Skip to main content

Control for High-Speed Nanopositioning

Encyclopedia of Systems and Control
  • 561 Accesses

Abstract

Over the last two and a half decades we have observed astonishing progress in the field of nanotechnology. This progress is largely due to the invention of Scanning Tunneling Microscope (STM) and Atomic Force Microscope (AFM) in the 1980s. Central to the operation of AFM and STM is a nanopositioning system that moves a sample or a probe, with extremely high precision, up to a fraction of an Angstrom, in certain applications. This note concentrates on the fundamental role of feedback, and the need for model-based control design methods in improving accuracy and speed of operation of nanopositioning systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Cherubini G, Chung CC, Messner WC, Moheimani SOR (2012) Control methods in data-storage systems. IEEE Trans Control Syst Technol 20(2):296–322

    Article  Google Scholar 

  • Clayton GM, Tien S, Leang KK, Zou Q, Devasia S (2009) A review of feedforward control approaches in nanopositioning for high-speed SPM. J Dyn Syst Meas Control Trans ASME 131(6):1–19

    Article  Google Scholar 

  • Croft D, Shed G, Devasia S (2001) Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application. ASME J Dyn Syst Control 123(1):35–43

    Article  Google Scholar 

  • Devasia S, Eleftheriou E, Moheimani SOR (2007) A survey of control issues in nanopositioning. IEEE Trans Control Syst Technol 15(5):802–823

    Article  Google Scholar 

  • Gao W, Hocken RJ, Patten JA, Lovingood J, Lucca DA (2000) Construction and testing of a nanomachining instrument. Precis Eng 24(4):320–328

    Article  Google Scholar 

  • Krogmann D (1999) Image multiplexing system on the base of piezoelectrically driven silicon microlens arrays. In: Proceedings of the 3rd international conference on micro opto electro mechanical systems (MOEMS), Mainz, pp 178–185

    Google Scholar 

  • Meldrum DR, Pence WH, Moody SE, Cunningham DL, Holl M, Wiktor PJ, Saini M, Moore MP, Jang L, Kidd M, Fisher C, Cookson A (2001) Automated, integrated modules for fluid handling, thermal cycling and purification of DNA samples for high throughput sequencing and analysis. In: IEEE/ASME international conference on advanced intelligent mechatronics, AIM, Como, vol 2, pp 1211–1219

    Google Scholar 

  • Meyer E, Hug HJ, Bennewitz R (2004) Scanning probe microscopy. Springer, Heidelberg

    Book  Google Scholar 

  • Pantazi A, Sebastian A, Antonakopoulos TA, Bachtold P, Bonaccio AR, Bonan J, Cherubini G, Despont M, DiPietro RA, Drechsler U, DurIg U, Gotsmann B, Haberle W, Hagleitner C, Hedrick JL, Jubin D, Knoll A, Lantz MA, Pentarakis J, Pozidis H, Pratt RC, Rothuizen H, Stutz R, Varsamou M, Weismann D, Eleftheriou E (2008) Probe-based ultrahigh-density storage technology. IBM J Res Dev 52(4–5):493–511

    Article  Google Scholar 

  • Salapaka S (2003) Control of the nanopositioning devices. In: Proceedings of the IEEE conference on decision and control, Maui

    Google Scholar 

  • Sebastian A, Pantazi A, Moheimani SOR, Pozidis H, Eleftheriou E (2008a) Achieving sub-nanometer precision in a MEMS storage device during self-servo write process. IEEE Trans Nanotechnol 7(5):586–595. doi:10.1109/TNANO.2008.926441

    Article  Google Scholar 

  • Sebastian A, Pantazi A, Pozidis H, Eleftheriou E (2008b) Nanopositioning for probe-based data storage [applications of control]. IEEE Control Syst Mag 28(4):26–35

    Article  MathSciNet  Google Scholar 

  • Verma S, Kim W, Shakir H (2005) Multi-axis maglev nanopositioner for precision manufacturing and manipulation applications. IEEE Trans Ind Appl 41(5):1159–1167

    Article  Google Scholar 

  • Vettiger P, Cross G, Despont M, Drechsler U, Durig U, Gotsmann B, Haberle W, Lantz MA, Rothuizen HE, Stutz R, Binnig GK (2002) The “millipede”-nanotechnology entering data storage. IEEE Trans Nanotechnol 1(1):39–54

    Article  Google Scholar 

  • Whitesides GM, Christopher Love J (2001) The art of building small. Sci Am 285(3):38–47

    Article  Google Scholar 

  • Yong YK, Aphale S, Moheimani SOR (2009) Design, identification and control of a flexure-based XY stage for fast nanoscale positioning. IEEE Trans Nanotechnol 8(1):46–54

    Article  Google Scholar 

  • Yong YK, Moheimani SOR, Kenton BJ, Leang KK (2012) Invited review article: high-speed flexure-guided nanopositioning: mechanical design and control issues. Rev Sci Instrum 83(12):121101

    Article  Google Scholar 

  • Yong YK, Bhikkaji B, Moheimani SOR (2013) Design, modeling and FPAA-based control of a high-speed atomic force microscope nanopositioner. IEEE/ASME Trans Mechatron 18(3):1060–1071. doi:10.1109/TMECH.2012.2194161

    Article  Google Scholar 

  • Zou Q, Leang KK, Sadoun E, Reed MJ, Devasia S (2004) Control issues in high-speed AFM for biological applications: collagen imaging example. Asian J Control Spec Issue Adv Nanotechnol Control 6(2):164–178

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this entry

Cite this entry

Moheimani, S.O.R. (2013). Control for High-Speed Nanopositioning. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_184-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_184-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Dynamics and Control of Active Microcantilevers
    Published:
    16 November 2019

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_184-2

  2. Original

    Control for High-Speed Nanopositioning
    Published:
    13 February 2014

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_184-1