Skip to main content

Feeding Intervals in Very Low Birth Weight Infants in Intensive or Critical Care

  • Living reference work entry
  • First Online:
Diet and Nutrition in Critical Care
  • 98 Accesses

Abstract

Very low birth weight infants are a population at high risk for feeding intolerance, altered gut motility, respiratory compromise, and growth failure. Providing adequate, timely, and safe nutrition are keys to mitigating these conditions, but the optimal schedule of feeding is not known. Intermittent bolus feeding leads to a more rapid progression toward mature gastrointestinal function and hormonal milieu. However, larger bolus feeds may cause temporary impairment in respiratory functions, which are more pronounced in infants with respiratory distress syndrome. Taken as a group, there are no significant differences in feeding tolerance or growth between infants fed continuously and those fed via intermittent bolus. Given the metabolic, hormonal, and gastrointestinal function improvement in the guts of neonates fed via bolus, this should be the primary method of feeding in VLBW infants. Despite this, there may be a subset of infants who require continuous feedings, either due to compromised respiratory status or altered gastrointestinal absorptive capacity. Recent data indicate a role for more frequent, smaller boluses provided on an every two hourly schedule, rather than larger, less frequent boluses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

FRC:

Functional residual capacity

GER:

Gastroesophageal reflux

GI:

Gastrointestinal

LES:

Lower esophageal sphincter

mL:

Milliliter

MMC:

Migrating motor complexes

MV:

Minute ventilation

NEC:

Necrotizing enterocolitis

NICU:

Neonatal intensive care unit

q2:

Every 2 hour

q3:

Every 3 hour

RDS:

Respiratory distress syndrome

SMA:

Superior mesenteric artery

TV:

Tidal volume

VLBW:

Very low birth weight

WHO:

World Health organization

References

  • al Tawil Y, Berseth CL. Gestational and postnatal maturation of duodenal motor responses to intragastric feeding. J Pediatr. 1996;129(3):374–81.

    Article  PubMed  Google Scholar 

  • Aynsley-Green A, Bloom SR, Williamson DH, Turner RC. Endocrine and metabolic response in the human newborn to first feed of breast milk. Arch Dis Child. 1977;52(4):291–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aynsley-Green A, Adrian TE, Bloom SR. Feeding and the development of enteroinsular hormone secretion in the preterm infant: effects of continuous gastric infusions of human milk compared with intermittent boluses. Acta Paediatr Scand. 1982;71(3):379–83.

    Article  CAS  PubMed  Google Scholar 

  • Aynsley-Greeen A. Hormonal influences upon growth. Fetal and neonatal growth. 5. Bristol: John Wiley Ltd; 1988. p. 153–93

    Google Scholar 

  • Baker JH, Berseth CL. Duodenal motor responses in preterm infants fed formula with varying concentrations and rates of infusion. Pediatr Res. 1997;42(5):618–22.

    Article  CAS  PubMed  Google Scholar 

  • Bergman NJ. Neonatal stomach volume and physiology suggest feeding at 1-h intervals. Acta Paediatr. 2013;102(8):773–7.

    Article  PubMed  Google Scholar 

  • Berseth CL, Nordyke C. Enteral nutrients promote postnatal maturation of intestinal motor activity in preterm infants. Am J Physiol. 1993;264(6 Pt 1):G1046–51.

    CAS  PubMed  Google Scholar 

  • Blondheim O, Abbasi S, Fox WW, Bhutani VK. Effect of enteral gavage feeding rate on pulmonary functions of very low birth weight infant. J Pediatr. 1993;122(5 Pt 1):751–5.

    Article  CAS  PubMed  Google Scholar 

  • Broussard DL, Altschuler SM. Development of the enteric nervous system. In: Polin RA, Fox WW, Abman SH, editors. Fetal and neonatal physiology, vol. 2. 4th ed. Philadelphia: Elsevier Saunders; 2011. p. 1197.

    Chapter  Google Scholar 

  • Burrin DG. Trophic factors and regulation of gastrointestinal tract and liver development. In: Polin RA, Fox WW, Abman SH, editors. Fetal and neonatal physiology, vol. 2. Philadelphia: Elsevier Saunders; 2011. p. 1181–97.

    Chapter  Google Scholar 

  • Coombs RC, Morgan ME, Durbin GM, Booth IW, McNeish AS. Doppler assessment of human neonatal gut blood flow velocities: postnatal adaptation and response to feeds. J Pediatr Gastroenterol Nutr. 1992;15(1):6–12.

    Article  CAS  PubMed  Google Scholar 

  • Dave V, Brion LP, Campbell DE, Scheiner M, Raab C, Nafday SM. Splanchnic tissue oxygenation, but not brain tissue oxygenation, increases after feeds in stable preterm neonates tolerating full bolus orogastric feeding. J Perinatol. 2009;29(3):213–8.

    Article  CAS  PubMed  Google Scholar 

  • Davis TA, Fiorotto ML. Regulation of muscle growth in neonates. Curr Opin Clin Nutr Metab Care. 2009;12(1):78–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Ville K, Knapp E, Al-Tawil Y, Berseth CL. Slow infusion feedings enhance duodenal motor responses and gastric emptying in preterm infants. Am J Clin Nutr. 1998;68(1):103–8.

    PubMed  Google Scholar 

  • DeMauro SB, Abbasi S, Lorch S. The impact of feeding interval on feeding outcomes in very low birth-weight infants. J Perinatol. 2011;31(7):481–6.

    Article  CAS  PubMed  Google Scholar 

  • Deshpande S, Hawdone JM, Ward Platt MP, Aynsley-Greeen A. Metabolic adaptation to extrauterine life. In: Fetal medicine: basic science and clinical practice. London: Churchill Livingstone; 1999. p. 1059–70.

    Google Scholar 

  • Dsilna A, Christensson K, Alfredsson L, Lagercrantz H, Blennow M. Continuous feeding promotes gastrointestinal tolerance and growth in very low birth weight infants. J Pediatr. 2005;147(1):43–9.

    Article  PubMed  Google Scholar 

  • Dsilna A, Christensson K, Gustafsson AS, Lagercrantz H, Alfredsson L. Behavioral stress is affected by the mode of tube feeding in very low birth weight infants. Clin J Pain. 2008;24(5):447–55.

    Article  PubMed  Google Scholar 

  • Ehrenkranz RA, Dusick AM, Vohr BR, Wright LL, Wrage LA, Poole WK. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics. 2006;117:1253.

    Article  PubMed  Google Scholar 

  • El-Kadi SW, Suryawan A, Gazzaneo MC, Srivastava N, Orellana RA, Nguyen HV, et al. Anabolic signaling and protein deposition are enhanced by intermittent compared with continuous feeding in skeletal muscle of neonates. Am J Physiol Endocrinol Metab. 2012;302(6):E674–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gazzaneo MC, Suryawan A, Orellana RA, Torrazza RM, El-Kadi SW, Wilson FA, et al. Intermittent bolus feeding has a greater stimulatory effect on protein synthesis in skeletal muscle than continuous feeding in neonatal pigs. J Nutr. 2011;141(12):2152–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grant J, Denne SC. Effect of intermittent versus continuous enteral feeding on energy expenditure in premature infants. J Pediatr. 1991;118(6):928–32.

    Article  CAS  PubMed  Google Scholar 

  • Heldt GP. The effect of gavage feeding on the mechanics of the lung, chest wall, and diaphragm of preterm infants. Pediatr Res. 1988;24(1):55–8.

    Article  CAS  PubMed  Google Scholar 

  • Hsu CH, Lee HC, Huang FY. Duplex ultrasonographic assessment of gut blood flow velocity: effect of meal composition in normal full-term newborns after first feed. J Ultrasound Med. 1994;13(1):15–8.

    CAS  PubMed  Google Scholar 

  • Jadcherla SR, Berseth CL. Development of gastrointestinal motility reflexes. In: Neu J, editor. Gastroenterology and nutrition. Neonatology questions and controversies. 2nd ed. Philadelphia: Elsevier Saunders; 2012. p. 27–37.

    Chapter  Google Scholar 

  • Lane AJ, Coombs RC, Evans DH, Levin RJ. Effect of feed interval and feed type on splanchnic haemodynamics. Arch Dis Child Fetal Neonatal Ed. 1998;79(1):F49–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lucas A. In: Tsang R, Uauy R, Koletzko B, Zlotkin S, editors. Nutrition of the preterm infant: scientific basis and practical guidelines. 2nd ed. Digital Educational Publishing, Cincinatti, OH; 1993. p. 318

    Google Scholar 

  • Lucas A, Bloom SR, Aynsley-Green A. Metabolic and endocrine events at the time of the first feed of human milk in preterm and term infants. Arch Dis Child. 1978;53(9):731–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Magnuson DK, Parry RL, Chwals WJ. The gastrointestinal tract. In: Fanarof and Martin’s neonatal-perinatal medicine: diseases of the fetus and infant, vol. 8. Philadelphia: Mosby Elsevier; 2006. p. 1357–418.

    Google Scholar 

  • Martin CR, Walker WA. Innate and mucosal immunity in the developing gastrointestinal tract: relationship to early and later disease. In: Gleason CA, Devaskar SU, editors. Avery’s diseases of the newborn. Philadelphia: Elsevier Saunders; 2012. p. 994–1006.

    Chapter  Google Scholar 

  • Nankervis CA, Reber KM, Nowicki PT. Age-dependent changes in the postnatal intestinal microcirculation. Microcirculation. 2001;8(6):377–87.

    Article  CAS  PubMed  Google Scholar 

  • Naveed M, Manjunath CS, Sreenivas V. An autopsy study of relationship between perinatal stomach capacity and birth weight. Indian J Gastroenterol. 1992;11(4):156–8.

    CAS  PubMed  Google Scholar 

  • Neu J, Mshvildadze M. Digestive-absorption functions in fetuses, infants, and children. In: Polin RA, Fox WW, Abman SH, editors. Fetal and neonatal physiology, vol. 2. 4th ed. Philadelphia: Elsevier Saunders; 2011. p. 1240–1.

    Chapter  Google Scholar 

  • O’Connor PM, Bush JA, Suryawan A, Nguyen HV, Davis TA. Insulin and amino acids independently stimulate skeletal muscle protein synthesis in neonatal pigs. Am J Physiol Endocrinol Metab. 2003;284(1):E110–9.

    PubMed  Google Scholar 

  • Omari TI, Rudolph CD. Gastrointestinal motility. In: Polin RA, Fox WW, Abman SH, editors. Fetal and neonatal physiology, vol. 2. 4th ed. Philadelphia: Elsevier Saunders; 2011. p. 1212–25.

    Chapter  Google Scholar 

  • Parker P, Stroop S, Greene H. A controlled comparison of continuous versus intermittent feeding in the treatment of infants with intestinal disease. J Pediatr. 1981;99(3):360–4.

    Article  CAS  PubMed  Google Scholar 

  • Patel BD, Dinwiddie R, Kumar SP, Fox WW. The effects of feeding on arterial blood gases and lung mechanics in newborn infants recovering from respiratory disease. J Pediatr. 1977;90(3):435–8.

    Article  CAS  PubMed  Google Scholar 

  • Pitcher-Wilmott R, Shutack JG, Fox WW. Decreased lung volume after nasgogastric feeding of neonates recovering from respiratory disease. J Pediatr. 1979;95(1):119–21.

    Article  CAS  PubMed  Google Scholar 

  • Premji SS, Chessell L. Continuous nasogastric milk feeding versus intermittent bolus milk feeding for premature infants less than 1500 grams. Cochrane Database Syst Rev. 2011;11, CD001819.

    PubMed  Google Scholar 

  • Rudiger M, Herrmann S, Schmalisch G, Wauer RR, Hammer H, Tschirch E. Comparison of 2-h versus 3-h enteral feeding in extremely low birth weight infants, commencing after birth. Acta Paediatr. 2008;97(6):764–9.

    Article  PubMed  Google Scholar 

  • Scammon RE, Doyle LO. Observations on the capacity of the stomach in the first ten day of postnatal life. Am J Dis Child. 1920;20(6):516–38.

    Google Scholar 

  • Schanler RJ, Shulman RJ, Lau C, Smith EO, Heitkemper MM. Feeding strategies for premature infants: randomized trial of gastrointestinal priming and tube-feeding method. Pediatrics. 1999;103(2):434–9.

    Article  CAS  PubMed  Google Scholar 

  • Shulman RJ, Redel CA, Stathos TH. Bolus versus continuous feedings stimulate small-intestinal growth and development in the newborn pIg. Journal of Pediatric Gastroenterology and Nutrition. 1994;18:350–4.

    Article  CAS  PubMed  Google Scholar 

  • Silvestre MA, Morbach CA, Brans YW, Shankaran S. A prospective randomized trial comparing continuous versus intermittent feeding methods in very low birth weight neonates. J Pediatr. 1996;128(6):748–52.

    Article  CAS  PubMed  Google Scholar 

  • Sudarshan R, Berseth CL. Developement of gastrointestinal motility reflexes. In: Neu J, Polin RA, editors. Gastroenterology and nutrition: neonatology questions and controverses. 2nd ed. Philadelphia: Elsevier Saunders; 2012. p. 27–37.

    Google Scholar 

  • Tyson JE, Kennedy KA. Trophic feedings for parenterally fed infants. Cochrane Database Syst Rev. 2005(3):CD000504.

    PubMed  Google Scholar 

  • World Health Organization (2011) Guidelines on optimal feeding of low birth-weight infants in low- and middle-income countries. World Health Organization [cited 2012 June 23]. Available from: http://www.who.int/maternal_child_adolescent/documents/infant_feeding_low_bw/en/

  • Wright LL, Vohr BR, Fanaroff AA. Perinatal-neonatal epidemiology. In: Taeusch HW, Balard RA, Gleason CA, Avery ME, editors. Avery’s diseases of the newborn. 8th ed. Philadelphia: Elsevier Saunders; 2005. p. 1–8.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara B. DeMauro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

DeMauro, S.B., Gray, M.M. (2014). Feeding Intervals in Very Low Birth Weight Infants in Intensive or Critical Care. In: Rajendram, R., Preedy, V., Patel, V. (eds) Diet and Nutrition in Critical Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8503-2_52-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8503-2_52-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-8503-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics