Skip to main content

Gene Electrotransfer for Clinical Use

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry
  • 81 Accesses

Introduction

Gene therapy refers to the introduction of nucleic acids, e.g., DNAs or RNAs, into the cells of target tissues with a therapeutic purpose. Gene therapy can be applied as a gene replacement therapy or mutation compensation (e.g., replacement of mutated oncogene), gene immunopotentiation (e.g., introduction of cytokines and co-stimulatory molecules), a molecular chemotherapy (e.g., gene directed enzyme/prodrug therapy) in cancer gene therapy, and gene vaccination (e.g., introduction of specific antigen).

The main faltering block to effective and broader use of gene therapy remains the effective delivery of therapeutic gene to target tissue. In general, gene delivery systems can be divided in viral and nonviral delivery. Among viral delivery vectors, adenoviral and retroviral vectors are the most advanced [1, 2]. Nonviral delivery systems are based on chemical vectors (e.g., liposomes, dendrimers, nanoparticles) or physical methods of delivery (e.g., electroporation,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warnock JN, Daigre C, Al-Rubeai M (2011) Introduction to viral vectors. Methods Mol Biol 737:1–25

    CAS  Google Scholar 

  2. Mauro G (2010) Methods for gene delivery. In: Giacca M (ed) Gene therapy. Springer, Berlin

    Google Scholar 

  3. Cemazar M, Golzio M, Rols MP, Sersa G, Teissie J (2006) Electrically-assisted nucleic acid delivery in vivo: Where do we stand? Review. Curr Pharm Des 12(29):3817–3825

    CAS  Google Scholar 

  4. Kay MA (2011) State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet 12:316–328

    CAS  Google Scholar 

  5. Heller LC, Heller R (2010) Electroporation gene therapy preclinical and clinical trials for melanoma. Curr Gene Ther 10:312–317

    CAS  Google Scholar 

  6. Escoffre JM, Teissié J, Rols MP (2010) Gene transfer: how can the biological barriers be overcome? J Membr Biol 236:61–74

    CAS  Google Scholar 

  7. Sersa G, Miklavcic D, Cemazar M, Rudolf Z, Pucihar G, Snoj M (2008) Electrochemotherapy in treatment of tumours. EJSO 34:232–240

    CAS  Google Scholar 

  8. Rosazza C, Phez E, Escoffre JM, Cézanne L, Zumbusch A, Rols MP (2012) Cholesterol implications in plasmid DNA electrotransfer: evidence for the involvement of endocytotic pathways. Int J Pharm 423:134–143

    CAS  Google Scholar 

  9. Cemazar M, Wilson I, Dachs GU, Tozer G, Sersa G (2004) Direct visualization of electroporation-assisted in vivo gene delivery to tumors using intravital microscopy – spatial and time dependent distribution. BMC Cancer 4:81

    Google Scholar 

  10. Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, Munster PN, Sullivan DM, Ugen KE, Messina JL, Heller R (2008) Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 26:5896–5903

    CAS  Google Scholar 

  11. Pavlin D, Cemazar M, Coer A, Sersa G, Pogacnik A, Tozon N (2011) Electrogene therapy with interleukin-12 in canine mast cell tumors. Radiol Oncol 45:31–39

    CAS  Google Scholar 

  12. Neumann E, Schaeferridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lypoma cellls by electroporation in high electric fields. EMBO J 1:841–845

    CAS  Google Scholar 

  13. Titomirov AV, Sukharev S, Kistanova E (1991) In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim Biophys Acta 1088:131–134

    CAS  Google Scholar 

  14. Niu GL, Heller R, Catlett-Falcone R, Coppola D, Jaroszeski M, Dalton W et al (1999) Gene therapy with dominant-negative Stat3 suppresses growth of the murine melanoma B16 tumor in vivo. Cancer Res 59:5059–5063

    CAS  Google Scholar 

  15. Chen Z, Kadowaki S, Hagiwara Y, Yoshikawa T, Matsuo K, Kurata T et al (2000) Cross-protection against a lethal influenza virus infection by DNA vaccine to neuraminidase. Vaccine 18:3214–3222

    CAS  Google Scholar 

  16. Marty M, Sersa G, Garbay JR, Gehl J, Collins CG, Snoj M, Billard V, Geertsen PF, Larkin JO, Miklavcic D, Pavlovic I et al (2006) Electrochemotherapy – an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. EJC Suppl 4:3–13

    CAS  Google Scholar 

  17. International Clinical Trials registry Platform (2012) Search Portal. http://apps.who.int/trialsearch/default.aspx. Accessed 17 Apr 2012

  18. Low L, Mander A, McCann K, Dearnaley D, Tjelle T, Mathiesen I, Stevenson F, Ottensmeier CH (2009) DNA vaccination with electroporation induces increased antibody responses in patients with prostate cancer. Hum Gene Ther 20:1269–1278

    CAS  Google Scholar 

  19. van Drunen Littel-van den Hurk S, Hannaman D (2010) Electroporation for DNA immunization: clinical application. Expert Rev Vaccines 9:503–517

    CAS  Google Scholar 

  20. Sardesai NY, Weiner DB (2011) Electroporation delivery of DNA vaccines: prospects for success. Curr Opin Immunol 23:421–429

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Cemazar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Cemazar, M. (2014). Gene Electrotransfer for Clinical Use. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_268

Download citation

Publish with us

Policies and ethics