Skip to main content

Calcium Dynamics in Neuronal Microdomains: Modeling, Stochastic Simulations, and Data Analysis

  • Reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Definition

Calcium is a key but a ubiquitous messenger in cell physiology. Yet direct electrophysiological or light imaging measurements are limited by the intrinsic small nano- to micrometer space where chemical reactions occur and also by the small number of molecules. Thus any fluorescence dye molecule added to measure the number of calcium ions can severely perturb the endogenous chemical reactions. Over the years, an alternative approach based on modeling, mathematical analysis, and numerical simulations has demonstrated that it can be used to obtain precise quantitative results about the order of magnitude, rate constants, the role of the cell geometry, and flux regulation across scales from channels to the cell level.

The aim of this ECN is to present physical models of calcium ions from the molecular description to the concentration level and to present the mathematical tools used to analyze the model equations. From such analysis, asymptotic formulas can be obtained, which are...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews S, Bray D (2004) Stochastic simulation of chemical reactions with spatial resolution and single molecule detail. Phys Biol 1(3-4):137–151

    CAS  PubMed  Google Scholar 

  • Batsilas L, Berezhkovskii AM, Shvartsman SY (2003) Stochastic model of autocrine and paracrine signals in cell culture assays. Biophys J 85:3659–3665

    PubMed Central  CAS  PubMed  Google Scholar 

  • Benazilla F (2000) The voltage sensor in voltage-dependent ion channels. Physiol Rev 80(2):555–592

    Google Scholar 

  • Berezhkovskii AM, Makhnovskii YA, Monine MI, Zitserman VY, Shvartsman SY (2004) Boundary homogenization for trapping by patchy surfaces. J Chem Phys 121(22):11390–11394

    CAS  PubMed  Google Scholar 

  • Berg HC, Purcell EM (1977) Physics of chemoreception. Biophys J 20(2):193–219

    PubMed Central  CAS  PubMed  Google Scholar 

  • Biess A, Korkotian E, Holcman D (2007) Diffusion in a dendritic spine: the role of geometry. Phys Rev E 76(2 Pt 1):021922

    CAS  Google Scholar 

  • Biess A, Korkotian E, Holcman D (2011) Barriers to diffusion on dendrites and estimation of calcium spread following synaptic inputs. PLoS Comput Biol 7(10):e1002182

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39

    CAS  PubMed  Google Scholar 

  • Blomberg F, Cohen RS, Siekevitz P (1977) The structure of postsynaptic densities isolated from dog cerebral cortex. II. Characterization and arrangement of some of the major proteins within the structure. J Cell Biol 74(1):204–225

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bressloff PC, Earnshaw BA (2009) A dynamical corral model of protein trafficking in spines. Biophys J 96:1786–1802

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Oxford University Press, New York

    Google Scholar 

  • Cheviakov AF, Ward MJ, Straube R (2010) An asymptotic analysis of the mean first passage time for narrow escape problems: Part II: the sphere. Multiscale Model Simulat 8(3):836–870

    Google Scholar 

  • Collins FC, Kimball GE (1949) Diffusion-controlled reaction rates. J Colloid Sci 4(7–8):425–437

    CAS  Google Scholar 

  • Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, London

    Google Scholar 

  • Crick F (1982) Do dendritic spines twitch? Trends Neurosci 5:44–46

    Google Scholar 

  • Dao Duc K, Holcman D (2010) Threshold activation for stochastic chemical reactions in microdomains. Phys Rev E 81(4 Pt 1):041107

    CAS  Google Scholar 

  • Dao Duc K, Holcman D (2012) Using default constraints of the spindle assembly checkpoints to estimate the associate chemical rates. BMC Biophys 5:1

    PubMed Central  PubMed  Google Scholar 

  • Eisenberg RS, Klosek MM, Schuss Z (1995) Diffusion as a chemical reaction: stochastic trajectories between fixed concentrations. J Chem Phys 102:1767–1780

    CAS  Google Scholar 

  • Erban R, Chapman J (2007) Reactive boundary conditions for stochastic simulations of reaction diffusion processes. Phys Biol 4:16–28

    CAS  PubMed  Google Scholar 

  • Fischer M, Kaech S, Knutti D, Matus A (1998) Rapid actin-based plasticity in dendritic spines. Neuron 20(5):847–854

    CAS  PubMed  Google Scholar 

  • Flegg M, Chapman J, Erban R (2012) Two regime method for optimizing stochastic reaction-diffusion simulations. J R Soc Interface 9(70):859–868

    PubMed Central  PubMed  Google Scholar 

  • Franz B, Flegg M, Chapman J, Erban R (2013) Multiscale reaction-diffusion algorithms: PDE-assisted brownian dynamics. SIAM J Appl Math 73(3):1224–1247

    Google Scholar 

  • Ghosh PK, Hanggi P, Marchesoni F, Nori F, Schmid G (2012) Brownian transport in corrugated channels with inertia. Phys Rev E 86(2):021112

    CAS  Google Scholar 

  • Goldberg JH, Tamas G, Aronov D, Yuste R (2003) Calcium microdomains in aspiny dendrites. Neuron 40(4):807–821

    CAS  PubMed  Google Scholar 

  • Guerrier C, Holcman D (2014a) Activation of CaMKII in dendritic spines: a stochastic model (in preparation)

    Google Scholar 

  • Guerrier C, Holcman D (2014b) The dire strait time for hidden targets (in preparation)

    Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, Massachusetts

    Google Scholar 

  • Holcman D, Schuss Z (2004) Modeling calcium dynamics in dendritic spines. SIAM J Appl Math 65(3):1006–1026

    Google Scholar 

  • Holcman D, Schuss Z (2005) Stochastic chemical reactions in microdomains. J Chem Phys 122:114710

    CAS  PubMed  Google Scholar 

  • Holcman D, Schuss Z (2011) Diffusion laws in dendritic spines. J Math Neuroscience 1:10

    Google Scholar 

  • Holcman D, Schuss Z (2012) Brownian motion in dire straits. SIAM J Multiscale Model Simulat 1:10

    Google Scholar 

  • Holcman D, Schuss Z (2013) Control of flux by narrow passages and hidden targets in cellular biology. Phys Progr Report 76(7) 074601

    Google Scholar 

  • Holcman D, Schuss Z (2014) The narrow escape problem. SIAM Rev 56(2): 213–257

    Google Scholar 

  • Holcman D, Triller A (2006) Modeling synaptic dynamics driven by receptor lateral diffusion. Biophys J 91(7):2405–2415

    Google Scholar 

  • Holcman D, Schuss Z, Korkotian E (2004) Calcium dynamics in dendritic spines and spine motility. Biophys J 87:81–91

    PubMed Central  CAS  PubMed  Google Scholar 

  • Holcman D, Marchewka A, Schuss Z (2005) The survival probability of diffusion with trapping in cellular biology. Phys Rev E, Stat Nonlin Soft Matter Phys 72(3):031910

    Google Scholar 

  • Holcman D, Hoze N, Schuss Z (2011) Narrow escape through a funnel and effective diffusion on a crowded membrane. Phys Rev E 84:021906

    CAS  Google Scholar 

  • Holcman D, Daoduc K, Burrage K (2014) Successful delivery of pten in the cytoplasm escaping from micrornas degradation (pre-print)

    Google Scholar 

  • Holderith N, Lorincz A, Katona G, Rózsa B, Kulik A, Masahoki W, Nusser Z (2013) Release probability of hippocampal glutamatergic terminals scales with the size of the active zone. Nat Neurosci 15(7):988–997

    Google Scholar 

  • Koch C (1999) Biophysics of computation, information processing in single neurons. Oxford University Press, New York

    Google Scholar 

  • Kochubey O, Lou X, Schneggenburger R (2011) Regulation of transmitter release by ca2+ and synaptotagmin: insight from large synapse. Trends Neuro 34(5):237–46

    CAS  Google Scholar 

  • Korkotian E, Segal M (2006) Spatially confined diffusion of calcium in dendrites of hippocampal neurons revealed by flash photolysis of caged calcium. Cell Calcium 40(5–6):441–449

    CAS  PubMed  Google Scholar 

  • Korkotian E, Holcman D, Segal M (2004) Dynamic regulation of spine-dendrite coupling in cultured hippocampal neurons. Eur J Neuroscience 20(10):2649–2663

    Google Scholar 

  • Lamm G, Schulten K (1983) Extended brownian dynamics. II. Reactive, nonlinear diffusion. J Chem Phys 78(5):2713–2734

    CAS  Google Scholar 

  • Landau LD, Lifshitz EM (1975) Fluid mechanics. Pergamon Press, Elmsford

    Google Scholar 

  • Lee SR, Escobedo-Lozoya J, Szatmari EM, Yasuda R (2009) Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458(7236):299

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lisman J, Yasuda R, Raghavachari S (2012) Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci 13(3):169–182

    PubMed Central  CAS  PubMed  Google Scholar 

  • Majewska A, Tashiro A, Yuste R (2000) Regulation of spine calcium dynamics by rapid spine motility. J Neurosci 20(22):8262–8268

    CAS  PubMed  Google Scholar 

  • Malenka RC, Nicoll RA (1999) Long-term potentiation–a decade of progress? Science 285(5435):1870–1874

    CAS  PubMed  Google Scholar 

  • Matkowsky BJ, Schuss Z, Ben-Jacob E (1982) A singular perturbation approach to Kramers’ diffusion problem. SIAM J Appl Math 42(4):835–849

    Google Scholar 

  • Matveev V, Zucker RS, Sherman A (2004) Facilitation through buffer saturation: constraints on endogenous buffering properties. Biophys J 86(5):2691–2709

    PubMed Central  CAS  PubMed  Google Scholar 

  • Monine MI, Haugh JM (2005) Reactions on cell membranes: comparison of continuum theory and Brownian dynamics simulations. J Chem Phys 123(7):074908

    PubMed Central  PubMed  Google Scholar 

  • Neher E (2010) Complexin: does it deserve its name ? Neuron Prev 68(5):803–806

    CAS  Google Scholar 

  • Pontryagin LS, Andronovn AA, Vitt AA (1933) On the statistical treatment of dynamical systems. J Theor Exper Phys (Russian) 3:165–180

    Google Scholar 

  • Pontryagin LS, Andronov AA, Vitt AA (1989) On the statistical treatment of dynamical systems. Noise Nonlinear Dynamics 1:329–340

    Google Scholar 

  • Roux B, Prod’hom B, Karplus M (1995) Ion transport in the gramicidin channel: molecular dynamics study of single and double occupancy. Biophys J 68(3):876–892

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sabatini BL, Maravall M, Svoboda K (2001) Ca2+ signalling in dendritic spines. Curr Opin Neurobiol 11(3):349–356

    CAS  PubMed  Google Scholar 

  • Schneggenburger R, Han Y, Kochubey O (2012) Ca2+ channels and transmitter release at active zone. Cell Calcium 52(3-4):199–207

    CAS  PubMed  Google Scholar 

  • Schuss Z (1980) Theory and applications of stochastic differential equations, Wiley series in probability and statistics. Wiley, New York

    Google Scholar 

  • Schuss Z (2010a) Diffusion and stochastic processes: an analytical approach. Springer, New York

    Google Scholar 

  • Schuss Z (2010b) Theory and applications of stochastic processes, an analytical approach, vol 170, Springer series on applied mathematical sciences. Springer, New York

    Google Scholar 

  • Schuss Z, Holcman D (2013) The narrow escape problem and its applications in cellular and molecular biology. SIAM Rev, SIREV

    Google Scholar 

  • Schuss Z, Holcman D (2014) Time scales of Diffusion for Molecular and Cellular processes, J.Phys A: Mathematical and Theoretical 47(17), 173001

    Google Scholar 

  • Schuss Z, Singer A, Holcman D (2007) The narrow escape problem for diffusion in cellular microdomains. Proc Natl Acad Sci USA 104(41):16098–16103

    PubMed Central  CAS  PubMed  Google Scholar 

  • Singer A, Schuss Z, Osipov A, Holcman D (2008) Partially reflected diffusion. SIAM J Appl Math 68:98–108

    CAS  Google Scholar 

  • Svoboda K, Tank DW, Denk W (1996) Direct measurement of coupling between dendritic spines and shafts. Science 272(5262):716–719

    CAS  PubMed  Google Scholar 

  • Taflia A, Holcman D (2011) Estimating the synaptic current in a multiconductance ampa receptor model. Biophys J 101:781–792

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tai K, Bond SD, MacMillan HR, Baker NA, Holst MJ, McCammon JA (2003) Finite element simulations of acetylcholine diffusion in neuromuscular junctions. Biophys J 84(4):2234–2241

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zucker RS (1993) Calcium and transmitter release. J Physiol Paris 87(1):25–36

    CAS  PubMed  Google Scholar 

  • Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405

    CAS  PubMed  Google Scholar 

  • Zwanzig R (1990) Diffusion-controlled ligand binding to spheres partially covered by receptors: an effective medium treatment. Proc Natl Acad Sci U S A 87:5856–5857

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Holcman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Guerrier, C., Korkotian, E., Holcman, D. (2015). Calcium Dynamics in Neuronal Microdomains: Modeling, Stochastic Simulations, and Data Analysis. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6675-8_179

Download citation

Publish with us

Policies and ethics