Skip to main content

Mean Field Games

Encyclopedia of Systems and Control

Definition

Mean Field Game (MFG) theory studies the existence of Nash equilibria, together with the individual strategies which generate them, in games involving a large number of agents modeled by controlled stochastic dynamical systems. This is achieved by exploiting the relationship between the finite and corresponding infinite limit population problems. The solution of the infinite population problem is given by the fundamental MFG Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck-Kolmogorov (FPK) equations which are linked by the state distribution of a generic agent, otherwise known as the system’s mean field.

Introduction

Large-population, dynamical, multi-agent, competitive, and cooperative phenomena occur in a wide range of designed and natural settings such as communication, environmental, epidemiological, transportation, and energy systems, and they underlie much economic and financial behavior. Analysis of such systems is intractable using the finite population game theoretic...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Altman E, Basar T, Srikant R (2002) Nash equilibria for combined flow control and routing in networks: asymptotic behavior for a large number of users. IEEE Trans Autom Control 47(6):917–930. Special issue on Control Issues in Telecommunication Networks

    Google Scholar 

  • Aumann RJ, Shapley LS (1974) Values of non-atomic games. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Basar T, Ho YC (1974) Informational properties of the Nash solutions of two stochastic nonzero-sum games. J Econ Theory 7:370–387

    Article  MathSciNet  Google Scholar 

  • Basar T, Olsder GJ (1999) Dynamic noncooperative game theory. SIAM, Philadelphia

    MATH  Google Scholar 

  • Bensoussan A, Frehse J (1984) Nonlinear elliptic systems in stochastic game theory. J Reine Angew Math 350:23–67

    MATH  MathSciNet  Google Scholar 

  • Bergin J, Bernhardt D (1992) Anonymous sequential games with aggregate uncertainty. J Math Econ 21:543–562. North-Holland

    Google Scholar 

  • Cardaliaguet P (2012) Notes on mean field games. Collège de France

    Google Scholar 

  • Cardaliaguet P (2013) Long term average of first order mean field games and work KAM theory. Dyn Games Appl 3:473–488

    Article  MathSciNet  Google Scholar 

  • Correa JR, Stier-Moses NE (2010) In: Cochran JJ (ed) Wardrop equilibria. Wiley encyclopedia of operations research and management science. Jhon Wiley & Sons, Chichester, UK

    Google Scholar 

  • Haurie A, Marcotte P (1985) On the relationship between Nash-Cournot and Wardrop equilibria. Networks 15(3):295–308

    Article  MATH  MathSciNet  Google Scholar 

  • Ho YC (1980) Team decision theory and information structures. Proc IEEE 68(6):15–22

    Google Scholar 

  • Huang MY (2010) Large-population LQG games involving a major player: the Nash certainty equivalence principle. SIAM J Control Optim 48(5):3318–3353

    Article  MATH  Google Scholar 

  • Huang MY, Caines PE, Malhamé RP (2003) Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions. In: IEEE conference on decision and control, Maui, pp 98–103

    Google Scholar 

  • Huang MY, Malhamé RP, Caines PE (2006) Large population stochastic dynamic games: closed loop Kean-Vlasov systems and the Nash certainty equivalence principle. Commun Inf Syst 6(3):221–252

    MATH  MathSciNet  Google Scholar 

  • Huang MY, Caines PE, Malhamé RP (2007) Large population cost-coupled LQG problems with non-uniform agents: individual-mass behaviour and decentralized ε – Nash equilibria. IEEE Tans Autom Control 52(9):1560–1571

    Article  Google Scholar 

  • Jovanovic B, Rosenthal RW (1988) Anonymous sequential games. J Math Econ 17(1):77–87. Elsevier

    Google Scholar 

  • Kizilkale AC, Caines PE (2013) Mean field stochastic adaptive control. IEEE Trans Autom Control 58(4):905–920

    Article  MathSciNet  Google Scholar 

  • Lasry JM, Lions PL (2006a) Jeux à champ moyen. I – Le cas stationnaire. Comptes Rendus Math 343(9):619–625

    Article  MATH  MathSciNet  Google Scholar 

  • Lasry JM, Lions PL (2006b) Jeux à champ moyen. II – Horizon fini et controle optimal. Comptes Rendus Math 343(10):679–684

    Article  MATH  MathSciNet  Google Scholar 

  • Lasry JM Lions PL (2007) Mean field games. Jpn J Math 2:229–260

    Article  MATH  MathSciNet  Google Scholar 

  • Li T, Zhang JF (2008) Asymptotically optimal decentralized control for large population stochastic multiagent systems. IEEE Tans Autom Control 53(7):1643–1660

    Article  Google Scholar 

  • Neyman A (2002) Values of games with infinitely many players. In: Aumann RJ, Hart S (eds) Handbook of game theory, vol 3. North Holland, Amsterdam, pp 2121–2167

    Google Scholar 

  • Nourian M, Caines PE (2013) ε-Nash Mean field games theory for nonlinear stochastic dynamical systems with major and minor agents. SIAM J Control Optim 50(5):2907–2937

    MathSciNet  Google Scholar 

  • Nguyen SL, Huang M (2012) Linear-quadratic-Gaussian mixed games with continuum-parametrized minor players. SIAM J Control Optim 50(5):2907–2937

    Article  MATH  MathSciNet  Google Scholar 

  • Tembine H, Zhu Q, Basar T (2012) Risk-sensitive mean field games. arXiv:1210.2806

    Google Scholar 

  • Wardrop JG (1952) Some theoretical aspects of road traffic research. In: Proceedings of the institute of civil engineers, London, part II, vol 1, pp 325–378

    Google Scholar 

  • Weintraub GY, Benkard C, Van Roy B (2005) Oblivious equilibrium: a mean field approximation for large-scale dynamic games. In: Advances in neural information processing systems. MIT, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter E Caines .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this entry

Cite this entry

Caines, P.E. (2013). Mean Field Games. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Mean Field Games
    Published:
    24 September 2019

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_30-2

  2. Original

    Mean Field Games
    Published:
    28 February 2014

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_30-1