J, Lin S (2008) Recycling MSWI bottom and fly ash as raw materials in Portland cement. Waste Manage 28:1113–1118

    Article  CAS  Google Scholar 

  60. Ferreira C, Ribeiro A, Ottosen L (2003) Possible applications for municipal solid waste fly ash. J Hazard Mater B 96:201–216

    Article  CAS  Google Scholar 

  61. Toller S, Kärrman E, Gustafsson JP, Magnusson Y (2009) Environmental assessment of incinerator residue utilization. Waste Manage 29:2071–2077

    Article  CAS  Google Scholar 

  62. Francois D, Pierson K (2009) Environmental assessment of a road site built with MSWI residue. Sci Total Environ 407:5945–5960

    Article  CAS  Google Scholar 

  63. Huang W, Tang H, Lin K, Liao M (2010) An emerging pollutant contributing to cytotoxicity of MSWI ash wastes: strontium. J Hazard Mater 173:597–604

    Article  CAS  Google Scholar 

  64. Dubey B, Townsend T (2007) Leaching of milled asphalt pavement amended with waste-to-energy ash. Int J Environ Waste Manage 1:145–158

    Article  CAS  Google Scholar 

  65. Kayhanian M, Vichare A, Green PG, Harvey J (2009) Leachability of dissolved chromium in asphalt and concrete surfacing materials. J Environ Manage 90:3574–3580

    Article  CAS  Google Scholar 

  66. Birgisdottir H, Bhander G, Hauschild MZ, Christensen TH (2007) Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling bottom ash in road construction or landfilling in Denmark evaluated by the ROAD–RES model. Waste Manage 27:S75–S84

    Article  CAS  Google Scholar 

  67. Tervahattu H, Kupiainen KJ, Räisänen M, Mäkelä T, Hillamao K (2006) Generation of urban road dust from anti-skid and asphalt concrete aggregates. J Hazard Mater 132:39–46

    Article  CAS  Google Scholar 

  68. Travat I, Lidelow S, Anderas L, Tham C, Lagerkvist A (2009) Assessing the environmental impact of ashes used as landfill cover construction. Waste Manage 29:1336–1246

    Article  CAS  Google Scholar 

  69. Beyer C, Konrad W, Rügner H, Bauer S, Liedl R, Grathwohl P (2009) Model-based prediction of long term leaching of contaminants from secondary materials in road constructions and noise protection dams. Waste Manage 29:839–850

    Article  CAS  Google Scholar 

  70. Reijnders L (2007) The cement industry as a scavenger in industrial ecology and the management of hazardous substances. J Ind Ecol 11(1):15–25

    CAS  Google Scholar 

  71. Karstensen KH, Kinh NK, Thang LB, Vet PH, Tuan ND, Toi DT, Hung NH, Quan TM, Hanh LB, Thang DH (2006) Environmentally sound destruction of obsolete pesticides in developing countries using cement kilns. Environ Sci Policy 9:577–586

    Article  Google Scholar 

  72. Sidhu S, Kast N, Edwards P, Dellinger B (2001) Hazardous air pollutants formation from reactions of raw meal organics in cement kilns. Chemosphere 42:499–506

    Article  CAS  Google Scholar 

  73. Chen C (2004) The emission inventory of PCDD/PCDF in Taiwan. Chemosphere 54:1413–1420

    Article  CAS  Google Scholar 

  74. Dermatas CM (2006) Evaluation of ettringite and hydrolumite formation for heavy metal immobilization. J Hazard Mater 136:20–33

    Article  CAS  Google Scholar 

  75. van der Sloot HA, Seignette P, van Zomeren A, Hoede D, Meeuwsen JCL (2003) Effects of alternative materials, life cycle stages, testing and criteria development. www.ecn.nl

  76. Winder C, Carmody M (2002) The dermal toxicity of cement. Toxicol Ind Health 18:321–331

    Article  CAS  Google Scholar 

  77. Liden C (2001) Legislative and preventive measures related to contact dermatitis. Contact Dermat 44:65–69

    Article  CAS  Google Scholar 

  78. Lannoye PA (2003) Report on proposed Directive of the European Parliament and Council regarding the limitation of marketing nonylphenol, nonylphenol ethoxylate and cement. European Parliament, Brussels

    Google Scholar 

  79. Costa M, Klein CB (2006) Toxicity and carcinogenicity of chromium compounds in humans. Crit Rev Toxicol 36:155–163

    Article  CAS  Google Scholar 

  80. Guo Q (1997) Increases of lead and chromium in drinking water from using cement–mortar–lined pipes: initial modeling and assessment. J Hazard Mater 56:181–213

    Article  CAS  Google Scholar 

  81. Pedersen AJ, Frandsen FJ, Riber C, Astrup T, Thomsen SN, Lundtorp K, Mortensen LF (2009) A full-scale study on the partitioning of trace elements in municipal solid waste incineration – effects of firing different waste types. Energy Fuels 23:3475–3489

    Article  CAS  Google Scholar 

  82. Alba N, Vazquez E, Gasso S, Baldasano JM (2001) Stabilization/solidification of MSW incineration residues from facilities with different air pollution systems. Durability of matrices versus carbonation. Waste Manage 21:313–324

    Article  CAS  Google Scholar 

  83. Yvon J, Antenucci D, Lorenzi G, Dutre V, Leclerq D, Nielsen P, Veschkens M (2006) Long term stability in landfills of municipal solid waste incineration fly ashes solidified/ stabilized by hydraulic binders. J Geochem Explor 90:143–155

    Article  CAS  Google Scholar 

  84. Meima JA, Comans RNJ (1998) Reducing Sb leaching from municipal solid waste incineration bottom ash by addition of sorbent materials. J Geochem Explor 62:299–304

    Article  CAS  Google Scholar 

  85. Valls S, Vazquez E (2001) Accelerated carbonation of sewage sludge–cement–sand mortars and its environmental impact. Cem Concr Res 31:1271–1276

    Article  CAS  Google Scholar 

  86. Ecke H (2003) Sequestration of metals in carbonated municipal solid waste incineration (MSWI) fly ash. Waste Manage 23:631–640

    Article  CAS  Google Scholar 

  87. Garrabrants AC, Sanchez F, Kosson DS (2004) Changes in constituent equilibrium leaching and pore water characteristics of a Portland cement mortar as a result of carbonation. Waste Manage 24:19–36

    Article  CAS  Google Scholar 

  88. Idachaba MA, Nyavor K, Egiebor NO (2003) Microbial stability evaluation of cement based waste forms at different waste to cement ratios. J Hazard Mater B 96:331–340

    Article  CAS  Google Scholar 

  89. Brombacher C, Bachofen R, Brandl H (1997) Biohydrological processing of solids. A patent review. Appl Microbiol Biotechnol 48:577–587

    Article  CAS  Google Scholar 

  90. Yang J, Wang Q, Luo Q, Wang Q, Wu T (2009) Biosorption behavior of heavy metals in bioleaching process of MSWI fly ash by Aspergillus niger. Biochem Eng J 46:294–299

    Article  CAS  Google Scholar 

  91. van Zomeren A, Comans RNJ (2009) Carbon speciation in municipal solid waste incinerator (MSWI) bottom ash in relation to facilitated metal leaching. Waste Manage 29:2059–2064

    Article  CAS  Google Scholar 

  92. Twardowska J, Szcezepanska J (2002) Solid waste: terminological and long term environmental risk management problems exemplified in a power plant fly ash study. Sci Total Environ 285:28–51

    Article  Google Scholar 

  93. Bayard R, Pestre C, Gourdon R (2009) Aerobic microbial activity in fresh and aged bottom ashes from municipal waste incineration. Int Biodeterior Biodegradation 63:739–746

    Article  CAS  Google Scholar 

  94. Aberg A, Kumpiene J, Ecke H (2006) Evaluation and prediction of emissions from a road built with bottom ash from municipal solid waste incinerator (MSWI). Sci Total Environ 355:1–12

    Article  CAS  Google Scholar 

  95. van der Sloot HA (2000) Comparison of the characteristic leaching behavior of cements using standard EN–196–1 cement mortar and an assessment of their long-term environmental behavior in construction products during service life and recycling. Cem Concr Res 30:1079–1096

    Article  Google Scholar 

  96. Serclérat J, Moskowicz P, Pollet B (2000) Retention mechanisms in mortars of trace metals contained in cement clinkers. Waste Manage 20:259–264

    Article  Google Scholar 

  97. Hunsinger H, Seifert H, Jay K (2006) An economic process to inhibit PCDD/PCDF formation in MSWI by SO2. Organohalogen Compd 68:151–156

    CAS  Google Scholar 

  98. Hunsinger H, Seifert H, Jay K (2007) Reduction of PCDD/F formation in MSWI by a process-integrated SO2 cycle. Environ Eng Sci 24:1145–1159

    Article  CAS  Google Scholar 

  99. Hunsinger H, Seifert H, Jay K (2007) Control of PCDD/F formation under conditions of fluctuating combustion performance in MSWI. Organohalogen Compd 69:956–961

    Google Scholar 

  100. Ke S, Ianhua Y, Xiaodong L, Shenyong L, Yinglei W, Muxing F (2010) Inhibition of de novo synthesis of PCDD/Fs by SO 2 in a model system. Chemosphere. doi:10.1016/j.chemosphere.2009.12.043

    Google Scholar 

  101. Mast P (1999) Einfluss der Abfallzusammensetzung auf Schadstofgehalt und– Menge der Verbrennuingsrückstaände (Impact of waste composition on the concentration and amount of toxics in combustion residues). TAUW, Berlin

    Google Scholar 

  102. Jeong SM, Osako N, Kim Y (2005) Utilizing a database to interpret leaching characteristics of lead from bottom ashes of municipal waste incinerators. Waste Manage 23:694–701

    Article  CAS  Google Scholar 

  103. Lo S, Tsao Y (1997) Economic analysis of waste minimization for electroplating plants. Water Sci Technol 36:383–390

    CAS  Google Scholar 

  104. Fujimori T, Takaoka M, Takea N (2009) Influence of Cu, Fe, Pb and Zn chlorides and oxides on formation of chlorinated aromatic compounds in MSWI fly ash. Environ Sci Technol 43:8053–8059

    Article  CAS  Google Scholar 

  105. Franz M (2008) Phosphate fertilizers from sewage sludge ash (SSA). Waste Manage 28:1809–1818

    Article  CAS  Google Scholar 

  106. Adam C, Peplinski B, Michaelis M, Kley G, Simon D (2009) Thermochemical treatment of sewage sludge ashes for phosphorous recovery. Waste Manage 29:1122–1128

    Article  CAS  Google Scholar 

  107. Wzorek Z, Jodko M, Gorazda K, Rzepecki T (2006) Extraction of phosphorus compounds from ashes from thermal processing of sewage sludge. J Loss Prev Process Ind 19:39–50

    Article  Google Scholar 

  108. Donatello S, Freeman Pask A, Tyrer M, Cheeseman CR (2010) Effect of milling and acid washing on the pozzolanic activity of incinerator sewage sludge ash. Cement Concr Compos 32:54–61

    Article  CAS  Google Scholar 

  109. Mattenberger H, Fraissler G, Herk P, Hermann L, Obernberger I (2008) Sewage sludge ash to phosphorus fertilizer: variables influencing heavy metal removal during thermochemical treatment. Waste Manage 28:2709–2722

    Article  CAS  Google Scholar 

  110. Ottosen LM, Perdersen AJ, Hansen HK, Ribeiro AB (2007) Screening the possibility for removing cadmium and other heavy metals from wastewater sludges and bioashes by an electrodialytic method. Electrochim Acta 52:3420–2426

    Article  CAS  Google Scholar 

  111. Christen C (2007) Closing the phosphorus loop. Environ Sci Technol 46:2078

    Article  Google Scholar 

  112. Zhang F, Yamasaki S, Nazyo M (2001) Application of waste ashes to agricultural land – effect of incineration temperature on chemical characteristics. Sci Total Environ 264:205–214

    Article  CAS  Google Scholar 

  113. Lienert J, Larsen TA (2010) High acceptance of urine source separation in seven European countries: a review. Environ Sci Technol 44:556–566

    Article  CAS  Google Scholar 

  114. Zhang D, Yamaski S, Kimura K (2001) Rare earth element content in various waste ashes and the potential risk to Japanese soils. Environ Int 27:393–398

    Article  Google Scholar 

  115. Rosen CJ, Bierman PM, Olson D (1994) Swiss chard and alfalfa responses in soils amended with municipal waste incinerator ash: growth and elemental composition. J Agric Food Chem 42:1361–1368

    Article  CAS  Google Scholar 

  116. Ferreira C, Ribeiro A, Ottosen L (2003) Possible applications for municipal solid waste fly ash. J Hazard Mater B 93:201–216

    Article  Google Scholar 

  117. Pasquini MW (2006) The use of town refuse ash in urban agriculture around Jos, Nigeria: health and environmental risks. Sci Total Environ 354:43–59

    Article  CAS  Google Scholar 

  118. Passquini MW, Alexander MJ (2004) Chemical properties of urban waste ash produced by open burning on the Jos Plateau: implications for agriculture. Sci Total Environ 319:325–340

    Article  CAS  Google Scholar 

  119. Hwa TJ, Joyseelan S (1977) Conditioning of oily sludges with municipal solid wastes incineration fly ash. Water Sci Technol 35:231–238

    Google Scholar 

  120. Yue Q, Han S, Yue M, Gao B, Li Q, Yu H, Zhao Y, Qi Y (2009) The performance of biological anaerobic filters packed with sludge–fly ash ceramic particles (SPCP) and commercial ceramic particles (CCP) Turing the restart period. Effect of the C/N ratios and filter media. Bioresour Technol 100:5016–5020

    Article  CAS  Google Scholar 

  121. Han S, Yue Q, Yue M, Gao B, Li Q, Yu H, Zhao Y, Qi Y (2009) The characteristics and application of sludge–fly ash ceramic particles (SCP) as novel filter media. J Hazard Mater 171:809–814

    Article  CAS  Google Scholar 

  122. Pan S, Lin C, Tseng D (2003) Reusing sewage sludge as absorbent for copper removal from wastewater. Resour Conserv Recycl 39:79–90

    Article  Google Scholar 

  123. Bouzid J, Elouear Z, Ksibi M, Feki M, Montiel A (2008) A study on removal characteristics of copper from aqueous solution by sewage sludge and pomace ashes. J Hazard Mater 152:838–845

    Article  CAS  Google Scholar 

  124. Okada K, OnoY KY, Nakajima A, MacKenzie KJD (2007) Simultaneous uptake of ammonium and phosphate ions by compounds prepared from paper sludge ash. J Hazard Mater 141:622–629

    Article  CAS  Google Scholar 

  125. Wajama T, Haga M, Kuzawa K, Ishimoto H, Tamada O, Ito K, Nishiyama T, Downs RT, Rakovan JF (2006) Zeolite synthesis from paper sludge ash at low temperature (90oC) with addition of diatomite. J Hazard Mater B 132:244–252

    Article  CAS  Google Scholar 

  126. Yang GCC, Yang T (1998) Synthesis of zeolites from municipal incinerator fly ash. J Hazard Mater 62:75–89

    Article  CAS  Google Scholar 

  127. Shim Y, Kim Y, Kong S, Rhee S, Lee W (2003) The adsorption characteristics of heavy metals by various particle sizes of MSWI bottom ash. Waste Manage 23:851–857

    Article  CAS  Google Scholar 

  128. Jin J, Chi L, Yan J (2010) Co-disposal of heavy metals containing waste water and medical waste incinerator fly ash by hydrothermal process with addition of sodium carbonate: a case study on Cu(II) removal. Water Air Soil Pollut. doi:10.1007/s 11270-009-0207-5

    Google Scholar 

  129. Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energy Combust Sci. doi:10.1016/j.pecs.2009.11.003

    Google Scholar 

  130. Smith KM, Fowler GD, Pulket S, Graham NJD (2009) Sewage sludge-based adsorbents: a review of their production, properties and use in water treatment applications. Water Res 43:2569–2594

    Article  CAS  Google Scholar 

  131. Baciocchi R, Polettini A, Pomi R, Prigiobbe V, von Zedwitz VN, Steinfeld A (2006) Sequestration by direct gas–solid carbonation of air pollution control (APC) residues. Energy Fuels 20:1933–1940

    Article  CAS  Google Scholar 

  132. Pertl A, Mostbauer P, Obersteiner G (2010) Climate balance of biogas upgrading systems. Waste Manage 30:92–99

    Article  CAS  Google Scholar 

  133. Ducom G, Radu-Tirnoveanu D, Pascual C, Benadda B, Germain P (166) Biogas-municipal solid waste incinerator bottom ash interactions: sulphur compounds removal. J Hazard Mater 166:1102–1108

    Article  CAS  Google Scholar 

  134. Wang S, Wu H (2006) Environmental–benign utilization of fly ash as low-cost adsorbents. J Hazard Mater B 136:482–501

    Article  CAS  Google Scholar 

  135. Karatza D, Lancia A, Musmarra D (1998) Fly ash capture of mercuric chloride vapors from exhaust combustion ash. Environ Sci Technol 32:3999–4004

    Article  CAS  Google Scholar 

  136. Reijnders L, Huijbregts MAJ (2009) Biofuels for road transport. Springer, London

    Google Scholar 

  137. Capello C, Hellweg S, Hungerbühler K (2008) Environmental assessment of waste–solvent treatment options. J Ind Ecol 12:111–127

    Article  Google Scholar 

  138. Björklund A, Finnveden G (2005) Recycling revisited – life cycle comparisons of global warming impact and total energy use of waste management strategies. Resour Conserv Recycl 44:309–317

    Article  Google Scholar 

  139. Luteijn J (2009) No energy to waste. Thesis, Open University of the Netherlands, Heerlen

    Google Scholar 

  140. Vehlow J, Bergfeldt B, Hunsinger H (2006) PCDD/F and related compounds in solid residues from municipal solid waste incineration – a literature review. Waste Manage Res 24:404–420

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Reijnders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Reijnders, L. (2012). Hazardous Waste Incineration Ashes and Their Utilization. In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_97

Download citation

Publish with us

Policies and ethics