Skip to main content

Sodium/Glucose Co-transporters, Structure and Function

  • Reference work entry
Encyclopedia of Metalloproteins

Synonyms

Cotransporters; Glucose transporters; Na+/sugar symporter; Na+-dependent glucose transporter; Secondary-active transporters; SGLTs; Sodium glucose transporters; Solute carrier family 5 (SLC5) genes

Definition

Na+/glucose cotransporters (SGLTs) are responsible for the “secondary-active” transport of glucose and other substrates across cellular membranes. They concentrate glucose inside the cell using electrochemical energy from the transmembrane Na+ gradient, employing an alternating access cotransport mechanism. Their most important roles are to mediate the absorption of glucose in the intestine and its reabsorption in the proximal tubules of the kidney.

Introduction

The general mechanism for active glucose cotransport through epithelial cells was first proposed by Robert Crane in the early 1960s. It described the secondary-active pumping of glucose across the brush border membrane of the intestinal epithelium using the Na+ gradient generated by the basolateral Na+/K+-ATPase....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramson J, Wright EM (2009) Structure and function of Na + -symporters with inverted repeats. Curr Opin Struct Biol 19(4):425–432

    Article  CAS  PubMed  Google Scholar 

  • Bergeron M, Goodyer PR, Gougoux A, Lapointe JY (2000) Pathophysiology of renal hyperaminoacidurias and glucosuria. In: Giebish DWSG (ed) The Kidney, vol 2, 3rd edn. Lippincott Williams & Wilkins, New-York, pp 2211–2233

    Google Scholar 

  • Bizhanova A, Kopp P (2009) The sodium-iodide symporter NIS and pendrin in iodide homeostasis of the thyroid. Endocrinology 150(3):1084

    Article  CAS  PubMed  Google Scholar 

  • Boudker O, Verdon G (2010) Structural perspectives on secondary active transporters. Trend Pharmacol Sci 31(9):418–426

    Article  CAS  Google Scholar 

  • Chao EC, Henry RR (2010) SGLT2 inhibition – a novel strategy for diabetes treatment. Nat Rev Drug Discov 9(7):551–559

    Article  CAS  PubMed  Google Scholar 

  • Coady MJ, Wallendorff B et al (2007) Establishing a definitive stoichiometry for the Na+/monocarboxylate cotransporter SMCT1. Biophys J 93(7):2325–2331

    Article  CAS  PubMed  Google Scholar 

  • Dieter M, Palmada M et al (2004) Regulation of glucose transporter SGLT1 by ubiquitin ligase Nedd4-2 and kinases SGK1, SGK3, and PKB* &ast. Obesity 12(5):862–870

    Article  CAS  Google Scholar 

  • Forrest LR, Krämer R et al (2010) The structural basis of secondary active transport mechanisms. Biochim Biophys Acta (BBA) Bioenergetics 1807:167–188

    Article  CAS  Google Scholar 

  • Ganapathy V, Thangaraju M et al (2008) Sodium-coupled monocarboxylate transporters in normal tissues and in cancer. AAPS J 10(1):193–199

    Article  CAS  PubMed  Google Scholar 

  • Lahjouji K, Aouameur R et al (2007) Expression and functionality of the Na+/myo-inositol cotransporter SMIT2 in rabbit kidney. Biochim Biophys Acta (BBA)-Biomembranes 1768(5):1154–1159

    Article  CAS  Google Scholar 

  • Leung D, Turk E et al (2002) Functional expression of the vibrio parahaemolyticus Na+/galactose (vSGLT) cotransporter in xenopus laevis oocytes. J Membr Biol 187(1):65–70

    Article  CAS  PubMed  Google Scholar 

  • Prasad PD, Ganapathy V (2000) Structure and function of mammalian sodium-dependent multivitamin transporter. Curr Opin Clin Nutr Metab Care 3(4):263

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro FM, Black SAG et al (2006) The “ins” and “outs” of the high affinity choline transporter CHT1. J Neurochem 97(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Sabino-Silva R, Mori R et al (2010) The Na+/glucose cotransporters: from genes to therapy. Braz J Med Biol Res 43(11):1019–1026

    Article  CAS  PubMed  Google Scholar 

  • Tazawa S, Yamato T et al (2005) SLC5A9/SGLT4, a new Na + -dependent glucose transporter, is an essential transporter for mannose, 1, 5-anhydro-D-glucitol, and fructose. Life Sci 76(9):1039–1050

    Article  CAS  PubMed  Google Scholar 

  • Wright EM, Turk E (2004) The sodium/glucose cotransport family SLC5. Pflügers Archiv Eur J Physiol 447(5):510–518

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Yves Lapointe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Sasseville, L.J., Lapointe, JY. (2013). Sodium/Glucose Co-transporters, Structure and Function. In: Kretsinger, R.H., Uversky, V.N., Permyakov, E.A. (eds) Encyclopedia of Metalloproteins. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1533-6_245

Download citation

Publish with us

Policies and ethics