Skip to main content

Reelin

  • Living reference work entry
  • First Online:
Encyclopedia of Signaling Molecules

Synonyms

ETL7; LIS2; PRO1598; RELN; RL

Historical Background

In 1951, Falconer reported a spontaneous autosomal recessive mutant mouse, known as reeler, that exhibited ataxia, tremor, and a “reeling” gait (Falconer 1951). The responsible gene of this mutant mouse was subsequently identified and named reelin more than 40 years later (Bar et al. 1995; D’Arcangelo et al. 1995; Hirotsune et al. 1995). Since then, histological studies on reeler have clarified several malformations in brain organization including a disrupted architecture, abnormal layer formation, and aberrant neuronal positioning in various brain regions, such as the olfactory bulb, neocortex, hippocampus, cerebellum, several brainstem nuclei, and spinal cord (reviewed in Katsuyama and Terashima 2009). One of the characteristic features of the reeler brain is the roughly inverted laminar structure in the neocortex and hippocampus. These observations led to the hypothesis that the reelermalformation is caused by a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alcántara S, Ruiz M, Arcangelo GD, Ezan F, De Lecea L, Curran T, et al. Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J Neurosci. 1998;18(19):7779–99.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnaud L, Ballif BA, Cooper JA. Regulation of protein tyrosine kinase signaling by substrate degradation during brain development. Mol Cell Biol. 2003;23(24):9293–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assadi AH, Zhang G, Beffert U, McNeil RS, Renfro AL, Niu S, et al. Interaction of reelin signaling and Lis1 in brain development. Nat Genet. 2003;35(3):270–6.

    Article  CAS  PubMed  Google Scholar 

  • Bal M, Leitz J, Reese AL, Ramirez DMO, Durakoglugil M, Herz J, et al. Reelin mobilizes a VAMP7-dependent synaptic vesicle pool and selectively augments spontaneous neurotransmission. Neuron. 2013;80(4):934–46.

    Article  CAS  PubMed  Google Scholar 

  • Bar I, De Rouvroit CL, Royaux I, Krizman DB, Dernoncourt C, Ruelle D, et al. A YAC contig containing the reeler locus with preliminary characterization of candidate gene fragments. Genomics. 1995;26(3):543–9.

    Article  CAS  PubMed  Google Scholar 

  • Beffert U, Weeber EJ, Durudas A, Qiu S, Masiulis I, Sweatt JD, et al. Modulation of synaptic plasticity and memory by Reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron. 2005;47(4):567–79.

    Article  CAS  PubMed  Google Scholar 

  • de Bergeyck V, Nakajima K, Lambert de Rouvroit C, Naerhuyzen B, Goffinet AM, Miyata T, Ogawa M, Mikoshiba K. A truncated Reelin protein is produced but not secreted in the “Orleans” reeler mutation (Relnrl-Orl). Mol. Brain Res. 1997;50:85–90.

    Google Scholar 

  • Bock HH, Herz J. Reelin activates SRC family tyrosine kinases in neurons. Curr Biol. 2003;13(1):18–26.

    Article  CAS  PubMed  Google Scholar 

  • Bock HH, May P. Canonical and non-canonical Reelin signaling. Front Cell Neurosci. 2016;10:166.

    PubMed  PubMed Central  Google Scholar 

  • Chai X, Förster E, Zhao S, Bock HH, Frotscher M. Reelin stabilizes the actin cytoskeleton of neuronal processes by inducing n-cofilin phosphorylation at serine3. J Neurosci. 2009;29(1):288–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chameau P, Inta D, Vitalis T, Monyer H, Wadman WJ, van Hooft JA. The N-terminal region of reelin regulates postnatal dendritic maturation of cortical pyramidal neurons. Proc Natl Acad Sci U S A. 2009;106(17):7227–32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Beffert U, Ertunc M, Tang T-S, Kavalali ET, Bezprozvanny I, et al. Reelin modulates NMDA receptor activity in cortical neurons. J Neurosci. 2005;25(36):8209–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Arcangelo G. Reelin in the years: controlling neuronal migration and maturation in the mammalian brain. Adv Neurosci. 2014;2014:1–19.

    Article  Google Scholar 

  • D’Arcangelo G, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, Curran T. Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J. Neurosci. 1997;17:23–31.

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature. 1995;374(6524):719–23.

    Article  PubMed  Google Scholar 

  • D’Arcangelo G, Homayouni R, Keshvara L, Rice DS, Sheldon M, Curran T. Reelin is a ligand for lipoprotein receptors. Neuron. 1999;24(2):471–9.

    Article  PubMed  Google Scholar 

  • De Silva U, D’Arcangelo G, Braden VV, Chen J, Miao GG, Curran T, et al. The human reelin gene: isolation, sequencing, and mapping on chromosome 7. Genome Res. 1997;7(2):157–64.

    Article  Google Scholar 

  • Dong E, Caruncho H, Liu WS, Smalheiser NR, Grayson DR, Costa E, et al. A reelin-integrin receptor interaction regulates arc mRNA translation in synaptoneurosomes. Proc Natl Acad Sci U S A. 2003;100(9):5479–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falconer DS. Two new mutants, “trembler” and “reeler”, with neurological actions in the house mouse (Mus musculus L.). J Genet. 1951;50(2):192–201.

    Article  CAS  PubMed  Google Scholar 

  • Feng L, Allen NS, Simo S, Cooper JA. Cullin 5 regulates Dab1 protein levels and neuron positioning during cortical development. Genes Dev. 2007;21(21):2717–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folsom TD, Fatemi SH. The involvement of Reelin in neurodevelopmental disorders. Neuropharmacology. 2013;68:122–35.

    Article  CAS  PubMed  Google Scholar 

  • Förster E. Reelin, neuronal polarity and process orientation of cortical neurons. Neuroscience. 2014;269:102–11.

    Article  CAS  PubMed  Google Scholar 

  • Franco SJ, Müller U. Extracellular matrix functions during neuronal migration and lamination in the mammalian central nervous system. Dev Neurobiol. 2011;71(11):889–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco SJ, Martinez-Garay I, Gil-Sanz C, Harkins-Perry SR, Müller U. Reelin regulates cadherin function via Dab1/Rap1 to control neuronal migration and lamination in the neocortex. Neuron. 2011;69(3):482–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil-Sanz C, Franco SJ, Martinez-Garay I, Espinosa A, Harkins-Perry S, Müller U. Cajal-Retzius cells instruct neuronal migration by coincidence signaling between secreted and contact-dependent guidance cues. Neuron. 2013;79(3):461–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groc L, Choquet D, Stephenson FA, Verrier D, Manzoni OJ, Chavis P. NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein Reelin. J Neurosci. 2007;27(38):10165–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hack I, Bancila M, Loulier K, Carroll P, Cremer H. Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis. Nat Neurosci. 2002;5(10):939–45.

    Article  CAS  PubMed  Google Scholar 

  • Hack I, Hellwig S, Junghans D, Brunne B, Bock HH, Zhao S, Frotscher M. Divergent roles of ApoER2 and Vldlr in the migration of cortical neurons. Development 2007;134(21):3883–91.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto-Torii K, Torii M, Sarkisian MR, Bartley CM, Shen J, Radtke F, et al. Interaction between Reelin and notch signaling regulates neuronal migration in the cerebral cortex. Neuron. 2008;60(2):273–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellwig S, Hack I, Kowalski J, Brunne B, Jarowyj J, Unger A, et al. Role for Reelin in neurotransmitter release. J Neurosci. 2011;31(7):2352–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiesberger T, Trommsdorff M, Howell BW, Goffinet A, Mumby MC, Cooper JA, et al. Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of Disabled-1 and modulates tau phosphorylation. Neuron. 1999;24(2):481–9.

    Article  CAS  PubMed  Google Scholar 

  • Hirota Y, Kubo KI, Fujino T, Yamamoto TT, Nakajima K.ApoER2 controls not Only neuronal migration in the intermediate zone but also termination of migration in the developing cerebral cortex. Cereb Cortex 2018;1;28(1):223–235.

    Google Scholar 

  • Hirota Y, Nakajima K. Control of neuronal migration and aggregation by Reelin signaling in the developing cerebral cortex. Front Cell Dev Biol. 2017;5:1–8.

    Article  Google Scholar 

  • Hirota Y, Kubo K-I, Katayama K-I, Honda T, Fujino T, Yamamoto TT, et al. Reelin receptors ApoER2 and VLDLR are expressed in distinct spatiotemporal patterns in developing mouse cerebral cortex. J Comp Neurol. 2015;523(3):463–78.

    Article  CAS  PubMed  Google Scholar 

  • Hirotsune S, Takahara T, Sasaki N, Hirose K, Yoshiki A, Ohashi T, et al. The reeler gene encodes a protein with an EGF-like motif expressed by pioneer neurons. Nat Genet. 1995;10(1):77–83.

    Article  CAS  PubMed  Google Scholar 

  • Hisanaga A, Morishita S, Suzuki K, Sasaki K, Koie M, Kohno T, et al. A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS-4) cleaves Reelin in an isoform-dependent manner. FEBS Lett Fed Eur Biochem Soc. 2012;586(19):3349–53.

    Article  CAS  Google Scholar 

  • Honda T, Kobayashi K, Mikoshiba K, Nakajima K. Regulation of cortical neuron migration by the Reelin signaling pathway. Neurochem Res. 2011;36(7):1270–9.

    Article  CAS  PubMed  Google Scholar 

  • Howell BW, Hawkes R, Soriano P, Cooper JA. Neuronal position in the developing brain is regulated by mouse disabled-1. Nature. 1997;389(6652):733–7.

    Article  CAS  PubMed  Google Scholar 

  • Howell BW, Herrick TM, Cooper JA. Reelin-induced tryosine phosphorylation of disabled 1 during neuronal positioning. Genes Dev. 1999;13(6):643–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iafrati J, Orejarena MJ, Lassalle O, Bouamrane L, Gonzalez-Campo C, Chavis P. Reelin, an extracellular matrix protein linked to early onset psychiatric diseases, drives postnatal development of the prefrontal cortex via GluN2B-NMDARs and the mTOR pathway. Mol Psychiatry. 2014;19(4):417–26.

    Article  CAS  PubMed  Google Scholar 

  • Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG, et al. A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci U S A. 1998;95(26):15718–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii K, Kubo K, Nakajima K. Reelin and neuropsychiatric disorders. Front Cell Neurosci. 2016;10:229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jossin Y. Polarization of migrating cortical neurons by Rap1 and N-cadherin: revisiting the model for the Reelin signaling pathway. Small GTPases. 2011;2(6):322–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jossin Y, Cooper JA. Reelin, Rap1 and N-cadherin orient the migration of multipolar neurons in the developing neocortex. Nat Neurosci. 2011;14(6):697–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jossin Y, Goffinet AM. Reelin signals through phosphatidylinositol 3-kinase and Akt to control cortical development and through mTor to regulate dendritic growth. Mol Cell Biol. 2007;27(20):7113–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jossin Y, Ignatova N, Hiesberger T, Herz J, Lambert de Rouvroit C, Goffinet AM. The central fragment of Reelin, generated by proteolytic processing in vivo, is critical to its function during cortical plate development. J Neurosci. 2004;24(2):514–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsuyama Y, Terashima T. Developmental anatomy of reeler mutant mouse. Develop Growth Differ. 2009;51(3):271–86.

    Article  CAS  Google Scholar 

  • Kohno T, Honda T, Kubo K-I, Nakano Y, Tsuchiya A, Murakami T, et al. Importance of Reelin C-terminal region in the development and maintenance of the postnatal cerebral cortex and its regulation by specific proteolysis. J Neurosci. 2015;35(11):4776–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima T, Nakajima K, Mikoshiba K. The disabled 1 gene is disrupted by a replacement with L1 fragment in yotari mice. Mol Brain Res. 2000;75(1):121–7.

    Article  CAS  PubMed  Google Scholar 

  • Krstic D, Rodriguez M, Knuesel I. Regulated proteolytic processing of Reelin through interplay of tissue plasminogen activator (tPA), ADAMTS-4, ADAMTS-5, and their modulators. PLoS One. 2012;7(10):1–11.

    Article  CAS  Google Scholar 

  • Kubo K, Mikoshiba K, Nakajima K. Secreted Reelin molecules form homodimers. Neurosci Res. 2002;43(4):381–8.

    Article  CAS  PubMed  Google Scholar 

  • Kubo K, Honda T, Tomita K, Sekine K, Ishii K, Uto A, et al. Ectopic Reelin induces neuronal aggregation with a normal birthdate-dependent “inside-out” alignment in the developing neocortex. J Neurosci. 2010;30(33):10953–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo G, Arnaud L, Kronstad-O’Brien P, J a C. Absence of Fyn and Src causes a reeler-like phenotype. J Neurosci. 2005;25(37):8578–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrenson ID, Krebs DL, Linossi EM, Zhang J-G, McLennan TJ, Collin C, et al. Cortical layer inversion and deregulation of Reelin signaling in the absence of SOCS6 and SOCS7. Cereb Cortex. 2017;27(1):576–88.

    PubMed  Google Scholar 

  • Leemhuis J, Bouche E, Frotscher M, Henle F, Hein L, Herz J, et al. Reelin signals through apolipoprotein E receptor 2 and Cdc42 to increase growth cone motility and Filopodia formation. J Neurosci. 2010;30(44):14759–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu WS, Pesold C, Rodriguez MA, Carboni G, Auta J, Lacor P, et al. Down-regulation of dendritic spine and glutamic acid decarboxylase 67 expressions in the reelin haploinsufficient heterozygous reeler mouse. Proc Natl Acad Sci U S A. 2001;98(6):3477–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lussier AL, Weeber EJ, Rebeck GW. Reelin proteolysis affects signaling related to normal synapse function and neurodegeneration. Front Cell Neurosci. 2016;10:75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magdaleno S, Keshvara L, Curran T. Rescue of ataxia and preplate splitting by ectopic expression of Reelin in reeler mice. Neuron. 2002;33(4):573–86.

    Article  CAS  PubMed  Google Scholar 

  • Matsuki T, Matthews RT, Cooper JA, Van Der Brug MP, Cookson MR, Hardy JA, et al. Reelin and Stk25 have opposing roles in neuronal polarization and dendritic Golgi deployment. Cell. 2010;143(5):826–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsunaga Y, Noda M, Murakawa H, Hayashi K, Nagasaka A, Inoue S, et al. Reelin transiently promotes N-cadherin–dependent neuronal adhesion during mouse cortical development. Proc Natl Acad Sci. 2017;114(8):2048–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meseke M, Cavus E, Förster E. Reelin promotes microtubule dynamics in processes of developing neurons. Histochem Cell Biol. 2013;139(2):283–97.

    Article  CAS  PubMed  Google Scholar 

  • Meseke M, Rosenberger G, Förster E. Reelin and the Cdc42/Rac1 guanine nucleotide exchange factor αPIX/Arhgef6 promote dendritic Golgi translocation in hippocampal neurons. Eur J Neurosci. 2013b;37(9):1404–12.

    Article  PubMed  Google Scholar 

  • Nakano Y, Kohno T, Hibi T, Kohno S, Baba A, Mikoshiba K, et al. The extremely conserved C-terminal region of Reelin is not necessary for secretion but is required for efficient activation of downstream signaling. J Biol Chem. 2007;282(28):20544–52.

    Article  CAS  PubMed  Google Scholar 

  • Niu S, Renfro A, Quattrocchi CC, Sheldon M, D’Arcangelo G. Reelin promotes hippocampal dendrite development through the VLDLR/ApoER2-Dab1 pathway. Neuron. 2004;41(1):71–84.

    Article  CAS  PubMed  Google Scholar 

  • Niu S, Yabut O, D’Arcangelo G. The Reelin signaling pathway promotes dendritic spine development in hippocampal neurons. J Neurosci. 2008;28(41):10339–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa M, Miyata T, Nakajima K, Yagyu K, Seike M, Ikenaka K, et al. The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron. 1995;14(5):899–912.

    Article  CAS  PubMed  Google Scholar 

  • Ogino H, Hisanaga A, Kohno T, Kondo Y, Okumura K, Kamei T, et al. Secreted metalloproteinase ADAMTS-3 inactivates Reelin. J Neurosci. 2017;37(12):3632–16.

    Article  Google Scholar 

  • Olson EC, Kim S, Walsh CA. Impaired neuronal positioning and dendritogenesis in the neocortex after cell-autonomous Dab1 suppression. J Neurosci. 2006;26(6):1767–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pesold C, Impagnatiello F, Pisu MG, Uzunov DP, Costa E, Guidotti A, et al. Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats. Proc Natl Acad Sci U S A. 1998;95(6):3221–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranaivoson FM, von Daake S, Comoletti D. Structural insights into Reelin function: present and future. Front Cell Neurosci. 2016;10:137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers JT, Zhao L, Trotter JH, Rusiana I, Peters MM, Li Q, et al. Reelin supplementation recovers sensorimotor gating, synaptic plasticity and associative learning deficits in the heterozygous reeler mouse. J Psychopharmacol. 2013;27(4):386–95.

    Article  CAS  PubMed  Google Scholar 

  • Schmid RS, Jo R, Shelton S, Kreidberg JA, Anton ES. Reelin, integrin and Dab1 interactions during embryonic cerebral cortical development. Cereb Cortex. 2005;15(10):1632–6.

    Article  PubMed  Google Scholar 

  • Sekine K, Honda T, Kawauchi T, Kubo K, Nakajima K. The outermost region of the developing cortical plate is crucial for both the switch of the radial migration mode and the Dab1-dependent “inside-out” lamination in the neocortex. J Neurosci. 2011;31(25):9426–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekine K, Kawauchi T, Kubo K-I, Honda T, Herz J, Hattori M, et al. Reelin controls neuronal positioning by promoting cell-matrix adhesion via inside-out activation of integrin α5β1. Neuron. 2012;76(2):353–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekine K, Kubo KI, Nakajima K. How does Reelin control neuronal migration and layer formation in the developing mammalian neocortex? Neurosci Res. 2014;86:50–8.

    Article  CAS  PubMed  Google Scholar 

  • Sheldon M, Rice DS, D’Arcangelo G, Yoneshima H, Nakajima K, Mikoshiba K, et al. Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature. 1997;389(6652):730–3.

    Article  CAS  PubMed  Google Scholar 

  • Sweet HO, Bronson RT, Johnson KR, Cook SA, Davisson MT. Scrambler, a new neurological mutation of the mouse with abnormalities of neuronal migration. Mamm Genome. 1996;7(11):798–802.

    Article  CAS  PubMed  Google Scholar 

  • Telese F, Ma Q, Perez PM, Notani D, Oh S, Li W, et al. LRP8-Reelin-regulated neuronal enhancer signature underlying learning and memory formation. Neuron. 2015;86(3):696–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, et al. Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell. 1999;97(6):689–701.

    Article  CAS  PubMed  Google Scholar 

  • Trotter J, Lee GH, Kazdoba TM, Crowell B, Domogauer J, Mahoney HM, et al. Dab1 is required for synaptic plasticity and associative learning. J Neurosci. 2013;33(39):15652–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tueting P, Doueiri MS, Guidotti A, Davis JM, Costa E. Reelin down-regulation in mice and psychosis endophenotypes. Neurosci Biobehav Rev. 2006;30(8):1065–77.

    Article  CAS  PubMed  Google Scholar 

  • Utsunomiya-Tate N, Kubo K, Tate S, Kainosho M, Katayama E, Nakajima K, Mikoshiba K. Reelin molecules assemble together to form a large protein complex, which is inhibited by the function-blocking CR-50 antibody. Proc Natl Acad Sci U S A. 2000;97(17):9729–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ventruti A, Kazdoba TM, Niu S, D’Arcangelo G. Reelin deficiency causes specific defects in the molecular composition of the synapses in the adult brain. Neuroscience. 2011;189:32–42.

    Article  CAS  PubMed  Google Scholar 

  • Ware ML, Fox JW, González JL, Davis NM, Lambert de Rouvroit C, Russo CJ, et al. Aberrant splicing of a mouse disabled homolog, mdab1, in the scrambler mouse. Neuron. 1997;19(2):239–49.

    Article  CAS  PubMed  Google Scholar 

  • Weeber EJ, Beffert U, Jones C, Christian JM, Förster E, David Sweatt J, et al. Reelin and apoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem. 2002;277(42):39944–52.

    Article  CAS  PubMed  Google Scholar 

  • Won SJ, Kim SH, Xie L, Wang Y, Mao XO, Jin K, et al. Reelin-deficient mice show impaired neurogenesis and increased stroke size. Exp Neurol. 2006;198(1):250–9.

    Article  CAS  PubMed  Google Scholar 

  • Yasui N, Kitago Y, Beppu A, Kohno T, Morishita S, Gomi H, et al. Functional importance of covalent homodimer of reelin protein linked via its central region. J Biol Chem. 2011;286(40):35247–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoneshima H, Nagata E, Matsumoto M, Yamada M, Nakajima K, Miyata T, et al. A novel neurological mutant mouse, yotari, which exhibits reeler-like phenotype but expresses CR-50 antigen/Reelin. Neurosci Res. 1997;29(3):217–23.

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Assadi AH, Roceri M, Clark GD, D’Arcangelo G. Differential interaction of the Pafah1b alpha subunits with the Reelin transducer Dab1. Brain Res. 2009;1267:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Chai X, Förster E, Frotscher M. Reelin is a positional signal for the lamination of dentate granule cells. Development. 2004;131(20):5117–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Nakajima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hayashi, K., Inoue, S., Nakajima, K. (2018). Reelin. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6438-9_101808-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6438-9_101808-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6438-9

  • Online ISBN: 978-1-4614-6438-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics