Skip to main content

Spinal Cord, Integrated (Non CPG) Models of

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Synonyms

Adaptive control; Motor control; Motor learning; Reflex; Regulator; Segmental control; Servo control; Voluntary behavior

Definition

Spinal cord refers to the central nervous system (CNS) in vertebrates below the foramen magnum, between the brainstem and the peripheral nervous system, not including the autonomic ganglia.

Learned sensorimotor behavior refers to all types of voluntary musculoskeletal activation that accomplish a behavioral goal and that utilize sensory feedback during execution, but here excluding cyclical locomotor behaviors known to be generated and controlled autonomously by central pattern generators residing within the spinal cord itself (see “Cross-References”).

Detailed Description

The spinal cord is not part of the brain; together they constitute the central nervous system of vertebrates. The spinal cord alone is capable of controlling complete motor behaviors such as locomotion. It can generate complex sequences of muscle activation and alter them to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alstermark B, Isa T, Pettersson LG, Sasaki S (2007) The C3–C4 propriospinal system in the cat and monkey: a spinal pre-motoneuronal centre for voluntary motor control. Acta Physiol 189:123–140

    Article  CAS  Google Scholar 

  • Anden NE, Jukes MG, Lundberg A, Vyklicky L (1964) A new spinal flexor reflex. Nature 202:1344–1345

    Article  PubMed  CAS  Google Scholar 

  • Baudry S, Maerz AH, Enoka RM (2010) Presynaptic modulation of Ia afferents in young and old adults when performing force and position control. J Neurophysiol 103:623–631

    Article  PubMed Central  PubMed  Google Scholar 

  • Bell SC (1811) Idea of a new anatomy of the brain: submitted for the observations of his friends. Strahan and Preston, London

    Google Scholar 

  • Bizzi E, Hogan N, Mussa-Ivaldi F, Giszter S (1993) Does the nervous system use equilibrium-point control to guide single and multiple join movements? Behav Brain Sci 15:603–613

    Google Scholar 

  • Burke RE (1999) The use of state-dependent modulation of spinal reflexes as a tool to investigate the organization of spinal interneurons. Exp Brain Res 128:263–277

    Article  PubMed  CAS  Google Scholar 

  • Duysens J, De Groote F, Jonkers I (2013) The flexion synergy, mother of all synergies and father of new models of gait. Front Comput Neurosci 7, doi:10.3389/fncom.2013.00014

    Google Scholar 

  • Eccles RM, Lundberg A (1958) Integrative pattern of Ia synaptic actions on motoneurones of hip and knee muscles. J Physiol 144:271–298

    PubMed Central  PubMed  CAS  Google Scholar 

  • Eccles JC, Eccles RM, Lundberg A (1957a) The convergence of monosynaptic excitatory afferents on to many different species of alpha motoneurons. J Physiol 137:22–50

    PubMed Central  PubMed  CAS  Google Scholar 

  • Eccles JC, Eccles RM, Lundberg A (1957b) Synaptic actions on motoneurons caused by impulses in Golgi tendon organ afferents. J Physiol 138:227–253

    PubMed Central  PubMed  CAS  Google Scholar 

  • Feldman AG (1966) Functional tuning of the nervous system with control of movement or maintenance of a steady posture. II. Controllable parameters of the muscles. Biophys J 11:565–578

    Google Scholar 

  • Feldman AG, Ostry DJ, Levin MF, Gribble PL, Mitnitski AB (1998) Recent tests of the equilibrium-point hypothesis (lambda model). Motor Control 2:26–42

    Google Scholar 

  • Gandevia SC (1996) Kinesthesia: roles for afferent signals and motor commands. In: Rowell LB, Shepherd JT (eds) Handbook of physiology, Section 12. Oxford University Press, London, pp 128–172

    Google Scholar 

  • He J, Levine WS, Loeb GE (1991) Feedback gains for correcting small perturbations to standing posture. IEEE Trans Autom Control 36:322–332

    Article  Google Scholar 

  • Hogan N (1984) An organising principle for a class of voluntary movements. J Neurosci 4:2745–2754

    PubMed  CAS  Google Scholar 

  • Houk JC (1979) Regulation of stiffness by skeletomotor reflexes. Annu Rev Physiol 41:99–114

    Article  PubMed  CAS  Google Scholar 

  • Jankowska E (2008) Spinal interneuronal networks in the cat: elementary components. Brain Res Rev 57:46–55

    Article  PubMed Central  PubMed  Google Scholar 

  • Jankowska E, Lundberg A, Stuart D (1973) Propriospinal control of last order interneurones of spinal reflex pathways in the cat. Brain Res 53:227–231

    Article  PubMed  CAS  Google Scholar 

  • Johansson RS, Flanagan JR (2009) Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci 10:345–359

    Article  PubMed  CAS  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727

    Article  PubMed  CAS  Google Scholar 

  • Kistemaker DA, Van Soest AJ, Bobbert MF (2007) Equilibrium point control cannot be refuted by experimental reconstruction of equilibrium point trajectories. J Neurophysiol 98:1075–1082

    Article  PubMed  Google Scholar 

  • Kurtzer IL, Pruszynski JA, Scott SH (2008) Long-latency reflexes of the human arm reflect an internal model of limb dynamics. Curr Biol 18:449–453

    Article  PubMed  CAS  Google Scholar 

  • Loeb GE (1984) The control and responses of mammalian muscle spindles during normally executed motor tasks. Exerc Sport Sci Rev 12:157–204

    Article  PubMed  CAS  Google Scholar 

  • Loeb GE, Marks WB (1985) Optimal control principles for sensory transducers. In: Boyd IA, Gladden MH (eds) Proceedings of the international symposium: the muscle spindle. MacMillan, London, pp 409–415

    Google Scholar 

  • Loeb GE, Levine WS, He J (1990) Understanding sensorimotor feedback through optimal control. Cold Spring Harbor Symp Quant Biol 55:791–803

    Article  PubMed  CAS  Google Scholar 

  • Loeb GE, Brown IE, Cheng EJ (1999) A hierarchical foundation for models of sensorimotor control. Exp Brain Res 126:1–18

    Article  PubMed  CAS  Google Scholar 

  • Lundberg A (1992) To what extent are brain commands for movements mediated by spinal interneurons? Behav Brain Sci 15:775–776

    Google Scholar 

  • Lundberg A, Malmgren K, Schomburg ED (1987) Reflex pathways from group II muscle afferents. 3. Secondary spindle afferents and the FRA: a new hypothesis. Exp Brain Res 65:294–306

    Article  PubMed  CAS  Google Scholar 

  • Magendie F (1822) Experiences sur les fonctions des racines des nerfs rachidiens. J Physiol Exp 2:276–279

    Google Scholar 

  • Maier MA, Shupe LE, Fetz EE (2005) Dynamic neural network models of the premotoneuronal circuitry controlling wrist movements in primates. J Comput Neurosci 19:125–146

    Article  PubMed  CAS  Google Scholar 

  • Martin PG, Smith JL, Butler JE, Gandevia SC, Taylor JL (2006) Fatigue-sensitive afferents inhibit extensor but not flexor motoneurons in humans. J Neurosci 26:4796–4802

    Article  PubMed  CAS  Google Scholar 

  • McCrea DA (1986) Spinal cord circuitry and motor reflexes. Exerc Sport Sci Rev 14:105–141

    Article  PubMed  CAS  Google Scholar 

  • McCrea DA, Rybak IA (2008) Organization of mammalian locomotor rhythm and pattern generation. Brain Res Rev 57:134–146

    Article  PubMed Central  PubMed  Google Scholar 

  • Merton PA (1953) Speculations on the servo-control of movement. In: Wolstenholme GEW (ed) The spinal cord. Churchill, London, pp 247–255

    Google Scholar 

  • Meunier S, Pierrot-Deseilligny E (1998) Cortical control of presynaptic inhibition of Ia afferents in humans. Exp Brain Res 119:415–426

    Article  PubMed  CAS  Google Scholar 

  • Mileusnic MP, Loeb GE (2009) Force estimation from ensembles of Golgi tendon organs. J Neural Eng 6:1–15

    Article  Google Scholar 

  • Perlmutter SI, Maier MA, Fetz EE (1998) Activity of spinal interneurons and their effects on forearm muscles during voluntary wrist movements in the monkey. J Neurophysiol 80:2475–2494

    PubMed  CAS  Google Scholar 

  • Petersen NC, Butler JE, Taylor JL, Gandevia SC (2010) Probing the corticospinal link between the motor cortex and motoneurones: some neglected aspects of human motor cortical function. Acta Physiol 198:403–416

    Article  CAS  Google Scholar 

  • Pierrot-Deseilligny E, Burke DC (2005) The circuitry of the human spinal cord: its role in motor control and movement disorders (vol Illustrated). Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Raphael G, Tsianos GA, Loeb GE (2010) Spinal-like regulator facilitates control of a two-degree-of-freedom wrist. J Neurosci 30:9431–9444

    Article  PubMed  CAS  Google Scholar 

  • Rathelot JA, Strick PL (2009) Subdivisions of primary motor cortex based on cortico-motoneuronal cells. Proc Natl Acad Sci U S A 106:918–923

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Richmond FJ, Loeb GE (1992) Electromyographic studies of neck muscles in the intact cat. II. Reflexes evoked by muscle nerve stimulation. Exp Brain Res 88:59–66

    Article  PubMed  CAS  Google Scholar 

  • Rudomin P, Schmidt RF (1999) Presynaptic inhibition in the vertebrate spinal cord revisited. Exp Brain Res 129:1–37

    Article  PubMed  CAS  Google Scholar 

  • Scott SH (2004) Optimal feedback control and the neural basis of volitional motor control. Nat Rev Neurosci 5:532–546

    Article  PubMed  CAS  Google Scholar 

  • Scott SH, Loeb GE (1994) The computation of position sense from spindles in mono-and multiarticular muscles. J Neurosci 14:7529–7540

    PubMed  CAS  Google Scholar 

  • Scott SH, Norman KE (2003) Computational approaches to motor control and their potential role for interpreting motor dysfunction. Curr Opin Neurol 16:693–698

    Article  PubMed  Google Scholar 

  • Sherrington CS (1908) On reciprocal innervation of antagonistic muscles. Eleventh note. Further observations on successive induction. Proc R Soc Lond Ser B Biol Sci 80:53–71

    Article  Google Scholar 

  • Sherrington CS (1910) Flexion-reflex of the limb, crossed extension-reflex and reflex stepping and standing. J Physiol 40:28–121

    PubMed Central  PubMed  CAS  Google Scholar 

  • Spanne A, Jörntell H (2013) Processing of multi-dimensional sensorimotor information in the spinal and cerebellar neuronal circuitry: a new hypothesis. PLoS Comp Biol 9:e1002979

    Article  CAS  Google Scholar 

  • Tsianos GA, Raphael G, Loeb GE (2011) Modeling the potentiality of spinal-like circuitry for stabilization of a planar arm system. Prog Brain Res 194:203–213

    Article  PubMed  Google Scholar 

  • Tsianos GA, Goodner J, Loeb GE (in press) Useful Properties of Spinal Circuits for Learning and Performing Planar Reaches, J. Neural Engineering (in press)

    Google Scholar 

  • Windhorst U (1990) Activation of renshaw cells. Prog Neurobiol 35:135–179

    Article  PubMed  CAS  Google Scholar 

  • Wolpaw JR (2010) What can the spinal cord teach us about learning and memory? Neuroscientist 16:532–549

    Article  PubMed  Google Scholar 

  • Zajac FE, Gordon ME (1989) Determining muscle’s force and action in multi-articular movement. Exerc Sport Sci Rev 17:187–230

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald E. Loeb M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Loeb, G.E. (2014). Spinal Cord, Integrated (Non CPG) Models of. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_648-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_648-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics