Skip to main content

Lineament Grid

  • Living reference work entry
  • First Online:
Encyclopedia of Planetary Landforms
  • 55 Accesses

Definition

Global pattern of preferentially oriented lineaments on the surface of a planetary body. Lineaments whose orientation is influenced locally by another surface feature (e.g., an impact basin) or was created by exogenic processes are not considered to be parts of the lineament grid.

Synonyms

Global grid system; Global lineament pattern

Regional Terms

Lunar grid (Moon), lineament grid (Mercury) (Dzurisin 1978), Mercurian grid (Thomas et al. 1988).

Description

Linear, arcuate, sinuous, or irregular scarps (steep, cliff-like slopes of considerable lateral extent separating terrains lying at different levels), ridges (elongated positive relief features), or troughs (elongated negative relief features).

Formation

A global (or regional) lineament grid pattern can be the result of global (or regional) strain in the crust. Global strain can arise from the following events:

  1. (1)

    Change in rotation rate (Vening Meinesz 1947), for example, despinning caused by tidal dissipation (tidal...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Burns JA (1976) Consequences of the tidal slowing of Mercury. Icarus 28:453–458

    Article  Google Scholar 

  • Byrne PK, Celâl Şengör AM, Klimczak C, Solomon SC, Watters TR, Hauck SA II (2014) Mercury’s global contraction much greater than earlier estimates. Nat Geosci. doi:10.1038/ngeo2097

    Google Scholar 

  • Dana JD (1847) Geological results of the earth’s contraction in consequence of cooling. Am J Sci Arts 2nd Ser 3:176–188

    Google Scholar 

  • Dzurisin D (1978) The tectonic and volcanic history of Mercury as inferred from studies of scarps, ridges, troughs, and other lineaments. J Geophys Res 83:4883–4906

    Article  Google Scholar 

  • Fiedler G (1963) Lunar tectonics. Q J Geol Soc Lond 119:65–94

    Article  Google Scholar 

  • Greenberg R (2005) Europa, the ocean Moon. Springer Praxis, Chichester

    Google Scholar 

  • Havre N (1931) Le Terre est un Astre Pulsatile. Béranger, Paris/Liege

    Google Scholar 

  • Kite ES, Matsuyama I, Manga M, Perron JT, Mitrovica JX (2009) True Polar Wander driven by late-stage volcanism and the distribution of paleopolar deposits on Mars. Earth Planet Sci Lett 280:254–267

    Article  Google Scholar 

  • Matsuyama I, Nimmo F (2008) Tectonic patterns on reoriented and despun planetary bodies. Icarus 195:459–473

    Article  Google Scholar 

  • Melosh HJ (1977) Global tectonics of a Despun planet. Icarus 31:221–243

    Article  Google Scholar 

  • Melosh HJ, Dzurisin D (1978) Mercurian global tectonics: a consequence of tidal despinning? Icarus 35:227–236

    Article  Google Scholar 

  • Melosh HJ, McKinnon WB (1988) The tectonics of Mercury. In: Mercury (A89-43751 19–91). University of Arizona Press, Tucson, pp 374–400

    Google Scholar 

  • Mohit PS, Greenhagen BT, McKinnon WB (2012) Polar wander on ganymede: a possible solution to the apex-antapex cratering conundrum.Workshop on the early solar system impact bombardment II, abstract #4043, Houston

    Google Scholar 

  • Morgan WJ (1968) Rises, trenches, great faults, and crustal blocks. J Geophys Res 73(6):1959–1982. doi:10.1029/JB073i006p01959

    Article  Google Scholar 

  • Scalera G, Jacob K-H (eds) (2003) Why expanding Earth? – a book in honour of O.C. Hilgenberg/INGV, Rome

    Google Scholar 

  • Schenk P, Matsuyama I, Nimmo F (2008) True polar wander on Europa from global-scale small-circle depressions. Nature 453:368–371

    Article  Google Scholar 

  • Showman AP, Stevenson DJ, Malhotra R (1997) Coupled orbital and thermal evolution of Ganymede. Icarus 129:367–383. doi:10.1006/icar.1997.5778

    Article  Google Scholar 

  • Singer KN, McKinnon WB (2011) Tectonics on Iapetus: despinning, respinning, or something completely different? Icarus 216:198–211

    Article  Google Scholar 

  • Spurr JE (1944) Geology applied to selenology. Science Press, Lancaster

    Google Scholar 

  • Squyres SW (1980) Volume changes in Ganymede and Callisto and the origin of grooved terrain. Geophys Res Lett 7:593–596

    Article  Google Scholar 

  • Strom R (1964) Analysis of lunar lineaments. I. Tectonic maps of the Moon. Commun Lunar Planet Lab 2(39):205–206

    Google Scholar 

  • Thomas PG (1997) Are there other tectonics than tidal despinning, global contraction and Caloris related events on Mercury? A review of questions and problems. Planet Space Sci 45(1):3–13

    Article  Google Scholar 

  • Thomas PG, Masson P, Fleitout L (1988) Tectonic history of Mercury. In: Vilas F, Chapman CR, Matthews MS (eds) Mercury. University of Arizona Press, Tucson

    Google Scholar 

  • Ussov MA (1937) Compression and expansion in the history of the earth. Paper presented at the 17th session of the international geological congress, Leningrad

    Google Scholar 

  • van Diggelen J (1966) The linear network of lunar surface features. Bull Astron Inst Neth 18:311–322

    Google Scholar 

  • Vening Meinesz FA (1947) Shear patterns of the earth’s crust. Geol Soc Am Abstr Progr 28:1–61

    Google Scholar 

  • Vilas F, Chapman CR, Matthews MS (1988) Mercury. University of Arizona Press, Tucson

    Google Scholar 

  • Wells RA (1969) An introduction to the Martian Grid system. Geophys J Roy Astron Soc 17:209–224. doi:10.1111/j.1365-246X.1969.tb02322.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erzsébet Illés-Almár .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Illés-Almár, E. (2014). Lineament Grid. In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_482-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_482-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics