Skip to main content

Long Term Depression in the Granule Cell-Purkinje Cell Synapse

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 271 Accesses

Synonyms

Cerebellar long-term depression; Cerebellar LTD; Long-term synaptic depression at the parallel fiber-Purkinje cell synapse

Definition

Long-term depression (LTD) in the granule cell-Purkinje cell synapse is a reduction of synaptic transmission efficacy, which lasts for hours or longer. The synaptic transmission at this synapse is mediated via α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), a member of the ionotropic glutamate receptors, and the direct cause of LTD is a reduction in the numbers of postsynaptic AMPARs. The traditional stimulation to trigger LTD is simultaneous and repeated activation of two excitatory inputs onto Purkinje cells, parallel fibers (PFs) and climbing fibers (CFs), which are neuronal projections originated from granule cells and neurons in inferior olivary nucleus, respectively.

Detailed Description

The LTD at synapses between PFs, axons of granule cells, and Purkinje cells (Fig. 1) was first discovered in the 1980s, and the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahn S, Ginty DD, Linden DJ (1999) A late phase of cerebellar long-term depression requires activation of CaMKIV and CREB. Neuron 23:559–568

    PubMed  CAS  Google Scholar 

  • Aiba A, Kano M, Chen C, Stanton ME, Fox GD, Herrup K, Zwingman TA, Tonegawa S (1994) Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell 79:377–388

    PubMed  CAS  Google Scholar 

  • Albus JS (1971) A theory of cerebellar function. Math Biosci 10:25–61

    Google Scholar 

  • Antunes G, De Schutter E (2012) A stochastic signaling network mediates the probabilistic induction of cerebellar long-term depression. J Neurosci 32:9288–9300

    PubMed  CAS  Google Scholar 

  • Baude A, Nusser Z, Roberts JD, Mulvihill E, McIlhinney RA, Somogyi P (1993) The metabotropic glutamate receptor (mGluR1α) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 11:771–787

    PubMed  CAS  Google Scholar 

  • Belmeguenai A, Hansel C (2005) A role for protein phosphatases 1, 2A, and 2B in cerebellar long-term potentiation. J Neurosci 25:10768–10772

    PubMed  CAS  Google Scholar 

  • Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2:32–48

    PubMed  CAS  Google Scholar 

  • Brenowitz SD, Regehr WG (2005) Associative short-term synaptic plasticity mediated by endocannabinoids. Neuron 45:419–431

    PubMed  CAS  Google Scholar 

  • Brown SP, Brenowitz SD, Regehr WG (2003) Brief presynaptic bursts evoke synapse-specific retrograde inhibition mediated by endogenous cannabinoids. Nat Neurosci 6:1048–1057

    PubMed  CAS  Google Scholar 

  • Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8:766–775

    PubMed  CAS  Google Scholar 

  • Carey MR, Myoga MH, McDaniels KR, Marsicano G, Lutz B, Mackie K, Regehr WG (2011) Presynaptic CB1 receptors regulate synaptic plasticity at cerebellar parallel fiber synapses. J Neurophysiol 105:958–963

    PubMed  CAS  PubMed Central  Google Scholar 

  • Casado M, Isope P, Ascher P (2002) Involvement of presynaptic N-methyl-D-aspartate receptors in cerebellar long-term depression. Neuron 33:123–130

    PubMed  CAS  Google Scholar 

  • Chang CP, Pearse RV II, O'Connell S, Rosenfeld MG (1993) Identification of a seven transmembrane helix receptor for corticotropin-releasing factor and sauvagine in mammalian brain. Neuron 11:1187–1195

    PubMed  CAS  Google Scholar 

  • Chen C, Thompson RF (1995) Temporal specificity of long-term depression in parallel fiber-Purkinje synapses in rat cerebellar slice. Learn Mem 2:185–198

    PubMed  CAS  Google Scholar 

  • Chung HJ, Steinberg JP, Huganir RL, Linden DJ (2003) Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression. Science 300:1751–1755

    PubMed  CAS  Google Scholar 

  • Coesmans M, Weber JT, De Zeeuw CI, Hansel C (2004) Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron 44:691–700

    PubMed  CAS  Google Scholar 

  • Conquet F, Bashir ZI, Davies CH, Daniel H, Ferraguti F, Bordi F, Franz-Bacon K, Reggiani A, Matarese V, Condé F, Collingridge GL, Crépel F (1994) Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature 372:237–243

    PubMed  CAS  Google Scholar 

  • Crépel F, Jaillard D (1990) Protein kinases, nitric oxide and long-term depression of synapses in the cerebellum. Neuroreport 1:133–136

    PubMed  Google Scholar 

  • Crépel F, Jaillard D (1991) Pairing of pre- and postsynaptic activities in cerebellar Purkinje cells induces long-term changes in synaptic efficacy in vitro. J Physiol 432:123–141

    PubMed  PubMed Central  Google Scholar 

  • Cummings SL, Young WS III, King JS (1994) Early development of cerebellar afferent systems that contain corticotropin-releasing factor. J Comp Neurol 350:534–549

    PubMed  CAS  Google Scholar 

  • Daniel H, Hemart N, Jaillard D, Crépel F (1993) Long-term depression requires nitric oxide and guanosine 3':5' cyclic monophosphate production in rat cerebellar Purkinje cells. Eur J Neurosci 5:1079–1082

    PubMed  CAS  Google Scholar 

  • Doi T, Kuroda S, Michikawa T, Kawato M (2005) Inositol 1,4,5-trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar Purkinje cells. J Neurosci 25:950–961

    PubMed  CAS  Google Scholar 

  • Eilers J, Augustine GJ, Konnerth A (1995) Subthreshold synaptic Ca2+ signalling in fine dendrites and spines of cerebellar Purkinje neurons. Nature 373:155–158

    PubMed  CAS  Google Scholar 

  • Eilers J, Plant T, Konnerth A (1996) Localized calcium signalling and neuronal integration in cerebellar Purkinje neurones. Cell Calcium 20:215–226

    PubMed  CAS  Google Scholar 

  • Eilers J, Takechi H, Finch EA, Augustine GJ, Konnerth A (1997) Local dendritic Ca2+ signaling induces cerebellar long-term depression. Learn Mem 4:159–168

    PubMed  CAS  Google Scholar 

  • Endo S, Nairn AC, Greengard P, Ito M (2003) Thr123 of rat G-substrate contributes to its action as a protein phosphatase inhibitor. Neurosci Res 45:79–89

    PubMed  CAS  Google Scholar 

  • Finch EA, Augustine GJ (1998) Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature 396:753–756

    PubMed  CAS  Google Scholar 

  • Fohlmeister JF, Poppele RE, Purple RL (1977) Repetitive firing: a quantitative study of feedback in model encoders. J Gen Physiol 69:815–848

    PubMed  CAS  Google Scholar 

  • Guihard G, Combettes L, Capiod T (1996) 3′:5′-cyclic guanosine monophosphate (cGMP) potentiates the inositol 1,4,5-trisphosphate-evoked Ca2+ release in guinea-pig hepatocytes. Biochem J 318:849–855

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hansel C, De Jeu M, Belmeguenai A, Houtman SH, Buitendijk GH, Andreev D, De Zeeuw CI, Elgersma Y (2006) αCaMKII Is essential for cerebellar LTD and motor learning. Neuron 51:835–843

    PubMed  CAS  Google Scholar 

  • Hartell NA (1994) cGMP acts within cerebellar Purkinje cells to produce long term depression via mechanisms involving PKC and PKG. Neuroreport 5:833–836

    PubMed  CAS  Google Scholar 

  • Ichise T, Kano M, Hashimoto K, Yanagihara D, Nakao K, Shigemoto R, Katsuki M, Aiba A (2000) mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. Science 288:1832–1835

    PubMed  CAS  Google Scholar 

  • Inoue T, Kato K, Kohda K, Mikoshiba K (1998) Type 1 inositol 1,4,5-trisphosphate receptor is required for induction of long-term depression in cerebellar Purkinje neurons. J Neurosci 18:5366–5373

    PubMed  CAS  Google Scholar 

  • Ito M (1986) Long-term depression as a memory process in the cerebellum. Neurosci Res 3:531–539

    PubMed  CAS  Google Scholar 

  • Ito M, Karachot L (1990) Messengers mediating long-term desensitization in cerebellar Purkinje cells. Neuroreport 1:129–132

    PubMed  CAS  Google Scholar 

  • Jaffrey SR, Snyder SH (1995) Nitric oxide: a neural messenger. Annu Rev Cell Dev Biol 11:417–440

    PubMed  CAS  Google Scholar 

  • Kakegawa W, Yuzaki M (2005) A mechanism underlying AMPA receptor trafficking during cerebellar long-term potentiation. Proc Natl Acad Sci U S A 102:17846–17851

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kakegawa W, Kohda K, Yuzaki M (2007) The δ2 ‘ionotropic’ glutamate receptor functions as a non-ionotropic receptor to control cerebellar synaptic plasticity. J Physiol 584:89–96

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kakegawa W, Miyazaki T, Emi K, Matsuda K, Kohda K, Motohashi J, Mishina M, Kawahara S, Watanabe M, Yuzaki M (2008) Differential regulation of synaptic plasticity and cerebellar motor learning by the C-terminal PDZ-binding motif of GluRδ2. J Neurosci 28:1460–1468

    PubMed  CAS  Google Scholar 

  • Karachot L, Kado RT, Ito M (1994) Stimulus parameters for induction of long-term depression in in vitro rat Purkinje cells. Neurosci Res 21:161–168

    PubMed  CAS  Google Scholar 

  • Karachot L, Shirai Y, Vigot R, Yamamori T, Ito M (2001) Induction of long-term depression in cerebellar Purkinje cells requires a rapidly turned over protein. J Neurophysiol 86:280–289

    PubMed  CAS  Google Scholar 

  • Kashiwabuchi N, Ikeda K, Araki K, Hirano T, Shibuki K, Takayama C, Inoue Y, Kutsuwada T, Yagi T, Kang Y, Aizawa S, Mishina M (1995) Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluRδ2 mutant mice. Cell 81:245–252

    PubMed  CAS  Google Scholar 

  • Kawaguchi SY, Hirano T (2013) Gating of long-term depression by Ca2+/calmodulin-dependent protein kinase II through enhanced cGMP signalling in cerebellar Purkinje cells. J Physiol 591:1707–1730

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kawato M, Kuroda S, Schweighofer N (2011) Cerebellar supervised learning revisited: biophysical modeling and degrees-of-freedom control. Curr Opin Neurobiol 21:791–800

    PubMed  CAS  Google Scholar 

  • Khodakhah K, Armstrong CM (1997) Induction of long-term depression and rebound potentiation by inositol trisphosphate in cerebellar Purkinje neurons. Proc Natl Acad Sci U S A 94:14009–14014

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kim T, Tanaka-Yamamoto K (2013) Mechanisms producing time course of cerebellar long-term depression. Neural Netw 47:32–35

    Google Scholar 

  • Knight BW (1972) Dynamics of encoding in a population of neurons. J Gen Physiol 59:734–766

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kohda K, Kakegawa W, Matsuda S, Yamamoto T, Hirano H, Yuzaki M (2013) The δ2 glutamate receptor gates long-term depression by coordinating interactions between two AMPA receptor phosphorylation sites. Proc Natl Acad Sci U S A 110:E948–E957

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kondo T, Kakegawa W, Yuzaki M (2005) Induction of long-term depression and phosphorylation of the δ2 glutamate receptor by protein kinase C in cerebellar slices. Eur J Neurosci 22:1817–1820

    PubMed  Google Scholar 

  • Konnerth A, Dreessen J, Augustine GJ (1992) Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells. Proc Natl Acad Sci U S A 89:7051–7055

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kurihara H, Hashimoto K, Kano M, Takayama C, Sakimura K, Mishina M, Inoue Y, Watanabe M (1997) Impaired parallel fiber > Purkinje cell synapse stabilization during cerebellar development of mutant mice lacking the glutamate receptor δ2 subunit. J Neurosci 17:9613–9623

    PubMed  CAS  Google Scholar 

  • Kuroda S, Schweighofer N, Kawato M (2001) Exploration of signal transduction pathways in cerebellar long-term depression by kinetic simulation. J Neurosci 21:5693–5702

    PubMed  CAS  Google Scholar 

  • Lalouette A, Lohof A, Sotelo C, Guénet J-L, Mariani J (2001) Neurobiological effects of a null mutation depend on genetic context: comparison between two hotfoot alleles of the delta-2 ionotropic glutamate receptor. Neuroscience 105:443–455

    PubMed  CAS  Google Scholar 

  • Landsend AS, Amiry-Moghaddam M, Matsubara A, Bergersen L, Usami S, Wenthold RJ, Ottersen OP (1997) Differential localization of δ glutamate receptors in the rat cerebellum: coexpression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J Neurosci 17:834–842

    PubMed  CAS  Google Scholar 

  • Launey T, Endo S, Sakai R, Harano J, Ito M (2004) Protein phosphatase 2A inhibition induces cerebellar long-term depression and declustering of synaptic AMPA receptor. Proc Natl Acad Sci U S A 101:676–681

    PubMed  CAS  PubMed Central  Google Scholar 

  • Le TD, Shirai Y, Okamoto T, Tatsukawa T, Nagao S, Shimizu T, Ito M (2010) Lipid signaling in cytosolic phospholipase A2α-cyclooxygenase-2 cascade mediates cerebellar long-term depression and motor learning. Proc Natl Acad Sci U S A 107:3198–3203

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee HK (2006) Synaptic plasticity and phosphorylation. Pharmacol Ther 112:810–832

    PubMed  CAS  PubMed Central  Google Scholar 

  • Leitges M, Kovac J, Plomann M, Linden DJ (2004) A unique PDZ ligand in PKCα confers induction of cerebellar long-term synaptic depression. Neuron 44:585–594

    PubMed  CAS  Google Scholar 

  • Lev-Ram V, Makings LR, Keitz PF, Kao JP, Tsien RY (1995) Long-term depression in cerebellar Purkinje neurons results from coincidence of nitric oxide and depolarization-induced Ca2+ transients. Neuron 15:407–415

    PubMed  CAS  Google Scholar 

  • Lev-Ram V, Jiang T, Wood J, Lawrence DS, Tsien RY (1997a) Synergies and coincidence requirements between NO, cGMP, and Ca2+ in the induction of cerebellar long-term depression. Neuron 18:1025–1038

    PubMed  CAS  Google Scholar 

  • Lev-Ram V, Nebyelul Z, Ellisman MH, Huang PL, Tsien RY (1997b) Absence of cerebellar long-term depression in mice lacking neuronal nitric oxide synthase. Learn Mem 4:169–177

    PubMed  CAS  Google Scholar 

  • Lev-Ram V, Wong ST, Storm DR, Tsien RY (2002) A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP. Proc Natl Acad Sci U S A 99:8389–8393

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lev-Ram V, Mehta SB, Kleinfeld D, Tsien RY (2003) Reversing cerebellar long-term depression. Proc Natl Acad Sci U S A 100:15989–15993

    PubMed  CAS  PubMed Central  Google Scholar 

  • Linden DJ (2012) A late phase of LTD in cultured cerebellar Purkinje cells requires persistent dynamin-mediated endocytosis. J Neurophysiol 107:448–454

    PubMed  CAS  PubMed Central  Google Scholar 

  • Linden DJ, Connor JA (1991) Participation of postsynaptic PKC in cerebellar long-term depression in culture. Science 254:1656–1659

    PubMed  CAS  Google Scholar 

  • Linden DJ, Dickinson MH, Smeyne M, Connor JA (1991) A long-term depression of AMPA currents in cultured cerebellar Purkinje neurons. Neuron 7:81–89

    PubMed  CAS  Google Scholar 

  • Lisman J, Yasuda R, Raghavachari S (2012) Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci 13:169–182

    PubMed  CAS  PubMed Central  Google Scholar 

  • Llano I, Marty A, Armstrong CM, Konnerth A (1991) Synaptic- and agonist-induced excitatory currents of Purkinje cells in rat cerebellar slices. J Physiol 434:183–213

    PubMed  CAS  PubMed Central  Google Scholar 

  • López-Bendito G, Shigemoto R, Luján R, Juiz JM (2001) Developmental changes in the localisation of the mGluR1α subtype of metabotropic glutamate receptors in Purkinje cells. Neuroscience 105:413–429

    PubMed  Google Scholar 

  • Maejima T, Hashimoto K, Yoshida T, Aiba A, Kano M (2001) Presynaptic inhibition caused by retrograde signal from metabotropic glutamate to cannabinoid receptors. Neuron 31:463–475

    PubMed  CAS  Google Scholar 

  • Maejima T, Oka S, Hashimotodani Y, Ohno-Shosaku T, Aiba A, Wu D, Waku K, Sugiura T, Kano M (2005) Synaptically driven endocannabinoid release requires Ca2+-assisted metabotropic glutamate receptor subtype 1 to phospholipase C β4 signaling cascade in the cerebellum. J Neurosci 25:6826–6835

    PubMed  CAS  Google Scholar 

  • Marcaggi P, Attwell D (2005) Endocannabinoid signaling depends on the spatial pattern of synapse activation. Nat Neurosci 8:776–781

    PubMed  CAS  PubMed Central  Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437–470

    PubMed  CAS  PubMed Central  Google Scholar 

  • Matsuda S, Launey T, Mikawa S, Hirai H (2000) Disruption of AMPA receptor GluR2 clusters following long-term depression induction in cerebellar Purkinje neurons. EMBO J 19:2765–2774

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miyakawa H, Lev-Ram V, Lasser-Ross N, Ross WN (1992) Calcium transients evoked by climbing fiber and parallel fiber synaptic inputs in guinea pig cerebellar Purkinje neurons. J Neurophysiol 68:1178–1189

    PubMed  CAS  Google Scholar 

  • Miyata M, Okada D, Hashimoto K, Kano M, Ito M (1999) Corticotropin-releasing factor plays a permissive role in cerebellar long-term depression. Neuron 22:763–775

    PubMed  CAS  Google Scholar 

  • Miyata M, Kim HT, Hashimoto K, Lee TK, Cho SY, Jiang H, Wu Y, Jun K, Wu D, Kano M, Shin HS (2001) Deficient long-term synaptic depression in the rostral cerebellum correlated with impaired motor learning in phospholipase C β4 mutant mice. Eur J Neurosci 13:1945–1954

    PubMed  CAS  Google Scholar 

  • Motohashi J, Kakegawa W, Yuzaki M (2007) Ho15J: a new hotfoot allele in a hot spot in the gene encoding the δ2 glutamate receptor. Brain Res 1140:153–160

    PubMed  CAS  Google Scholar 

  • Namiki S, Kakizawa S, Hirose K, Iino M (2005) NO signalling decodes frequency of neuronal activity and generates synapse-specific plasticity in mouse cerebellum. J Physiol 566:849–863

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nusser Z, Mulvihill E, Streit P, Somogyi P (1994) Subsynaptic segregation of metabotropic and ionotropic glutamate receptors as revealed by immunogold localization. Neuroscience 61:421–427

    PubMed  CAS  Google Scholar 

  • Palkovits M, Léránth C, Görcs T, Young WS III (1987) Corticotropin-releasing factor in the olivocerebellar tract of rats: demonstration by light- and electron-microscopic immunohistochemistry and in situ hybridization histochemistry. Proc Natl Acad Sci U S A 84:3911–3915

    PubMed  CAS  PubMed Central  Google Scholar 

  • Perkel DJ, Hestrin S, Sah P, Nicoll RA (1990) Excitatory synaptic currents in Purkinje cells. Proc Biol Sci 241:116–121

    PubMed  CAS  Google Scholar 

  • Petralia RS, Zhao HM, Wang YX, Wenthold RJ (1998) Variations in the tangential distribution of postsynaptic glutamate receptors in Purkinje cell parallel and climbing fiber synapses during development. Neuropharmacology 37:1321–1334

    PubMed  CAS  Google Scholar 

  • Piochon C, Irinopoulou T, Brusciano D, Bailly Y, Mariani J, Levenes C (2007) NMDA receptor contribution to the climbing fiber response in the adult mouse Purkinje cell. J Neurosci 27:10797–10809

    PubMed  CAS  Google Scholar 

  • Piochon C, Levenes C, Ohtsuki G, Hansel C (2010) Purkinje cell NMDA receptors assume a key role in synaptic gain control in the mature cerebellum. J Neurosci 30:15330–15335

    PubMed  CAS  PubMed Central  Google Scholar 

  • Potter E, Sutton S, Donaldson C, Chen R, Perrin M, Lewis K, Sawchenko PE, Vale W (1994) Distribution of corticotropin-releasing factor receptor mRNA expression in the rat brain and pituitary. Proc Natl Acad Sci U S A 91:8777–8781

    PubMed  CAS  PubMed Central  Google Scholar 

  • Renzi M, Farrant M, Cull-Candy SG (2007) Climbing-fibre activation of NMDA receptors in Purkinje cells of adult mice. J Physiol 585:91–101

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reynolds T, Hartell NA (2000) An evaluation of the synapse specificity of long-term depression induced in rat cerebellar slices. J Physiol 527:563–577

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reynolds T, Hartell NA (2001) Roles for nitric oxide and arachidonic acid in the induction of heterosynaptic cerebellar LTD. Neuroreport 12:133–136

    PubMed  CAS  Google Scholar 

  • Rooney TA, Joseph SK, Queen C, Thomas AP (1996) Cyclic GMP induces oscillatory calcium signals in rat hepatocytes. J Biol Chem 271:19817–19825

    PubMed  CAS  Google Scholar 

  • Ross WN, Werman R (1987) Mapping calcium transients in the dendrites of Purkinje cells from the guinea-pig cerebellum in vitro. J Physiol 389:319–336

    PubMed  CAS  PubMed Central  Google Scholar 

  • Safo PK, Regehr WG (2005) Endocannabinoids control the induction of cerebellar LTD. Neuron 48:647–659

    PubMed  CAS  Google Scholar 

  • Safo P, Regehr WG (2008) Timing dependence of the induction of cerebellar LTD. Neuropharmacology 54:213–218

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sakanaka M, Shibasaki T, Lederis K (1987) Corticotropin releasing factor-like immunoreactivity in the rat brain as revealed by a modified cobalt-glucose oxidase-diaminobenzidine method. J Comp Neurol 260:256–298

    PubMed  CAS  Google Scholar 

  • Sakurai M (1990) Calcium is an intracellular mediator of the climbing fiber in induction of cerebellar long-term depression. Proc Natl Acad Sci U S A 87:3383–3385

    PubMed  CAS  PubMed Central  Google Scholar 

  • Salin PA, Malenka RC, Nicoll RA (1996) Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron 16:797–803

    PubMed  CAS  Google Scholar 

  • Sarkisov DV, Wang SS (2008) Order-dependent coincidence detection in cerebellar Purkinje neurons at the inositol trisphosphate receptor. J Neurosci 28:133–142

    PubMed  CAS  Google Scholar 

  • Schmidt H, Stiefel KM, Racay P, Schwaller B, Eilers J (2003) Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: role of parvalbumin and calbindin D28k. J Physiol 551:13–32

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schonewille M, Gao Z, Boele HJ, Veloz MF, Amerika WE, Simek AA, De Jeu MT, Steinberg JP, Takamiya K, Hoebeek FE, Linden DJ, Huganir RL, De Zeeuw CI (2011) Reevaluating the role of LTD in cerebellar motor learning. Neuron 70:43–50

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shibuki K, Okada D (1991) Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum. Nature 349:326–328

    PubMed  CAS  Google Scholar 

  • Shibuki K, Okada D (1992) Cerebellar long-term potentiation under suppressed postsynaptic Ca2+ activity. Neuroreport 3:231–234

    PubMed  CAS  Google Scholar 

  • Shin JH, Linden DJ (2005) An NMDA receptor/nitric oxide cascade is involved in cerebellar LTD but is not localized to the parallel fiber terminal. J Neurophysiol 94:4281–4289

    PubMed  CAS  Google Scholar 

  • Smith-Hicks C, Xiao B, Deng R, Ji Y, Zhao X, Shepherd JD, Posern G, Kuhl D, Huganir RL, Ginty DD, Worley PF, Linden DJ (2010) SRF binding to SRE 6.9 in the Arc promoter is essential for LTD in cultured Purkinje cells. Nat Neurosci 13:1082–1089

    PubMed  CAS  PubMed Central  Google Scholar 

  • Steinberg JP, Takamiya K, Shen Y, Xia J, Rubio ME, Yu S, Jin W, Thomas GM, Linden DJ, Huganir RL (2006) Targeted in vivo mutations of the AMPA receptor subunit GluR2 and its interacting protein PICK1 eliminate cerebellar long-term depression. Neuron 49:845–860

    PubMed  CAS  Google Scholar 

  • Steuber V, Mittmann W, Hoebeek FE, Silver RA, De Zeeuw CI, Hausser M, De Schutter E (2007) Cerebellar LTD and pattern recognition by Purkinje cells. Neuron 54:121–136

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sugiura T, Kishimoto S, Oka S, Gokoh M (2006) Biochemistry, pharmacology and physiology of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand. Prog Lipid Res 45:405–446

    PubMed  CAS  Google Scholar 

  • Takechi H, Eilers J, Konnerth A (1998) A new class of synaptic response involving calcium release in dendritic spines. Nature 396:757–760

    PubMed  CAS  Google Scholar 

  • Tanaka K, Augustine GJ (2008) A positive feedback signal transduction loop determines timing of cerebellar long-term depression. Neuron 59:608–620

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tanaka K, Khiroug L, Santamaria F, Doi T, Ogasawara H, Ellis-Davies GC, Kawato M, Augustine GJ (2007) Ca2+ requirements for cerebellar long-term synaptic depression: role for a postsynaptic leaky integrator. Neuron 54:787–800

    PubMed  CAS  Google Scholar 

  • Uemura T, Kakizawa S, Yamasaki M, Sakimura K, Watanabe M, Iino M, Mishina M (2007) Regulation of long-term depression and climbing fiber territory by glutamate receptor δ2 at parallel fiber synapses through its C-terminal domain in cerebellar Purkinje cells. J Neurosci 27:12096–12108

    PubMed  CAS  Google Scholar 

  • van Woerden GM, Hoebeek FE, Gao Z, Nagaraja RY, Hoogenraad CC, Kushner SA, Hansel C, De Zeeuw CI, Elgersma Y (2009) βCaMKII controls the direction of plasticity at parallel fiber-Purkinje cell synapses. Nat Neurosci 12:823–825

    PubMed  Google Scholar 

  • Wagner LE, Li WH, Yule DI (2003) Phosphorylation of type-1 inositol 1,4,5-trisphosphate receptors by cyclic nucleotide-dependent protein kinases: a mutational analysis of the functionally important sites in the S2+ and S2- splice variants. J Biol Chem 278:45811–45817

    PubMed  CAS  Google Scholar 

  • Wang YT, Linden DJ (2000) Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron 25:635–647

    PubMed  CAS  Google Scholar 

  • Wang SS, Denk W, Hausser M (2000a) Coincidence detection in single dendritic spines mediated by calcium release. Nat Neurosci 3:1266–1273

    PubMed  CAS  Google Scholar 

  • Wang SS, Khiroug L, Augustine GJ (2000b) Quantification of spread of cerebellar long-term depression with chemical two-photon uncaging of glutamate. Proc Natl Acad Sci U S A 97:8635–8640

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xia J, Chung HJ, Wihler C, Huganir RL, Linden DJ (2000) Cerebellar long-term depression requires PKC-regulated interactions between GluR2/3 and PDZ domain-containing proteins. Neuron 28:499–510

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Lee D, Kim Y, Lee B, Seo C, Kawasaki H, Kuroda S, Tanaka-Yamamoto K (2012) Raf kinase inhibitory protein is required for cerebellar long-term synaptic depression by mediating PKC-dependent MAPK activation. J Neurosci 32:14254–14264

    PubMed  CAS  Google Scholar 

  • Yoshida T, Hashimoto K, Zimmer A, Maejima T, Araishi K, Kano M (2002) The cannabinoid CB1 receptor mediates retrograde signals for depolarization-induced suppression of inhibition in cerebellar Purkinje cells. J Neurosci 22:1690–1697

    PubMed  CAS  Google Scholar 

  • Yuzaki M (2013) Cerebellar LTD vs. motor learning-Lessons learned from studying GluD2. Neural Netw 47:36–41

    Google Scholar 

  • Zhao HM, Wenthold RJ, Petralia RS (1998) Glutamate receptor targeting to synaptic populations on Purkinje cells is developmentally regulated. J Neurosci 18:5517–5528

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiko Tanaka-Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Tanaka-Yamamoto, K. (2014). Long Term Depression in the Granule Cell-Purkinje Cell Synapse. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_472-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_472-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics