Skip to main content

S100 Proteins

  • Reference work entry
Encyclopedia of Metalloproteins

Definition

Most S100 proteins are Ca2+-binding proteins involved in Ca2+-signal transduction. They have a well-conserved EF-hand Ca2+-binding motif and a second atypical EF-hand. S100s form stable symmetric homodimers and in the presence of appropriate binding targets, dissociation constants for Ca2+-binding reach physiological levels. S100 proteins are generally constitutively expressed in a cell-specific manner. Several are induced by growth factors, cytokines, or Toll-like receptor (TLR) ligands, in processes associated with stress responses, an activated innate immune system, tumorigenesis, and/or tissue repair. In addition to functions as intracellular regulators, many S100 proteins act extracellularly and particular posttranslational modifications can promote changes in extracellular function. Receptors have been elusive, but include the receptor for advanced glycation end products (RAGE), N-glycans and TLRs.

Background

Several classes of Ca2+-binding proteins have evolved from...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arumugam T, Logsdon CD (2010) S100P: a novel therapeutic target for cancer. Amino Acids 41:893–899.

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signaling: dynamics, homeostasis and remodeling. Nature Rev Mol Cell Biol 4:517–529.

    Article  CAS  Google Scholar 

  • Boye K, Maelandsmo GM (2010) S100A4 and metastasis: a small actor playing many roles. Am J Pathol 176:528–535.

    Article  CAS  PubMed  Google Scholar 

  • Boyd JH, Kan B, Roberts H et al (2008) S100A8 and S100A9 mediate endotoxin-induced cardiomyocyte dysfunction via the receptor for advanced glycation end products. Circ Res 102:1239–1246.

    Article  CAS  PubMed  Google Scholar 

  • Charpentier TH, Thompson LE, Liriano MA et al (2010) The effects of CapZ peptide (TRTK-12) binding to S100B-Ca2+ as examined by NMR and X-ray crystallography. J Mol Biol 396:1227–1243.

    Article  CAS  PubMed  Google Scholar 

  • Carafoli E, Klee C (Eds) (1999) Calcium as a cellular regulator. New York: Oxford University Press.

    Google Scholar 

  • Corbin BD, Seeley EH, Raab A et al (2008) Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319:962–965.

    Article  CAS  PubMed  Google Scholar 

  • Dassan P, Keir G, Brown MM (2009) Criteria for a clinically informative serum biomarker in acute ischaemic stroke: a review of S100B. Cerebrovasc Dis, 27:295–302.

    Article  CAS  PubMed  Google Scholar 

  • Donato R (2001) S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 33:637–668.

    Article  CAS  PubMed  Google Scholar 

  • Donato R (2007) RAGE: a single receptor for several ligands and different cellular responses: the case of certain S100 proteins. Curr Mol Med 7:711–724.

    Article  CAS  PubMed  Google Scholar 

  • Donato R, Sorci G, Riuzzi F et al (2009) S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta 1793:1008–1022.

    Article  CAS  PubMed  Google Scholar 

  • Ehrchen JM, Sunderkötter C, Foell D, Vogl T, Roth J (2009) The endogenous toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol 86:557–566.

    Article  CAS  PubMed  Google Scholar 

  • Ghavami S, Chitayat S, Hashemi M, et al (2009) S100A8/A9: a Janus-faced molecule in cancer therapy and tumorgenesis. Eur J Pharmacol 625:73–83.

    Article  CAS  PubMed  Google Scholar 

  • Goyette J, Geczy CL. (2010) Inflammation-associated S100 proteins: new mechanisms that regulate function. Amino Acids 41:821–842.

    Article  PubMed  CAS  Google Scholar 

  • Heizmann CW (2002) The multifunctional S100 protein family. Meth Mol Biol 172:69–80.

    CAS  Google Scholar 

  • Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8:1369–1375.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann MA, Drury S, Fu C, et al (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97:889–901.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann Bowman MA, Wilk J, Heydemann A et al (2010) S100A12 mediates aortic wall remodeling and aortic aneurysm. Circ Res 106:145–154.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann Bowman MA, Gawdzik J, Bukhari U et al (2011) S100A12 in vascular smooth muscle accelerates vascular calcification in apolipoprotein e-null mice by activating an osteogenic gene regulatory program. Arterioscler Thromb Vasc Biol 31:337–344.

    Article  CAS  PubMed  Google Scholar 

  • Kligman D, Hilt DC (1988) The S100 protein family. Trends Biochem Sci 13:437–443.

    Article  CAS  PubMed  Google Scholar 

  • Lesniak W, Filipek A, Donato R (2009) S100a6. UCSD-Nat Molecule Page. doi:10.1038/mp.a002122.01.

    Google Scholar 

  • Lin J, Yang Q, Wilder PT et al (2010) The calcium-binding protein S100B down-regulates p53 and apoptosis in malignant melanoma. J Biol Chem 285:27487–27498.

    Article  CAS  PubMed  Google Scholar 

  • Loser K, Voskort M, Lueken A, et al (2010) The Toll-like receptor 4 ligands Mrp8 and Mrp14 are crucial in the development of autoreactive CD8+ T cells. Nat Med 16:713–717.

    Article  CAS  PubMed  Google Scholar 

  • Marenholz I, Heizmann CW, Fritz G (2004) S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 322:1111–1122.

    Article  CAS  PubMed  Google Scholar 

  • Mocellin S, Zavagno G, Nitti D (2008) The prognostic value of serum S100B in patients with cutaneous melanoma: a meta-analysis. Int J Cancer 123:2370–2376.

    Article  CAS  PubMed  Google Scholar 

  • Moews PC, Kretsinger RH (1975) Refinement of the structure of carp muscle calcium-binding parvalbumin by model building and difference Fourier analysis. J Mol Biol 91:201–225.

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Koyama N, Arendash GW et al (2010) Overexpression of human S100B exacerbates cerebral amyloidosis and gliosis in the Tg2576 mouse model of Alzheimer’s disease. Glia 58:300–314.

    PubMed  Google Scholar 

  • Nukui T, Ehama R, Sakaguchi M et al (2008) S100A8/A9, a key mediator for positive feedback growth stimulation of normal human keratinocytes. J Cell Biochem 104:453–464.

    Article  CAS  PubMed  Google Scholar 

  • Ostendorp T, Leclerc E, Galichet A et al (2007) Structural and functional insights into RAGE activation by multimeric S100B. EMBO J26:3868–3878.

    Google Scholar 

  • Permyakov EA, Kretsinger RH (2009) Cell signaling, beyond cytosolic calcium in eukaryotes. J Inorg Biochem 103:77–86.

    Article  CAS  PubMed  Google Scholar 

  • Pietzsch JS, Hoppmann S (2009) Human S100A12: a novel key player in inflammation? Amino Acids 36:381–389.

    Article  CAS  PubMed  Google Scholar 

  • Prosser BL, Wright NT, Hernandez-Ochoa EO et al (2008) S100A1 binds to the calmodulin-binding site of ryanodine receptor and modulates skeletal muscle excitation-contraction coupling. J Biol Chem 283:5046–5057.

    Article  CAS  PubMed  Google Scholar 

  • Rescher U, Gerke V (2008) S100A10/p11: family, friends and functions. Pflugers Arch 455:575–582.

    Article  CAS  PubMed  Google Scholar 

  • Rohde D, Ritterhoff J, Voelkers M et al (2010) S100A1: a multifaceted therapeutic target in cardiovascular disease. J Cardiovasc Transl Res 3:525–537.

    Article  PubMed  Google Scholar 

  • Rothermundt M, Ahn JN, Jörgens S (2010) S100B in schizophrenia: an update. Gen Physiol Biophys 28:F76–F81.

    Google Scholar 

  • Rustandi RR, Baldisseri DM, Drohat AC, Weber DJ (1999) Structural changes in the C-terminus of Ca2+-bound rat S100B (ββ) upon binding to a peptide derived from the C-terminal regulatory domain of p53. Protein Sci 8:1743–1751.

    Article  CAS  PubMed  Google Scholar 

  • Sparvero LJ, Asafu-Adjei D, Kang R et al (2009) RAGE (Receptor for advanced glycation endproducts), RAGE ligands, and their role in cancer and inflammation. J Transl Med 7:17.

    Article  PubMed  CAS  Google Scholar 

  • Strynadka NC, James MN (1989) Crystal structures of the helix-loop-helix calcium-binding proteins. Annu Rev Biochem, 58:951–998.

    Article  CAS  PubMed  Google Scholar 

  • Tsoporis JN, Mohammadzadeh F, Parker TG (2010) Intracellular and extracellular effects of S100B in the cardiovascular response to disease. Cardiovasc Psychiatry Neurol 2010, 206073. doi:10.1155/2010/206073.

    PubMed  Google Scholar 

  • Turovskaya O, Foell D, Sinha P et al (2009) RAGE, carboxylated glycans and S100A8/A9 play essential roles in colitis-associated carcinogenesis. Carcinogenesis 29:2035–2043.

    Article  CAS  Google Scholar 

  • van Dieck J, Teufel DP, Jaulent AM et al (2009) Posttranslational modifications affect the interaction of S100 proteins with tumor suppressor p53. J Mol Biol 394:922–930.

    Article  PubMed  CAS  Google Scholar 

  • van Lent PL, Grevers LC, Blom AB et al (2008) Stimulation of chondrocyte-mediated cartilage destruction by S100A8 in experimental murine arthritis. Arthritis Rheum 58:3776–3787.

    Article  PubMed  CAS  Google Scholar 

  • Vogl T, Tenbrock K, Ludwig S et al (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13:1042–1049.

    Article  CAS  PubMed  Google Scholar 

  • Warner-Schmidt JL, Chen EY, Zhang X et al (2010) A role for p11 in the antidepressant action of brain-derived neurotrophic factor. Biol Psychiatry 68:528–535.

    Article  CAS  PubMed  Google Scholar 

  • West NR, Watson PH (2010) S100A7 (psoriasin) is induced by the proinflammatory cytokines oncostatin-M and interleukin-6 in human breast cancer. Oncogene 29:2083–2092.

    Article  CAS  PubMed  Google Scholar 

  • Wright NT, Prosser BL, Varney KM et al (2008) S100A1 and calmodulin compete for the same binding site on ryanodine receptor. J Biol Chem 283:26676–26683.

    Article  CAS  PubMed  Google Scholar 

  • Yap KL, Ames JB, Swindells MB, Ikura M (1999) Diversity of conformational states and changes within the EF-hand protein superfamily. Proteins 37:499–507.

    Article  CAS  PubMed  Google Scholar 

  • Zimmer DB, Wright SP, Weber DJ (2003) Molecular mechanisms of S100-target protein interactions. Microsc Res Tech 60:552–559.

    Article  CAS  PubMed  Google Scholar 

  • Zimmer DB, Weber DJ (2010) The calcium-dependent interaction of S100B with its protein targets. Cardiovasc Psychiatry Neurol. doi:10.1155/2010/728052.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Donato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Donato, R., Geczy, C.L., Weber, D.J. (2013). S100 Proteins. In: Kretsinger, R.H., Uversky, V.N., Permyakov, E.A. (eds) Encyclopedia of Metalloproteins. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1533-6_48

Download citation

Publish with us

Policies and ethics