Skip to main content

Vertebrate Pattern Generation: Overview

  • Reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 214 Accesses

Synonyms

CPG; Neural oscillator, Central pattern generator; Rhythm generator

Definition

Central pattern generator (CPG) is a limited neural network that can produce an organized rhythmic motor output in the absence of sensory and descending inputs from other parts of the nervous system (Marder and Calabrese 1996).

Detailed Description

Vertebrate Central Pattern Generators

The central and peripheral nervous systems in vertebrates contain many types of central pattern generators (CPGs) that generate and control various rhythmic movements. These CPGs control many important functions, including different forms of locomotion, such as swimming, walking, running, and flying, and non-locomotor processes and behaviors, such as breathing, swallowing, chewing, mastication, scratching, whisking (in rodents), and singing (in birds). This review focuses on computational models of locomotion and breathing in mammals, which are briefly observed below. Other known models of vertebrate CPGs include CPGs...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdala AP, Rybak IA, Smith JC, Paton JF (2009) Abdominal expiratory activity in the rat brain stem-spinal cord in situ: patterns, origins and implications for respiratory rhythm generation. J Physiol 587:3539–3559

    PubMed Central  CAS  PubMed  Google Scholar 

  • Akay T, Acharya HJ, Fouad K, Pearson KG (2006) Behavioral and electromyographic characterization of mice lacking EphA4 receptors. J Neurophysiol 96:642–651

    CAS  PubMed  Google Scholar 

  • Amrollah E, Henaff P (2010) On the role of sensory feedbacks in Rowat–Selverston CPG to improve robot legged locomotion. Front Neurorobot 4:113

    PubMed Central  PubMed  Google Scholar 

  • Balis UJ, Morris KF, Koleski J, Lindsey BG (1994) Simulations of a ventrolateral medullary neural network for respiratory rhythmogenesis inferred from spike train cross-correlation. Biol Cybern 70:311–327

    CAS  PubMed  Google Scholar 

  • Bianchi AL, Denavitsaubie M, Champagnat J (1995) Central control of breathing in mammals: neuronal circuitry, membrane properties, and neurotransmitters. Physiol Rev 75:1–45

    CAS  PubMed  Google Scholar 

  • Botros SM, Bruce EN (1990) Neural network implementation of a three-phase model of respiratory rhythm generation. Biol Cybern 63:143–153

    CAS  PubMed  Google Scholar 

  • Brocard F, Shevtsova NA, Bouhadfane M, Tazerart S, Heinemann U, Rybak IA, Vinay L (2013) Activity-dependent changes in extracellular Ca2+ and K+ reveal pacemakers in the spinal locomotor-related network. Neuron 77:1047–1054

    PubMed Central  CAS  PubMed  Google Scholar 

  • Butera RJ, Rinzel J, Smith JC (1999a) Models of respiratory rhythm generation in the pre-Bötzinger complex. II. Populations of coupled pacemaker neurons. J Neurophysiol 82:398–415

    PubMed  Google Scholar 

  • Butera RJ, Rinzel J, Smith JC (1999b) Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. J Neurophysiol 82:382–397

    PubMed  Google Scholar 

  • Chen Y, Bauer C, Burmeister O, Rupp R, Mikut R (2007) First steps to future applications of spinal neural circuit models in neuroprostheses and humanoid robots. In: Proceedings of 17 workshop computational intelligence, Dortmund

    Google Scholar 

  • Cohen MI (1979) Neurogenesis of respiratory rhythm in the mammal. Physiol Rev 59:1105–1173

    CAS  PubMed  Google Scholar 

  • Crone SA, Quinlan KA, Zagoraiou L, Droho S, Restrepo CE, Lundfald L, Endo T, Setlak J, Jessell TM, Kiehn O, Sharma K (2008) Genetic ablation of V2a ipsilateral interneurons disrupts left-right locomotor coordination in mammalian spinal cord. Neuron 60:70–83

    CAS  PubMed  Google Scholar 

  • Crone SA, Zhong G, Harris-Warrick R, Sharma K (2009) In mice lacking V2a interneurons, gait depends on speed of locomotion. J Neurosci 29:7098–7109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Duffin J (1991) A model of respiratory rhythm generation. Neuroreport 2:623–626

    CAS  PubMed  Google Scholar 

  • Dunmyre JR, Del Negro CA, Rubin JE (2011) Interactions of persistent sodium and calcium-activated nonspecific cationic currents yield dynamically distinct bursting regimes in a model of respiratory neurons. J Comput Neurosci 31:305–328

    PubMed Central  PubMed  Google Scholar 

  • Feldman JL, Del Negro CA (2006) Looking for inspiration: new perspectives on respiratory rhythm. Nat Rev Neurosci 7:232–242

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gosgnach S (2011) The role of genetically-defined Interneurons in generating the mammalian locomotor rhythm. Integr Comp Biol 51:903–912

    PubMed  Google Scholar 

  • Goulding M (2009) Networks controlling vertebrate locomotion: moving in a new direction. Nat Rev Neurosci 10:507–518

    PubMed Central  CAS  PubMed  Google Scholar 

  • Graham Brown T (1914) On the fundamental activity of the nervous centres: together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J Physiol 48:18–41

    PubMed Central  Google Scholar 

  • Grillner S (1981) Control of locomotion in bipeds, tetrapods, and fish. In: Brookhart JM, Mountcastle VB (eds) Handbook of physiology. The nervous system. Motor control, Sect 1, vol II. American Physiological Society, Bethesda, pp 1179–1236

    Google Scholar 

  • Grillner S, Kozlov A, Dario P, Stefanini C, Menciassi A, Lansner A, Hellgren KJ (2007) Modeling a vertebrate motor system: pattern generation, steering and control of body orientation. Prog Brain Res 165:221–234

    PubMed  Google Scholar 

  • Guertin PA (2009) The mammalian central pattern generator for locomotion. Brain Res Rev 62:45–56

    PubMed  Google Scholar 

  • Hao ZZ, Spardy LE, Nguyen EB, Rubin JE, Berkowitz A (2011) Strong interactions between spinal cord networks for locomotion and scratching. J Neurophysiol 106:1766–1781

    PubMed  Google Scholar 

  • Hill SA, Liu X-P, Borla MA, José JV, O’Malley DM (2005) Neurokinematic modeling of complex swimming patterns of the larval zebrafish. Neurocomputing 65–66:61–68

    Google Scholar 

  • Ijspeert AJ (2001) A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biol Cybern 84:331–348

    CAS  PubMed  Google Scholar 

  • Janczewski WA, Feldman JL (2006) Distinct rhythm generators for inspiration and expiration in the juvenile rat. J Physiol 570:407–420

    PubMed Central  CAS  PubMed  Google Scholar 

  • Janczewski WA, Onimaru H, Homma I, Feldman JL (2002) Opioid-resistant respiratory pathway from the preinspiratory neurones to abdominal muscles: in vivo and in vitro study in the newborn rat. J Physiol 545:1017–1026

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jankowska E, Jukes MGM, Lund S, Lundberg A (1967a) The effect of DOPA on the spinal cord: V. Reciprocal organization of pathways transmitting excitatory action to alpha motoneurones of flexors and extensors. Acta Physiol Scand 70:369–388

    CAS  PubMed  Google Scholar 

  • Jankowska E, Jukes MGM, Lund S, Lundberg A (1967b) The effect of DOPA on the spinal cord: VI. Half-centre organization of interneurones transmitting effects from the flexor reflex afferents. Acta Physiol Scand 70:389–402

    CAS  PubMed  Google Scholar 

  • Jasinski PE, Molkov YI, Shevtsova NA, Smith JC, Rybak IA (2013) Sodium and calcium mechanisms of rhythmic bursting in excitatory neural networks of the pre-Bötzinger complex: a computational modelling study. Eur J Neurosci 37:212–230

    PubMed Central  PubMed  Google Scholar 

  • Kiehn O (2011) Development and functional organization of spinal locomotor circuits. Curr Opin Neurobiol 21:100–109

    CAS  PubMed  Google Scholar 

  • Knudsen DP, Arsenault JT, Hill SA, O’Malley DM, José JV (2006) Locomotor network modeling based on identified zebrafish neurons. Neurocomputing 69:1169–1174

    Google Scholar 

  • Koizumi H, Smith JC (2008) Persistent Na+ and K+−dominated leak currents contribute to respiratory rhythm generation in the pre-Bötzinger complex in vitro. J Neurosci 28:1773–1785

    CAS  PubMed  Google Scholar 

  • Kullander K, Butt SJ, Lebret JM, Lundfald L, Restrepo CE, Rydstrom A, Klein R, Kiehn O (2003) Role of EphA4 and EphrinB3 in local neuronal circuits that control walking. Science 299:1889–1892

    CAS  PubMed  Google Scholar 

  • Lanuza GM, Gosgnach S, Pierani A, Jessell TM, Goulding M (2004) Genetic identification of spinal interneurons that coordinate left-right locomotor activity necessary for walking movements. Neuron 42:375–386

    CAS  PubMed  Google Scholar 

  • Lindsey BG, Rybak IA, Smith JC (2012) Computational models and emergent properties of respiratory neural networks. Compr Physiol 2:1619–1670

    PubMed Central  PubMed  Google Scholar 

  • Lundfald L, Restrepo CE, Butt SJ, Peng CY, Droho S, Endo T, Zeilhofer HU, Sharma K, Kiehn O (2007) Phenotype of V2-derived interneurons and their relationship to the axon guidance molecule EphA4 in the developing mouse spinal cord. Eur J Neurosci 26:2989–3002

    PubMed  Google Scholar 

  • Maeda Y (2008) A hardware neuronal network model of two-level central pattern generator. Trans JPN Soc Med Biol Eng 46:496–504

    Google Scholar 

  • Marder E, Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76:687–717

    CAS  PubMed  Google Scholar 

  • Markin SN, Klishko AN, Shevtsova NA, Lemay MA, Prilutsky BI, Rybak IA (2010) Afferent control of locomotor CPG: insights from a simple neuro-mechanical model. Ann NY Acad Sci 1198:21–34

    PubMed  Google Scholar 

  • McCrea DA, Rybak IA (2007) Modeling the mammalian locomotor CPG: insights from mistakes and perturbations. Prog Brain Res 165:235–253

    PubMed Central  PubMed  Google Scholar 

  • McCrea DA, Rybak IA (2008) Organization of mammalian locomotor rhythm and pattern generation. Brain Res Rev 57:134–146

    PubMed Central  PubMed  Google Scholar 

  • Molkov YI, Abdala AP, Bacak BJ, Smith JC, Paton JFR, Rybak IA (2010) Late-expiratory activity: emergence and interactions with the respiratory CPG. J Neurophysiol 104:2713–2729

    PubMed Central  PubMed  Google Scholar 

  • Ogilvie MD, Gottschalk A, Anders K, Richter DW, Pack AI (1992) A network model of respiratory rhythmogenesis. Am J Physiol Regul Integr Comp Physiol 263:R962–R975

    CAS  Google Scholar 

  • Onimaru H, Homma I (1987) Respiratory rhythm generator neurons in medulla of brain stem-spinal cord preparation from newborn rat. Brain Res 403:380–384

    CAS  PubMed  Google Scholar 

  • Onimaru H, Arata A, Homma I (1988) Primary respiratory rhythm generator in the medulla of brain stem-spinal cord preparation from newborn rat. Brain Res 445:314–324

    CAS  PubMed  Google Scholar 

  • Onimaru H, Homma I (2003) A novel functional neuron group for respiratory rhythm generation in the ventral medulla. J Neurosci 23:1478–1486

    CAS  PubMed  Google Scholar 

  • Orlovsky GN, Deliagina T, Grillner S (1999) Neuronal control of locomotion: from mollusc to man. Oxford University Press, New York

    Google Scholar 

  • Pace RW, Mackay DD, Feldman JL, Del Negro CA (2007) Inspiratory bursts in the preBötzinger complex depend on a calcium-activated non-specific cation current linked to glutamate receptors in neonatal mice. J Physiol 582:113–125

    PubMed Central  CAS  PubMed  Google Scholar 

  • Paton JFR (1996) A working heart-brainstem preparation of the mouse. J Neurosci Methods 65:63–68

    CAS  PubMed  Google Scholar 

  • Rabe Bernhardt N, Memic F, Gezelius H, Thiebes AL, Vallstedt A, Kullander K (2012) DCC mediated axon guidance of spinal interneurons is essential for normal locomotor central pattern generator function. Dev Biol 366:279–289

    CAS  PubMed  Google Scholar 

  • Rabe N, Gezelius H, Vallstedt A, Memic F, Kullander K (2009) Netrin-1-dependent spinal interneuron subtypes are required for the formation of left-right alternating locomotor circuitry. J Neurosci 29:15642–15649

    CAS  PubMed  Google Scholar 

  • Restrepo CE, Margaryan G, Borgius L, Lundfald L, Sargsyan D, Kiehn O (2011) Change in the balance of excitatory and inhibitory midline fiber crossing as an explanation for the hopping phenotype in EphA4 knockout mice. Eur J Neurosci 34:1102–1112

    PubMed  Google Scholar 

  • Richter DW (1996) Neural regulation of respiration: rhythmogenesis and afferent control. In: Gregor R, Windhorst U (eds) Comprehensive human physiology, vol 2. Springer, Berlin, pp 2079–2095

    Google Scholar 

  • Rossignol S (1996) Neural control of stereotypic limb movements. In: Rowell LB, Shepherd J (eds) Handbook of physiology, Sect 12. American Physiological Society, Bethesda, pp 173–216

    Google Scholar 

  • Rubin JE, Hayes JA, Mendenhall JL, Del Negro CA (2009a) Calcium-activated nonspecific cation current and synaptic depression promote network-dependent burst oscillations. Proc Natl Acad Sci USA 106:2939–2944

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rubin JE, Shevtsova NA, Ermentrout GB, Smith JC, Rybak IA (2009b) Multiple rhythmic states in a model of the respiratory CPG. J Neurophysiol 101:2146–2165

    PubMed Central  PubMed  Google Scholar 

  • Rubin JE, Bacak BJ, Molkov YI, Shevtsova NA, Smith JC, Rybak IA (2011) Interacting oscillations in neural control of breathing: modeling and qualitative analysis. J Comput Neurosci 30:607–6322

    PubMed Central  PubMed  Google Scholar 

  • Rybak IA, Paton JFR, Schwaber JS (1997) Modeling neural mechanisms for genesis of respiratory rhythm and pattern. II. Network models of the central respiratory pattern generator. J Neurophysiol 77:2007–2026

    CAS  PubMed  Google Scholar 

  • Rybak IA, Paton JFR, Rogers RF, St. John WM (2002) Generation of the respiratory rhythm: state-dependency and switching. Neurocomputing 44–46:603–612

    Google Scholar 

  • Rybak IA, Shevtsova NA, Paton JFR, Dick TE, St. John WM, Morschel M, Dutschmann M (2004) Modeling the ponto-medullary respiratory network. Respir Physiol Neurobiol 143:307–319

    CAS  PubMed  Google Scholar 

  • Rybak IA, Shevtsova NA, Lafreniere-Roula M, McCrea DA (2006a) Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. J Physiol 577:617–639

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rybak IA, Stecina K, Shevtsova NA, McCrea DA (2006b) Modelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation. J Physiol 577:641–658

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rybak IA, Abdala APL, Markin SN, Paton JFR, Smith JC (2007) Spatial organization and state-dependent mechanisms for respiratory rhythm and pattern generation. Prog Brain Res 165:201–220

    PubMed Central  PubMed  Google Scholar 

  • Rybak IA, Shevtsova NA, Kiehn O (2013) Modelling genetic reorganizations in the mouse spinal cord affecting left-right coordination during locomotion. J Physiol 591:5491–5508

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sherwood WE, Harris-Warrick R, Guckenheimer J (2011) Synaptic patterning of left-right alternation in a computational model of the rodent hindlimb central pattern generator. J Comput Neurosci 30:323–360

    PubMed  Google Scholar 

  • Skinner FK, Kopell N, Marder E (1994) Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks. J Comput Neurosci 1:69–87

    CAS  PubMed  Google Scholar 

  • Smith JC, Feldman JL (1987) In vitro brainstem-spinal cord preparations for study of motor systems for mammalian respiration and locomotion. J Neurosci Methods 21:321–333

    CAS  PubMed  Google Scholar 

  • Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL (1991) Pre-Bötzinger complex: a brain stem region that may generate respiratory rhythm in mammals. Science 254:726–729

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smith JC, Butera RJ, Koshiya N, Del Negro C, Wilson CG, Johnson SM (2000) Respiratory rhythm generation in neonatal and adult mammals: the hybrid pacemaker-network model. Respir Physiol 122:131–147

    CAS  PubMed  Google Scholar 

  • Smith JC, Abdala AP, Koizumi H, Rybak IA, Paton JF (2007) Spatial and functional architecture of the mammalian brain stem respiratory network: a hierarchy of three oscillatory mechanisms. J Neurophysiol 98:3370–3387

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smith JC, Abdala AP, Borgmann A, Rybak IA, Paton JF (2013) Brainstem respiratory networks: building blocks and microcircuits. Trends Neurosci 36:152–162

    PubMed Central  CAS  PubMed  Google Scholar 

  • Spardy LE, Markin SN, Shevtsova NA, Prilutsky BI, Rybak IA, Rubin JE (2011a) A dynamical systems analysis of afferent control in a neuromechanical model of locomotion: I. Rhythm generation. J Neural Eng 8:065003

    PubMed Central  PubMed  Google Scholar 

  • Spardy LE, Markin SN, Shevtsova NA, Prilutsky BI, Rybak IA, Rubin JE (2011b) A dynamical systems analysis of afferent control in a neuromechanical model of locomotion: II. Phase asymmetry. J Neural Eng 8:065004

    PubMed Central  PubMed  Google Scholar 

  • Stuart DG, Hultborn H (2008) Thomas Graham Brown (1882–1965), Anders Lundberg (1920–), and the neural control of stepping. Brain Res Rev 59:74–95

    PubMed  Google Scholar 

  • Tabak J, Rinzel J, O’Donovan MJ (2001) The role of activity-dependent network depression in the expression and self-regulation of spontaneous activity in the developing spinal cord. J Neurosci 21:8966–8978

    CAS  PubMed  Google Scholar 

  • Talpalar AE, Bouvier J, Borgius L, Fortin G, Pierani A, Kiehn O (2013) Dual mode operation of neuronal networks involved in left-right alternation. Nature 500:85–88

    CAS  PubMed  Google Scholar 

  • Toporikova N, Butera RJ (2011) Two types of independent bursting mechanisms in inspiratory neurons: an integrative model. J Comput Neurosci 30:515–528

    PubMed Central  PubMed  Google Scholar 

  • Vallstedt A, Kullander K (2013) Dorsally derived spinal interneurons in locomotor circuits. Ann NY Acad Sci 1279:32–42

    CAS  PubMed  Google Scholar 

  • Wang X-J, Rinzel J (1992) Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comput 4:84–97

    Google Scholar 

  • Whelan PJ (2010) Shining light into the black box of spinal locomotor networks. Philos Trans R Soc Lond B Biol Sci 365:2383–2395

    PubMed Central  PubMed  Google Scholar 

  • Wolf E, Soffe S, Roberts A (2009) Longitudinal neuronal organization and coordination in a simple vertebrate: a continuous, semi-quantitative computer model of the central pattern generator for swimming in young frog tadpoles. J Comput Neurosci 27:291–308

    PubMed Central  PubMed  Google Scholar 

  • Zagoraiou L, Akay T, Martin JF, Brownstone RM, Jessell TM, Miles GB (2009) A cluster of cholinergic premotor interneurons modulates mouse locomotor activity. Neuron 64:645–662

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Narayan S, Geiman E, Lanuza GM, Velasquez T, Shanks B, Akay T, Dyck J, Pearson K, Gosgnach S, Fan CM, Goulding M (2008) V3 spinal neurons establish a robust and balanced locomotor rhythm during walking. Neuron 60:84–96

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhong G, Shevtsova NA, Rybak IA, Harris-Warrick RM (2012) Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization. J Physiol 590:4735–4759

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Rybak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Rybak, I. (2015). Vertebrate Pattern Generation: Overview. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6675-8_758

Download citation

Publish with us

Policies and ethics