Skip to main content

Center-Surround Processing, Computational Role of

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 399 Accesses

Synonyms

Center-surround modulations; Contextual integration; Contextual processing; Nonclassical receptive fields

Definition

Center-surround processing (CSP) describes the integration of localized “center” with contextual (“surround”) information into a more global representation. It has been studied mostly as a sensory computation, in particular in the early visual system (Carandini et al. 2005). Although center and surround are often defined in space, CSP is a more general processing in the sense that it is also performed in other physical dimensions such as in the auditory domain or in time (Schwartz et al. 2007). In neuroscientific contexts, CSP is defined rather mechanistically as the difference between the processing of localized and extended stimuli. Signatures for CSP are found in many different brain areas, where the responses of neurons to a localized stimulus are strongly and often nonlinearly influenced by its context. Computationally, these processes are thought to be...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bach M (2013) 106 Visual phenomena & optical illusions. http://www.michaelbach.de/ot/. Accessed 6 Oct 2013

  • Carandini M, Heeger DJ (1994) Summation and division by neurons in primate visual cortex. Science 264:1333–1336

    Article  PubMed  CAS  Google Scholar 

  • Carandini M, Demb JB, Mante V, Tolhurst DJ, Dan Y, Olshausen BA, Gallant JL, Rust NC (2005) Do we know what the early visual system does? J Neurosci 25:10577–10597

    Article  PubMed  CAS  Google Scholar 

  • Cavanaugh JR, Bair W, Movshon JA (2002) Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. J Neurophysiol 88:2530–2546

    Article  PubMed  Google Scholar 

  • Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: CVPR 2005 (IEEE computer society conference on computer vision and pattern recognition), vol 1, pp 886–893

    Google Scholar 

  • Ernst UA, Mandon S, Schinkel–Bielefeld N, Neitzel SD, Kreiter AK, Pawelzik KR (2012) Optimality of human contour integration. PLoS Comput Biol 8(5):e1002520. doi:10.1371/journal.pcbi.1002520

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Field DJ, Hayes A, Hess RF (1993) Contour integration by the human visual system: evidence for a local “Association Field”. Vision Res 33(2):173–193

    Article  PubMed  CAS  Google Scholar 

  • Freeman RR, Ohzawa I, Walker G (2001) Beyond the classical receptive field in the visual cortex. Prog Brain Res 134:157–170

    Article  PubMed  CAS  Google Scholar 

  • Geffen MN, de Vries SE, Meister M (2007) Retinal ganglion cells can rapidly change polarity from off to on. PLoS Biol 5:e65

    Article  PubMed  PubMed Central  Google Scholar 

  • Geisler WS, Perry JS, Super BJ, Gallogly DP (2001) Edge co-occurrence in natural images predicts contour grouping performance. Vision Res 41:711–724

    Article  PubMed  CAS  Google Scholar 

  • Graham DJ, Chandler DM, Field DJ (2006) Can the theory of “whitening” explain the center-surround properties of retinal ganglion cell receptive fields? Vision Res 46(18):2901–2913

    Article  PubMed  PubMed Central  Google Scholar 

  • Herzog M (2009) Binding Problem. In: Binder M, Hirokawa N, Windhorst U (eds) Encyclopedia of Neuroscience: SpringerReference (www.springerreference.com). Springer-Verlag Berlin Heidelberg, 2011-01-31 23:00:00 UTC, http://www.springerreference.com/docs/html/chapterdbid/114175.html

  • Ichida JM, Schwabe L, Bressloff PC, Angelucci A (2007) Response facilitation from the “suppressive” receptive field surround of macaque V1 neurons. J Neurophysiol 98:2168–2181

    Article  PubMed  Google Scholar 

  • Kretzberg J, Ernst UA (2013) Vision. In: Galizia L (ed) Neurosciences, 1st edn. SpringerSpektrum, Berlin/Heidelberg, pp 363–407

    Google Scholar 

  • Levitt JB, Lund JS (1997) Contrast dependence of contextual effects in primate visual cortex. Nature 387:73–76

    Article  PubMed  CAS  Google Scholar 

  • Li Z (1998) A neural model of contour integration in the primary visual cortex. Neural Comput 10:903–940

    Article  PubMed  CAS  Google Scholar 

  • Lindeberg T (2012) Scale-invariant feature transform. Scholarpedia 7(5):10491. Accessed 6 Oct 2013

    Google Scholar 

  • Lochmann T, Ernst UA, Deneve S (2012) Perceptual inference predicts contextual modulations of sensory responses. J Neurosci 32:4179–4195

    Article  PubMed  CAS  Google Scholar 

  • Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vision 60(2):91–110

    Article  Google Scholar 

  • Machens CK, Wehr MS, Zador AM (2004) Linearity of cortical receptive fields measured with natural sounds. J Neurosci 24:1089–1100

    Article  PubMed  CAS  Google Scholar 

  • Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381:607–609

    Article  PubMed  CAS  Google Scholar 

  • Polat U, Mizobe K, Pettet MW, Kasamatsu T, Norcia AM (1998) Collinear stimuli regulate visual responses depending on cell’s contrast threshold. Nature 391:580–584

    Article  PubMed  CAS  Google Scholar 

  • Rao RP, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 2:79–87

    Article  PubMed  CAS  Google Scholar 

  • Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2:1019–1025

    Article  PubMed  CAS  Google Scholar 

  • Rozell CJ, Johnson DH, Baraniuk RG, Olshausen BA (2008) Sparse coding via thresholding and local competition in neural circuits. Neural Comput 20:2526–2563

    Article  PubMed  Google Scholar 

  • Schwabe L, Obermayer K, Angelucci A, Bressloff PC (2006) The role of feedback in shaping the extra-classical receptive field of cortical neurons: a recurrent network model. J Neurosci 26:9117–9129

    Article  PubMed  CAS  Google Scholar 

  • Schwartz O, Hsu A, Dayan P (2007) Space and time in visual context. Nat Rev Neurosci 8:522–535

    Article  PubMed  CAS  Google Scholar 

  • Series P, Lorenceau J, Fregnac Y (2003) The “silent” surround of V1 receptive fields: theory and experiments. J Physiol (Paris) 97:453–474

    Article  Google Scholar 

  • Shushruth S, Ichida JM, Levitt JB, Angelucci A (2009) Comparison of spatial summation properties of neurons in macaque V1 and V2. J Neurophysiol 102:21069–22083

    Google Scholar 

  • Sigman M, Cecchi GA, Gilbert CD, Magnasco MO (2001) On a common circle: natural scenes and Gestalt rules. Proc Natl Acad Sci USA 98:1935–1940

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sillito AM, Grieve KL, Jones HE, Cudeiro J, Davis J (1995) Visual cortical mechanisms detecting focal orientation discontinuities. Nature 378:492–496

    Article  PubMed  CAS  Google Scholar 

  • Simoncelli EP, Olshausen BA (2001) Natural image statistics and neural representation. Annu Rev Neurosci 24:1193–1216

    Article  PubMed  CAS  Google Scholar 

  • Solomon SG, Lee BB, Sun H (2006) Suppressive surrounds and contrast gain in magnocellular-pathway retinal ganglion cells of macaque. J Neurosci 26:8715–8726

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Spratling MW (2010) Predictive coding as a model of response properties in cortical area V1. J Neurosci 30:3531–3543

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan MV, Laughlin SB, Dubs A (1982) Predictive coding: a fresh view of inhibition in the retina. Proc R Soc Lond B Biol Sci 216:427–459

    Article  PubMed  CAS  Google Scholar 

  • Theunissen FE, Sen K, Doupe AJ (2000) Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds. J Neurosci 20:2315–2331

    PubMed  CAS  Google Scholar 

  • Todorović, D (2007). W. Metzger: Laws of Seeing. Gestalt Theory, 28, 176–180

    Google Scholar 

  • Vinje WE, Gallant JL (2000) Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287:1273–1276

    Article  PubMed  CAS  Google Scholar 

  • von Helmholtz H (1856) Handbook of physiological optics. Leopold Voss, Leipzig

    Google Scholar 

  • Zhaoping L (2006) Theoretical understanding of the early visual processes by data compression and data selection. Network 17:301–334

    Article  PubMed  Google Scholar 

  • Zhu M, Rozell CJ (2013) Visual nonclassical receptive field effects emerge from sparse coding in a dynamical system. PLoS Comp Biol 9(8):e1003191. doi:10.1371/journal.pcbi.1003191

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Ernst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Ernst, U. (2014). Center-Surround Processing, Computational Role of. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_569-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_569-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics