Skip to main content

Neuron-Glial Interactions

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Synonyms

Axon-glial signaling; Computational glioscience; Microglia modeling; Neuron-glial interaction modeling; Synapse-astrocyte bidirectional signaling

Definition

Dependence of neuronal function on glial cells and vice versa, which consists of the interplay of potentially multiple signals that can be both of neuronal and of glial origin. This interplay may be facilitated by the specific arrangement of neurons versus glia in different brain areas and occurs on time scales extending from milliseconds to months, as well as on spatial scales ranging from subcellular and synaptic levels to those of networks and whole-brain structures.

Detailed description

Most animals share the ability to move in response to external stimuli, which results from having developed complex neural structures that allow for sophisticated processing of sensory information. From a phylogenetic perspective, as the nervous system changed from a simple net-like structure, such as in jellyfish (Cnidara), to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allam SL, Ghaderi VS, Bouteiller JMC, Legendre A, Nicolas A, Greget R, Bischoff S, Baudry M, Berger TW (2012) A computational model to investigate astrocytic glutamate uptake influence on synaptic transmission and neuronal spiking. Front Comput Neurosci 6:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Allaman I, Belanger M, Magistretti PJ (2011) Astrocyte–neuron metabolic relationships: for better and for worse. Trends Neurosci 34(2):76–87

    Article  CAS  PubMed  Google Scholar 

  • Allen NJ (2013) Role of glia in developmental synapse formation. Curr Opin Neurobiol 23(6):1027–1033

    Article  CAS  PubMed  Google Scholar 

  • Alvarellos-González A, Pazos A, Porto-Pazos AB (2012) Computational models of neuron-astrocyte interactions lead to improved efficacy in the performance of neural networks. Comput Math Methods Med 2012:476,324

    Article  Google Scholar 

  • Amzica F, Massimini M, Manfridi A (2002) Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo. J Neurosci 22(3):1042–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson WD, Makadia HK, Greenhalgh AD, Schwaber JS, David S, Vadigepalli R (2015) Computational modeling of cytokine signaling in microglia. Mol BioSyst 11(12):3332–3346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arancibia-Carcamo IL, Ford MC, Cossell L, Ishida K, Tohyama K, Attwell D (2017) Node of Ranvier length as a potential regulator of myelinated axon conduction speed. elife 6:e23,329

    Article  Google Scholar 

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG (1998) Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur J Neurosci 10:2129–2142

    Article  CAS  PubMed  Google Scholar 

  • Araque A, Carmignoto G, Haydon PG, Oliet SHR, Robitaille R, Volterra A (2014) Gliotransmitters travel in time and space. Neuron 81(4):728–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attwell D, Buchan AM, Charpak S, Lauritzen M, MacVicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468(7321):232–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bains JS, Oliet SHR (2007) Glia: they make your memories stick! Trends Neurosci 30(8):417–424

    Article  CAS  PubMed  Google Scholar 

  • Barbour B (2001) An evaluation of synapse independence. J Neurosci 21(20):7969–7984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazargani N, Attwell D (2016) Astrocyte calcium signaling: The third wave. Nat Neurosci 19(2):182–189

    Google Scholar 

  • Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (2004) Potassium model for slow (2–3 Hz) in vivo neocortical paroxysmal oscillations. J Neurophysiol 92(2):1116–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beattie E, Stellwagen D, Morishita W, Bresnahan J, Ha B, Von Zastrow M, Beattie M, Malenka R (2002) Control of synaptic strength by glial TNFα. Science 295(5563):2282–2285

    Google Scholar 

  • Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A (2001) CXCR4-activated astrocyte glutamate release via TNFα: amplification by microglia triggers neurotoxicity. Nat Neurosci 4(7):702–710

    Google Scholar 

  • Bienenstock E, Cooper L, Munro P (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2(1):32–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bindocci E, Savtchouk I, Liaudet N, Becker D, Carriero G, Volterra A (2017) Three-dimensional Ca2+ imaging advances understanding of astrocyte biology. Science 356:6339

    Google Scholar 

  • Brawek B, Garaschuk O (2017) Monitoring in vivo function of cortical microglia. Cell Calcium 64:109–117

    Article  CAS  PubMed  Google Scholar 

  • Brawek B, Liang Y, Savitska D, Li K, Fomin-Thunemann N, Kovalchuk Y, Zirdum E, Jakobsson J, Garaschuk O (2017) A new approach for ratiometric in vivo calcium imaging of microglia. Sci Rep 7(1):6030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brea J, Senn W, Pfister JP (2013) Matching recall and storage in sequence learning with spiking neural networks. J Neurosci 33(23):9565–9575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breslin K, Wade JJ, Wong-Lin K, Harkin J, Flanagan B, Van Zalinge H, Hall S, Walker M, Verkhratsky A, McDaid L (2018) Potassium and sodium microdomains in thin astroglial processes: a computational model study. PLoS Comput Biol 14(5):e1006,151

    Article  CAS  Google Scholar 

  • Bullock T, Horridge GA (1965) Structure and function in the nervous systems of invertebrates. Freeman, San Francisco

    Google Scholar 

  • Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocyte in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22(1):183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butt AM (2013) Structure and function of oligodendrocytes. In: Neuroglia. Oxford University Press, Oxford, pp 62–73

    Google Scholar 

  • Carr CE, Konishi M (1990) A circuit for detection of interaural time differences in the brain stem of the barn owl. J Neurosci 10(10):3227–3246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr CE, Soares D (2002) Evolutionary convergence and shared computational principles in the auditory system. Brain Behav Evol 59(5–6):294–311

    Article  CAS  PubMed  Google Scholar 

  • Carr CE, Soares D, Parameshwaran S, Perney T (2001) Evolution and development of time coding systems. Curr Opin Neurobiol 11(6):727–733

    Article  CAS  PubMed  Google Scholar 

  • Castro MA, Beltrán FA, Brauchi S, Concha II (2009) A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid. J Neurochem 110(2):423–440

    Article  CAS  PubMed  Google Scholar 

  • Chao CC, Hu S, Sheng WS, Peterson PK (1995) Tumor necrosis factor-alpha production by human fetal microglial cells: regulation by other cytokines. Dev Neurosci 17(2):97–105

    Article  CAS  PubMed  Google Scholar 

  • Chao TI, Rickmann M, Wolff JR (2002) The synapse-astrocyte boundary: an anatomical basis for an integrative role of glia in synaptic transmission. In: Volterra A, Magistretti PJ, Haydon PG (eds) The tripartite synapse: glia in synaptic transmission. Oxford University Press, New York, chap 1, pp 3–23

    Google Scholar 

  • Chen N, Sugihara H, Sharma J, Perea G, Petravicz J, Le C, Sur M (2012) Nucleus basalis enabled stimulus specific plasticity in the visual cortex is mediated by astrocytes. Proc Natl Acad Sci U S A 109(41):E2832–E2841

    Google Scholar 

  • Chever O, Djukic B, McCarthy KD, Amzica F (2010) Implication of Kir4.1 channel in excess potassium clearance: an in vivo study on anesthetized glial-conditional Kir4.1 knock-out mice. J Neurosci 30(47):15,769–15,777

    Article  CAS  Google Scholar 

  • Chvátal A, Anděrová M, Kirchhoff F (2007) Three-dimensional confocal morphometry–a new approach for studying dynamic changes in cell morphology in brain slices. J Anat 210(6):671–683

    Article  PubMed  PubMed Central  Google Scholar 

  • Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14(5):311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clements JD (1996) Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci 19(5):163–171

    Article  CAS  PubMed  Google Scholar 

  • Covelo A, Araque A (2018) Neuronal activity determines distinct gliotransmitter release from a single astrocyte. elife 7:e32,237

    Article  Google Scholar 

  • Cui Y, Yang Y, Ni Z, Dong Y, Cai G, Foncelle A, Ma S, Sang K, Tang S, Li Y, Berry H, Shengzi W, Hailan H (2018) Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature 554(7692):323

    Article  CAS  PubMed  Google Scholar 

  • D’Ambrosio R, Gordon DS, Winn HR (2002) Differential role of KIR channel and Na+/K+-pump in the regulation of extracellular K+ in rat hippocampus. J Neurophysiol 87(1):87–102

    Article  PubMed  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  • Danbolt NC, Lehre KP, Dehnes Y, Ullensvang K (2002) Transporters for synaptic transmitter on the glial cell plasma membrane. In: Volterra A, Magistretti PJ, Haydon PG (eds) The tripartite synapse: glia in synaptic transmission. Oxford University Press, New York, chap 1, pp 47–61

    Google Scholar 

  • De Pittà M (2019) Gliotransmitter exocytosis and its consequences on synaptic transmission. In: De Pittà M, Berry H (eds) Computational glioscience. Springer, Cham, Switzerland, chap 10, pp 245–287

    Google Scholar 

  • De Pittà M, Berry H (2019a) Computational glioscience. Springer, Cham, Switzerland

    Google Scholar 

  • De Pittà M, Berry H (2019b) A neuron–glial perspective for computational neuroscience. In: De Pittà M, Berry H (eds) Computational glioscience. Springer, Cham, Switzerland, chap 1, pp 3–35

    Google Scholar 

  • De Pittà M, Brunel N (2016) Modulation of synaptic plasticity by glutamatergic gliotransmission: a modeling study. Neural Plast 2016:7607924

    Google Scholar 

  • De Pittà M, Volman V, Berry H, Ben-Jacob E (2011) A tale of two stories: astrocyte regulation of synaptic depression and facilitation. PLoS Comput Biol 7(12):e1002,293

    Google Scholar 

  • De Pittà M, Brunel N, Volterra A (2015) Astrocytes: orchestrating synaptic plasticity? Neuroscience 323:43–61

    Article  PubMed  CAS  Google Scholar 

  • Debanne D, Campanac E, Bialowas A, Carlier E, Alcaraz G (2011) Axon physiology. Physiol Rev 91(2):555–602

    Article  CAS  PubMed  Google Scholar 

  • Deitmer JW, Rose CR (1996) pH regulation and proton signalling by glial cells. Prog Neurobiol 48(2):73–103

    Article  CAS  PubMed  Google Scholar 

  • Di Castro M, Chuquet J, Liaudet N, Bhaukaurally K, Santello M, Bouvier D, Tiret P, Volterra A (2011) Local Ca2+ detection and modulation of synaptic release by astrocytes. Nat Neurosci 14:1276–1284

    Google Scholar 

  • Diamond JS (2005) Deriving the glutamate clearance time course from transporter currents in CA1 hippocampal astrocytes: transmitter uptake gets faster during development. J Neurosci 25(11):2906–2916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62(6):649–671

    Article  CAS  PubMed  Google Scholar 

  • Durkee CA, Covelo A, Lines J, Kofuji P, Aguilar J, Araque A (2019) Gi/o protein-coupled receptors inhibit neurons but activate astrocytes and stimulate gliotransmission. Glia 67(6):1076–1093

    Google Scholar 

  • Ermentrout GB, Terman DH (2010) Mathematical foundations of neuroscience. Springer, New York

    Book  Google Scholar 

  • Eroglu C, Barres BA (2010) Regulation of synaptic connectivity by glia. Nature 468(7321):223–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fellin T, Pascual O, Gobbo S, Pozzan T, Haydon PG, Carmignoto G (2004) Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43:729–743

    Article  CAS  PubMed  Google Scholar 

  • Fields RD (2008) White matter in learning, cognition and psychiatric disorders. Trends Neurosci 31(7):361–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fields RD, Woo DH, Basser PJ (2015) Glial regulation of the neuronal connectome through local and long-distant communication. Neuron 86(2):374–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FitzHugh R (1962) Computation of impulse initiation and saltatory conduction in a myelinated nerve fiber. Biophys J 2(1):11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flanagan B, McDaid L, Wade J, Wong-Lin K, Harkin J (2018) A computational study of astrocytic glutamate influence on post-synaptic neuronal excitability. PLoS Comput Biol 14(4):e1006040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Florence CM, Baillie LD, Mulligan SJ (2012) Dynamic volume changes in astrocytes are an intrinsic phenomenon mediated by bicarbonate ion flux. PLoS One 7(11):e51,124

    Article  CAS  Google Scholar 

  • Ford MC, Alexandrova O, Cossell L, Stange-Marten A, Sinclair J, Kopp-Scheinpflug C, Pecka M, Attwell D, Grothe B (2015) Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing. Nat Commun 6:8073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fourcaud-Trocmé N, Hansel D, van Vreeswijk C, Brunel N (2003) How spike generation mechanisms determine the neuronal response to fluctuating inputs. J Neurosci 23(37):11,628–11,640

    Article  Google Scholar 

  • Franze K, Grosche J, Skatchkov SN, Schinkinger S, Foja C, Schild D, Uckermann O, Travis K, Reichenbach A, Guck J (2007) Müller cells are living optical fibers in the vertebrate retina. Proc Natl Acad Sci 104(20):8287–8292

    Article  CAS  PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61(2):331–349

    Article  CAS  PubMed  Google Scholar 

  • Garnier A, Vidal A, Benali H (2016) A theoretical study on the role of astrocytic activity in neuronal hyperexcitability by a novel neuron-glia mass model. J Math Neurosci 6(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerstner W, Kistler WM (2002) Mathematical formulations of Hebbian learning. Biol Cybern 87(5–6):404–415

    Article  PubMed  Google Scholar 

  • Goldman L, Albus JS (1968) Computation of impulse conduction in myelinated fibers; theoretical basis of the velocity-diameter relation. Biophys J 8(5):596–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldman-Rakic PS (1995) Cellular basis of working memory. Neuron 14(3):477–485

    Article  CAS  PubMed  Google Scholar 

  • Gordon G, Baimoukhametova D, Hewitt S, Rajapaksha W, Fisher T, Bains J (2005) Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nat Neurosci 8(8):1078–1086

    Article  CAS  PubMed  Google Scholar 

  • Gordon GRJ, Choi HB, Rungta RL, Ellis-Davies GCR, MacVicar BA (2008) Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456(7223):745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Götz M (2013) Radial glial cells. In: Neuroglia. Oxford University Press, Oxford, pp 50–61

    Google Scholar 

  • Haber M, Zhou L, Murai KK (2006) Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J Neurosci 26(35):8881–8891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG (2007) Synaptic islands defined by the territory of a single astrocyte. J Neurosci 27(24):6473–6477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halter JA, Clark JW Jr (1991) A distributed-parameter model of the myelinated nerve fiber. J Theor Biol 148(3):345–382

    Article  CAS  PubMed  Google Scholar 

  • Hama K, Arii T, Katayama E, Martone M, Ellisman MH (2004) Tri-dimensional morphometric analysis of astrocytic processes with high voltage electron microscopy of thick Golgi preparations. J Neurocytol 33:277–285

    Article  CAS  PubMed  Google Scholar 

  • Han X, Chen M, Wang F, Windrem M, Wang S, Shanz S, Xu Q, Oberheim NA, Bekar L, Betstadt S, Silva AJ, Takano T, Goldman SA, Nedergaard M (2013) Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12(3):342–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartline DK (2011) The evolutionary origins of glia. Glia 59(9):1215–1236

    Article  PubMed  Google Scholar 

  • Henneberger C, Papouin T, Oliet SHR, Rusakov DA (2010) Long-term potentiation depends on release of D-serine from astrocytes. Nature 463:232–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herculano-Houzel S (2014) The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia 62(9):1377–1391

    Article  PubMed  Google Scholar 

  • Hirase H, Qian L, Barthó P, Buzsáki G (2004) Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol 2(4):0494–0496

    Article  CAS  Google Scholar 

  • Hua JY, Smith SJ (2004) Neural activity and the dynamics of central nervous system development. Nat Neurosci 7(4):327

    Article  CAS  PubMed  Google Scholar 

  • Huang YH, Bergles DE (2004) Glutamate transporters bring competition to the synapse. Curr Opin Neurobiol 14(3):346–352

    Article  CAS  PubMed  Google Scholar 

  • Hughes EG, Orthmann-Murphy JL, Langseth AJ, Bergles DE (2018) Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nat Neurosci 21:696–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jadhav AP, Roesch K, Cepko CL (2009) Development and neurogenic potential of müller glial cells in the vertebrate retina. Prog Retin Eye Res 28(4):249–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James G, Butt AM (2001) P2X and P2Y purinoreceptors mediate ATP-evoked calcium signalling in optic nerve glia in situ. Cell Calcium 30(4):251–259

    Article  CAS  PubMed  Google Scholar 

  • Kakegawa W, Miyoshi Y, Hamase K, Matsuda S, Matsuda K, Kohda K, Emi K, Motohashi J, Konno R, Zaitsu K, Yuzaki M (2011) D-serine regulates cerebellar LTD and motor coordination through the δ2 glutamate receptor. Nat Neurosci 14(5):603–611

    Article  CAS  PubMed  Google Scholar 

  • Kaneko M, Stellwagen D, Malenka RC, Stryker MP (2008) Tumor necrosis factor-alpha mediates one component of competitive, experience-dependent plasticity in developing visual cortex. Neuron 58:673–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaschube M, Schnabel M, Löwel S, Coppola DM, White LE, Wolf F (2010) Universality in the evolution of orientation columns in the visual cortex. Science 330(6007):1113–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasthuri N, Hayworth K, Berger DR, Schalek RL, Conchello JA, Knowles-Barley S, Lee D, Vázquez-Reina A, Kaynig V, Jones TR, Roberts M, Lyskowski JM, Tapia HS, Seung JC, Roncal WG, Vogelstein JT, Burns R, Sussman DL, Priebe CE, Pfister H, Lichtman JW (2015) Saturated reconstruction of a volume of neocortex. Cell 162(3):648–661

    Article  CAS  PubMed  Google Scholar 

  • Kettenmann H, Ransom BR (2013) Neuroglia, 3rd edn. Oxford University Press, Oxford

    Book  Google Scholar 

  • Kettenmann H, Kirchhoff F, Verkhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77(1):10–18

    Article  CAS  PubMed  Google Scholar 

  • Kimura F, Itami C (2009) Myelination and isochronicity in neural networks. Front Neuroanat 3:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinney GA, Spain WJ (2002) Synaptically evoked GABA transporter currents in neocortical glia. J Neurophysiol 88(6):2899–2908

    Article  CAS  PubMed  Google Scholar 

  • Kinney JP, Spacek J, Bartol TM, Bajaj CL, Harris KM, Sejnowski TJ (2013) Extracellular sheets and tunnels modulate glutamate diffusion in hippocampal neuropil. J Comp Neurol 521(2):448–464

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirov SA, Sorra KE, Harris KM (1999) Slices have more synapses than perfusion-fixed hippocampus from both young and mature rats. J Neurosci 19(8):2876–2886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kisvárday ZF, Toth E, Rausch M, Eysel UT (1997) Orientation-specific relationship between populations of excitatory and inhibitory lateral connections in the visual cortex of the cat. Cereb Cortex 7(7):605–618

    Article  PubMed  Google Scholar 

  • Kofuji P, Newman EA (2004) Potassium buffering in the central nervous system. Neuroscience 129(4):1043–1054

    Article  CAS  Google Scholar 

  • Kuga N, Sasaki T, Takahara Y, Matsuki N, Ikegaya Y (2011) Large-scale calcium waves traveling through astrocytic networks in vivo. J Neurosci 31(7):2607–2614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labin AM, Ribak EN (2010) Retinal glial cells enhance human vision acuity. Phys Rev Lett 104(15):158,102

    Article  CAS  Google Scholar 

  • Labin AM, Safuri SK, Ribak EN, Perlman I (2014) Müller cells separate between wavelengths to improve day vision with minimal effect upon night vision. Nat Commun 5:4319

    Article  CAS  PubMed  Google Scholar 

  • Laming PR, Kimelberg H, Robinson S, Salm A, Hawrylak N, Müller C, Roots B, Ng K (2000) Neuronal-glial interactions and behaviour. Neurosci Biobehav Rev 24:295–340

    Article  CAS  PubMed  Google Scholar 

  • Langer J, Stephan J, Theis M, Rose CR (2012) Gap junctions mediate intercellular spread of sodium between hippocampal astrocytes in situ. Glia 60(2):239–252

    Article  PubMed  Google Scholar 

  • Larsen BR, Assentoft M, Cotrina ML, Hua SZ, Nedergaard M, Kaila K, Voipio J, MacAulay N (2014) Contributions of the Na+/K+-ATPase, NKCC1, and Kir4.1 to hippocampal K+ clearance and volume responses. Glia 62(4):608–622

    Article  PubMed  PubMed Central  Google Scholar 

  • Larter R, Craig MG (2005) Glutamate-induced glutamate release: a proposed mechanism for calcium bursting in astrocytes. Chaos 15:047,511

    Article  CAS  Google Scholar 

  • Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39(1):151–170

    Article  CAS  PubMed  Google Scholar 

  • Le Meur K, Mendizabal-Zubiaga J, Grandes P, Audinat E (2012) GABA release by hippocampal astrocytes. Front Comput Neurosci 6:59

    PubMed  PubMed Central  Google Scholar 

  • Lewitus GM, Pribiag H, Duseja R, St-Hilaire M, Stellwagen D (2014) An adaptive role of TNFα in the regulation of striatal synapses. J Neurosci 34(18):6146–6155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Hidalgo M, Hoover WB, Schummers J (2016) Spatial organization of astrocytes in ferret visual cortex. J Comp Neurol 524(17):3561–3576

    Article  PubMed  PubMed Central  Google Scholar 

  • Markram H, Lübke J, Frotscher M, Roth A, Sakmann B (1997) Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J Physiol 500(2):409–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masland RH (2001) The fundamental plan of the retina. Nat Neurosci 4(9):877

    Article  CAS  PubMed  Google Scholar 

  • Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58(9):1094–1103

    Article  PubMed  Google Scholar 

  • Matsuzaki M, Ellis-Davies G, Nemoto T, Miyashita Y, Iino M, Kasai H (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4(11):1086–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matyash V, Kettenmann H (2010) Heterogeneity in astrocyte morphology and physiology. Brain Res Rev 63(1–2):2–10

    Article  CAS  PubMed  Google Scholar 

  • May JM (2012) Vitamin C transport and its role in the central nervous system. In: Stanger O (ed) Water soluble vitamins. Springer, Dordrecht, pp 85–103

    Chapter  Google Scholar 

  • McAlpine D, Grothe B (2003) Sound localization and delay lines–do mammals fit the model? Trends Neurosci 26(7):347–350

    Article  CAS  PubMed  Google Scholar 

  • McCormick DA, Shu Y, Hasenstaub A, Sanchez-Vives M, Badoual M, Bal T (2003) Persistent cortical activity: mechanisms of generation and effects on neuronal excitability. Cereb Cortex 13(11):1219–1231

    Article  PubMed  Google Scholar 

  • Medvedev N, Popov V, Henneberger C, Kraev I, Rusakov DA, Stewart MG (2014) Glia selectively approach synapses on thin dendritic spines. Philos Trans R Soc B 369(1654):20140,047

    Article  Google Scholar 

  • Mesejo P, Ibánez O, Fernández-Blanco E, Cedrón F, Pazos A, Porto-Pazos AB (2015) Artificial neuron–glia networks learning approach based on cooperative coevolution. Int J Neural Syst 25(04):1550,012

    Article  Google Scholar 

  • Molofsky AV, Kelley KW, Tsai HH, Redmond SA, Chang SM, Madireddy L, Chan JR, Baranzini SE, Ullian EM, Rowitch DH (2014) Astrocyte-encoded positional cues maintain sensorimotor circuit integrity. Nature 509(7499):189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore JW, Joyner RW, Brill MH, Waxman SD, Najar-Joa M (1978) Simulations of conduction in uniform myelinated fibers. Relative sensitivity to changes in nodal and internodal parameters. Biophys J 21(2):147–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulligan S, MacVicar B (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431(7005):195–199

    Article  CAS  PubMed  Google Scholar 

  • Navarrete M, Perea G, de Sevilla D, Gómez-Gonzalo M, Núñez A, Martín E, Araque A (2012) Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. PLoS Biol 10(2):e1001,259

    Article  CAS  Google Scholar 

  • Navarrete M, Díez A, Araque A (2014) Astrocytes in endocannabinoid signalling. Philos Trans R Soc B 369(1654):20130,599

    Article  CAS  Google Scholar 

  • Nave KA (2010) Myelination and support of axonal integrity by glia. Nature 468(7321):244

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Kerr JND, Helmchen F (2004) Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods 1:31–37

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318

    Article  CAS  PubMed  Google Scholar 

  • Oberheim NA, Takano T, Han X, He W, Lin JHC, Wang F, Xu Q, Wyatt JD, Pilcher W, Ojemann JG, Ransom BR, Goldman SA, Nedergaard M (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29(10):3276–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor DH, Wittenberg GM, Wang SSH (2005) Graded bidirectional synaptic plasticity is composed of switch-like unitary events. Proc Natl Acad Sci 102(27):9679–9684

    Article  PubMed  CAS  Google Scholar 

  • Ogata K, Kosaka T (2002) Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience 113(1):221–233

    Article  CAS  PubMed  Google Scholar 

  • Ohki K, Chung S, Ch’ng YH, Kara P, Reid RC (2005) Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433(7026):597

    Article  CAS  PubMed  Google Scholar 

  • Otsu Y, Couchman K, Lyons DG, Collot M, Agarwal A, Mallet JM, Pfrieger FW, Bergles DE, Charpak S (2015) Calcium dynamics in astrocyte processes during neurovascular coupling. Nat Neurosci 18(2):210

    Article  CAS  PubMed  Google Scholar 

  • Øyehaug L, Østby I, Lloyd CM, Omholt SW, Einevoll GT (2012) Dependence of spontaneous neuronal firing and depolarisation block on astroglial membrane transport mechanisms. J Comput Neurosci 32(1):147–165

    Article  PubMed  Google Scholar 

  • Panatier A, Theodosis DT, Mothet JP, Touquet B, Pollegioni L, Poulain DA, Oliet SH (2006) Glia-derived d-serine controls NMDA receptor activity and synaptic memory. Cell 125:775–784

    Google Scholar 

  • Pascual O, Ben Achour S, Rostaing P, Triller A, Bessis A (2011) Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci:1–9

    Google Scholar 

  • Pelvig DP, Pakkenberg H, Stark AK, Pakkenberg B (2008) Neocortical glial cell numbers in human brains. Neurobiol Aging 29(11):1754–1762

    Article  CAS  PubMed  Google Scholar 

  • Perea G, Araque A (2007) Astrocytes potentiate transmitter release at single hippocampal synapses. Science 317:1083–1086

    Article  CAS  PubMed  Google Scholar 

  • Perea G, Yang A, Boyden ES, Sur M (2014) Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo. Nat Commun 5:ncomms4262

    Article  CAS  Google Scholar 

  • Perez-Alvarez A, Navarrete M, Covelo A, Martin ED, Araque A (2014) Structural and functional plasticity of astrocyte processes and dendritic spine interactions. J Neurosci 34(38):12,738–12,744

    Article  CAS  Google Scholar 

  • Philips RT, Sur M, Chakravarthy VS (2017) The influence of astrocytes on the width of orientation hypercolumns in visual cortex: a computational perspective. PLoS Comput Biol 13(10):e1005,785

    Article  CAS  Google Scholar 

  • Porto-Pazos AB, Veiguela N, Mesejo P, Navarrete M, Alvarellos A, Ibáñez O, Pazos A, Araque A (2011) Artificial astrocytes improve neural network performance. PLoS One 6(4):e19,109

    Article  CAS  Google Scholar 

  • Pósfai B, Cserép C, Orsolits B, Dénes Á (2019) New insights into microglia–neuron interactions: a neuron’s perspective. Neuroscience 405:103–117

    Article  PubMed  CAS  Google Scholar 

  • Pribiag H, Stellwagen D (2013) TNF-α downregulates inhibitory neurotransmission through protein phosphatase 1-dependent trafficking of GABAA receptors. J Neurosci 33(40):15,879–15,893

    Article  CAS  Google Scholar 

  • Ransom CB, Ransom BR, Sontheimer H (2000) Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps. J Physiol 522(3):427–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichenbach A, Robinson SR (1995) Phylogenetic constraints on retinal organisation and development. Prog Retin Eye Res 15(1):139–171

    Article  Google Scholar 

  • Reichenbach A, Wolburg H (2013) Astrocytes and ependymal glia. In: Neuroglia. Oxford University Press, Oxford, pp 35–49

    Google Scholar 

  • Reichenbach A, Derouiche A, Kirchhoff F (2010) Morphology and dynamics of perisynaptic glia. Brain Res Rev 63(1):11–25

    Article  PubMed  Google Scholar 

  • Richardson AG, McIntyre CC, Grill WM (2000) Modelling the effects of electric fields on nerve fibres: influence of the myelin sheath. Med Biol Eng Comput 38(4):438–446

    Article  CAS  PubMed  Google Scholar 

  • Rothman DL, Behar KL, Hyder F, Shulman RG (2003) In vivo NMR studies of the glutamate neurotransmitter flux and neuroenergetics: implications for brain function. Annu Rev Physiol 65(1):401–427

    Article  CAS  PubMed  Google Scholar 

  • Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, , Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16(3):675–686

    Article  CAS  PubMed  Google Scholar 

  • Roxin A, Montbrió E (2011) How effective delays shape oscillatory dynamics in neuronal networks. Physica D: Nonlinear Phenomena 240(3):323–345

    Article  Google Scholar 

  • Roxin A, Brunel N, Hansel D (2005) Role of delays in shaping spatiotemporal dynamics of neuronal activity in large networks. Phys Rev Lett 94(23):238,103

    Article  CAS  Google Scholar 

  • Rusakov DA (2015) Disentangling calcium-driven astrocyte physiology. Nat Rev Neurosci 16:226–233

    Article  CAS  PubMed  Google Scholar 

  • Sahlender DA, Savtchouk I, Volterra A (2014) What do we know about gliotransmitter release from astrocytes? Philos Trans R Soc B 369:20130,592

    Article  CAS  Google Scholar 

  • Sanchez-Vives MV, McCormick DA (2000) Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci 3(10):1027

    Article  CAS  PubMed  Google Scholar 

  • Santello M, Volterra A (2012) TNFα in synaptic function: switching gears. Trends Neurosci 35(10):638–647

    Google Scholar 

  • Santello M, Bezzi P, Volterra A (2011) TNFα controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron 69:988–1001

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Matsuki N, Ikegaya Y (2011) Action-potential modulation during axonal conduction. Science 331(6017):599–601

    Article  CAS  PubMed  Google Scholar 

  • Savin C, Triesch J, Meyer-Hermann M (2009) Epileptogenesis due to glia-mediated synaptic scaling. J R Soc Interface 6(37):655–668

    Article  CAS  PubMed  Google Scholar 

  • Savtchenko LP, Rusakov DA (2014) Regulation of rhythm genesis by volume-limited, astroglia-like signals in neural networks. Phil Trans Royal Soc B: Biological Sciences 369(1654):20130,614

    Article  Google Scholar 

  • Savtchouk I, Volterra A (2018) Gliotransmission: beyond black-and-white. J Neurosci 38(1):14–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scemes E, Giaume C (2006) Astrocyte calcium waves: What they are and what they do. Glia 54:716–725

    Google Scholar 

  • Schummers J, Yu H, Sur M (2008) Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Sci STKE 320(5883):1638

    CAS  Google Scholar 

  • Seidl AH, Rubel EW, Harris DM (2010) Mechanisms for adjusting interaural time differences to achieve binaural coincidence detection. J Neurosci 30(1):70–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seifert G, Steinhäuser C (2017) Heterogeneity and function of hippocampal macroglia. Cell Tissue Res 373:1–18

    Google Scholar 

  • Seung HS, Lee DD, Reis BY, Tank DW (2000) The autapse: a simple illustration of short-term analog memory storage by tuned synaptic feedback. J Comput Neurosci 9(2):171–185

    Article  CAS  PubMed  Google Scholar 

  • Sibson NR, Dhankhar A, Mason GF, Behar KL, Rothman DL, Shulman RG (1997) In vivo 13C NMR measurements of cerebral glutamine synthesis as evidence for glutamate–glutamine cycling. Proc Natl Acad Sci 94(6):2699–2704

    Article  CAS  PubMed  Google Scholar 

  • Somjen GG, Kager H, Wadman WJ (2008) Computer simulations of neuron-glia interactions mediated by ion flux. J Comput Neurosci 25(2):349–365

    Article  CAS  PubMed  Google Scholar 

  • Stassart R, Goebbels S, Nave KA (2013) Factors controlling myelin formation. In: Neuroglia. Oxford University Press, Oxford, pp 555–572

    Google Scholar 

  • Steinmetz CC, Turrigiano GG (2010) Tumor necrosis factor-α signaling maintains the ability of cortical synapses to express synaptic scaling. J Neurosci 30(44):14,685–14,690

    Google Scholar 

  • Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNF-α. Nature 440(7087):1054–1059

    Google Scholar 

  • Stellwagen D, Beattie EC, Seo JY, Malenka RC (2005) Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-α. J Neurosci 25(12):3219–3228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens JLR, Law JS, Antolík J, Bednar JA (2013) Mechanisms for stable, robust, and adaptive development of orientation maps in the primary visual cortex. J Neurosci 33(40):15,747–15,766

    Article  CAS  Google Scholar 

  • Stobart JL, Ferrari KD, Barrett MJP, Glück C, Stobart MJ, Zuend M, Weber B (2018) Cortical circuit activity evokes rapid astrocyte calcium signals on a similar timescale to neurons. Neuron 98:726–735

    Article  CAS  PubMed  Google Scholar 

  • Takata N, Mishima T, Hisatsune C, Nagai T, Ebisui E, Mikoshiba K, Hirase H (2011) Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. J Neurosci 31(49):18,155–18,165

    Article  CAS  Google Scholar 

  • Tang F, Lane S, Korsak A, Paton JFR, Gourine AV, Kasparov S, Teschemacher AG (2014) Lactate-mediated glia-neuronal signalling in the mammalian brain. Nat Commun 5:3284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomassy GS, Berger DR, Chen H, Kasthuri N, Hayworth KJ, Vercelli A, Seung HS, Lichtman JW, Arlotta P (2014) Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science 344(6181):319–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomassy GS, Dershowitz LB, Arlotta P (2016) Diversity matters: A revised guide to myelination. Trends Cell Biol 26(2):135–147

    Google Scholar 

  • Toyoizumi T, Kaneko M, Stryker MP, Miller KD (2014) Modeling the dynamic interaction of Hebbian and homeostatic plasticity. Neuron 84(2):497–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuchin V (2000) Tissue optics. SPIE Press, Bellingham

    Google Scholar 

  • Ullah G, Cressman JR Jr, Barreto E, Schiff SJ (2009) The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: II. Network and glial dynamics. J Comput Neurosci 26(2):171–183

    Article  PubMed  Google Scholar 

  • Ullén F (2009) Is activity regulation of late myelination a plastic mechanism in the human nervous system? Neuron Glia Biol 5(1–2):29–34

    Article  PubMed  Google Scholar 

  • Ventura R, Harris KM (1999) Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci 19(16):6897–6906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verkhratsky A, Nedergaard M (2016) The homeostatic astroglia emerges from evolutionary specialization of neural cells. Philos Trans R Soc B 371(1700):20150,428

    Article  Google Scholar 

  • Volman V, Ben-Jacob E, Levine H (2007) The astrocyte as a gatekeeper of synaptic information transfer. Neural Comput 19:303–326

    Article  PubMed  Google Scholar 

  • Volman V, Bazhenov M, Sejnowski TJ (2013) Divide and conquer: Functional segregation of synaptic inputs by astrocytic microdomains could alleviate paroxysmal activity following brain trauma. PLoS Comput Biol 9(1):e1002,856

    Google Scholar 

  • Volterra A, Liaudet N, Savtchouk I (2014) Astrocyte Ca2+ signalling: an unexpected complexity. Nat Rev Neurosci 15:327–334

    Article  CAS  PubMed  Google Scholar 

  • Wade JJ, McDaid LJ, Harkin J, Crunelli V, Kelso JAS (2011) Bidirectional coupling between astrocytes and neurons mediates learning and dynamic coordination in the brain: a multiple modeling approach. PLoS One 6(12):e29,445

    Article  CAS  Google Scholar 

  • Wang F, Smith NA, Xu Q, Fujita T, Baba A, Matsuda T, Takano T, Bekar L, Nedergaard M (2012a) Astrocytes modulate neural network activity by Ca2+-dependent uptake of extracellular K+. Sci Signal 5(218):ra26

    Google Scholar 

  • Wang F, Xu Q, Wang W, Takano T, Nedergaard M (2012b) Bergmann glia modulate cerebellar purkinje cell bistability via Ca2+-dependent K+ uptake. Proc Natl Acad Sci U S A 109(20):7911–7916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Lou N, Xu Q, Tian GF, Peng WG, Han X, Kang J, Takano T, Nedergaard M (2006) Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 9(6):816–823

    Article  CAS  PubMed  Google Scholar 

  • Waxman SG (1980) Determinants of conduction velocity in myelinated nerve fibers. Muscle Nerve 3(2):141–150

    Article  CAS  PubMed  Google Scholar 

  • Wiesel TN (1982) Postnatal development of the visual cortex and the influence of environment. Nature 299(5884):583

    Article  CAS  PubMed  Google Scholar 

  • Winship I, Plaa N, Murphy T (2007) Rapid astrocyte calcium signals correlate with neuronal activity and onset of the hemodynamic response in vivo. J Neurosci 27(23):6268–6272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Dissing-Olesen L, MacVicar BA, Stevens B (2015) Microglia: dynamic mediators of synapse development and plasticity. Trends Immunol 36(10):605–613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiang J, Ennis SR, Abdelkarim GE, Fujisawa M, Kawai N, Keep RF (2003) Glutamine transport at the blood–brain and blood–cerebrospinal fluid barriers. Neurochem Int 43(4–5):279–288

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki Y, Hozumi Y, Kaneko K, Sugihara T, Fujii S, Goto K, Kato H (2007) Modulatory effects of oligodendrocytes on the conduction velocity of action potentials along axons in the alveus of the rat hippocampal CA1 region. Neuron Glia Biol 3(4):325–334

    Article  PubMed  Google Scholar 

  • Yang Y, Ge W, Chen Y, Zhang Z, Shen W, Wu C, Poo M, Duan S (2003) Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine. Proc Natl Acad Sci U S A 100(25):15,194–15,199

    Google Scholar 

  • Zalc B, Colman DR (2000) Origins of vertebrate success. Science 288(5464):271–271

    Article  CAS  PubMed  Google Scholar 

  • Zenke F, Gerstner W, Ganguli S (2017) The temporal paradox of Hebbian learning and homeostatic plasticity. Curr Opin Neurobiol 43:166–176

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Gong N, Wang W, Xu L, Xu T (2008) Bell-shaped D-serine actions on hippocampal long-term depression and spatial memory retrieval. Cereb Cortex 18(10):2391–2401

    Article  PubMed  Google Scholar 

  • Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6:43–40

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Writing of this chapter was made possible by the generous support of the Junior Leader Fellowship Program by “la Caixa” Banking Foundation (LCF/BQ/LI18/11630006), as well as by the support of the Basque Government through the BERC 2018–2012 program, and by the Spanish Ministry of Science, Innovation and Universities: BCAM Severo Ochoa Accreditation SEV-2017-0718.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio De Pittà .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

De Pittà, M. (2020). Neuron-Glial Interactions. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_100691-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_100691-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7320-6

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics