Skip to main content

Iterative Solution Methods

  • Reference work entry
Handbook of Mathematical Methods in Imaging

Abstract

This chapter deals with iterative methods for nonlinear ill-posed problems. We present gradient and Newton type methods as well as nonstandard iterative algorithms such as Kaczmarz, expectation maximization, and Bregman iterations. Our intention here is to cite convergence results in the sense of regularization and to provide further references to the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akcelik, V., Biros, G., Draganescu, A., Hill, J., Ghattas, O., Waanders, B.V.B.: Dynamic data-driven inversion for terascale simulations: real-time identification of airborne contaminants. In: Proceedings of SC05. IEEE/ACM, Seattle (2005)

    Google Scholar 

  2. Bachmayr, M., Burger, M.: Iterative total variation schemes for nonlinear inverse problems. Inverse Prob. 25, 105,004 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bakushinsky, A.B.: The problem of the convergence of the iteratively regularized Gauss-Newton method. Comput. Math. Math. Phys. 32, 1353–1359 (1992)

    MathSciNet  Google Scholar 

  4. Bakushinsky, A.B.: Iterative methods without degeneration for solving degenerate nonlinear operator equations. Dokl. Akad. Nauk. 344, 7–8 (1995)

    MathSciNet  Google Scholar 

  5. Bakushinsky, A.B., Kokurin, M.Y.: Iterative Methods for Approximate Solution of Inverse Problems. Mathematics and Its Applications, vol. 577. Springer, Dordrecht (2004)

    Google Scholar 

  6. Bauer, F., Hohage, T.: A Lepskij-type stopping rule for regularized Newton methods. Inverse Prob. 21, 1975–1991 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bauer, F., Kindermann, S.: The quasi-optimality criterion for classical inverse problems. Inverse Prob. 24(3), 035,002 (20 pp) (2008)

    Google Scholar 

  8. Bauer, F., Hohage, T., Munk, A.: Iteratively regularized Gauss-Newton method for nonlinear inverse problems with random noise. SIAM J. Numer. Anal. 47, 1827–1846 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Baumeister, J., Cezaro, A.D., Leitao, A.: On iterated Tikhonov-Kaczmarz regularization methods for ill-posed problems. ICJV (2010). doi:10.1007/s11263-010-0339-5

    Google Scholar 

  10. Baumeister, J., Kaltenbacher, B., Leitao, A.: On Levenberg-Marquardt Kaczmarz regularization methods for ill-posed problems. Inverse Prob. Imaging 4, 335–350 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Benning, M., Brune, C., Burger, M., Mueller, J.: Higher-order tv methods - enhancement via bregman iteration. J. Sci. Comput. 54(2-3), 269–310 (2013). In honor of Stanley Osher for his 70th birthday

    Article  MATH  MathSciNet  Google Scholar 

  12. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. Institute of Physics Publishing, Bristol (1998)

    Book  MATH  Google Scholar 

  13. Bissantz, N., Hohage, T., Munk, A., Ruymgaart, F.: Convergence rates of general regularization methods for statistical inverse problems and applications. SIAM J. Numer. Anal. 45, 2610–2636 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bissantz, N., Mair, B., Munk, A.: A statistical stopping rule for MLEM reconstructions in PET. IEEE Nucl. Sci. Symp. Conf. Rec 8, 4198–4200 (2008)

    Google Scholar 

  15. Blaschke, B., Neubauer, A., Scherzer, O.: On convergence rates for the iteratively regularized Gauss-Newton method. IMA J. Numer. Anal. 17, 421–436 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comp. Math. Math. Phys. 7, 200–217 (1967)

    Article  Google Scholar 

  17. Brune, C., Sawatzky, A., Burger, M.: Bregman-EM-TV methods with application to optical nanoscopy. In: Tai, X.-C., et al. (ed.) Proceedings of the 2nd International Conference on Scale Space and Variational Methods in Computer Vision. Lecturer Notes in Computer Science, vol. 5567, pp. 235–246. Springer, New York (2009)

    Chapter  Google Scholar 

  18. Brune, C., Sawatzky, A., Burger, M.: Primal and dual Bregman methods with application to optical nanoscopy. Int. J. Comput. Vis 92, 211–229 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Burger, M., Kaltenbacher, B.: Regularizing Newton-Kaczmarz methods for nonlinear ill-posed problems. SIAM J. Numer. Anal. 44, 153–182 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Burger, M., Resmerita, E., He, L.: Error estimation for Bregman iterations and inverse scale space methods in image restoration. Computing 81(2-3), 109–135 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Cai, J.F., Osher, S., Shen, Z.: Convergence of the linearized Bregman iteration for l1-norm minimization. Math. Comput. 78, 2127–2136 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Cai, J.F., Osher, S., Shen, Z.: Linearized Bregman iterations for compressed sensing. Math. Comput. 78, 1515–1536 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Cai, J.F., Osher, S., Shen, Z.: Linearized Bregman iterations for frame-based image deblurring. SIAM J. Imaging Sci. 2, 226–252 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Colonius, F., Kunisch, K.: Output least squares stability in elliptic systems. Appl. Math. Optim. 19, 33–63 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. Combettes, P.L., Pesquet, J.C.: A proximal decomposition method for solving convex variational inverse problems. Inverse Prob. 24, 065,014 (27 pp) (2008)

    Google Scholar 

  26. Daubechies, I., Defrise, M., Mol, C.D.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math. 57, 1413–1457 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. De Cezaro, A., Haltmeier, M., Leitao, A., Scherzer, O.: On steepest-descent-Kaczmarz methods for regularizing systems of nonlinear ill-posed equations. Appl. Math. Comput. 202, 596–607 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Dembo, R., Eisenstat, S., Steihaug, T.: Inexact Newton’s method. SIAM J. Numer. Anal. 14, 400–408 (1982)

    Article  MathSciNet  Google Scholar 

  29. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39, 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  30. Deuflhard, P., Engl, H.W., Scherzer, O.: A convergence analysis of iterative methods for the solution of nonlinear ill-posed problems under affinely invariant conditions. Inverse Prob. 14, 1081–1106 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  31. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  32. Egger, H.: Fast fully iterative Newton-type methods for inverse problems. J. Inverse Ill-Posed Prob. 15, 257–275 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Egger, H.: Y-Scale regularization. SIAM J. Numer. Anal. 46, 419–436 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Egger, H., Neubauer, A.: Preconditioning Landweber iteration in Hilbert scales. Numer. Math. 101, 643–662 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  35. Eicke, B., Louis, A.K., Plato, R.: The instability of some gradient methods for ill-posed problems. Numer. Math. 58, 129–134 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  36. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  37. Engl, H.W., Zou, J.: A new approach to convergence rate analysis of tiknonov regularization for parameter identification in heat conduction. Inverse Prob. 16, 1907–1923 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  38. Glowinski, R., Tallec, P.L.: Augmented Lagrangian and Operator Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)

    Book  MATH  Google Scholar 

  39. Green, P.J.: Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans. Med. Imaging 9, 84–93 (1990)

    Article  Google Scholar 

  40. Green, P.J.: On use of the EM algorithm for penalized likelihood estimation. J. R. Stat. Soc. Ser. B (Methodological) 52, 443–452 (1990)

    MATH  Google Scholar 

  41. Haber, E.: Quasi-Newton methods for large-scale electromagnetic inverse problems. Inverse Prob. 21, 305–323 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  42. Haber, E., Ascher, U.: A multigrid method for distributed parameter estimation problems. Inverse Prob. 17, 1847–1864 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  43. Haltmeier, M., Leitao, A., Scherzer, O.: Kaczmarz methods for regularizing nonlinear ill-posed equations I: convergence analysis. Inverse Prob. Imaging 1, 289–298 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  44. Haltmeier, M., Kowar, R., Leitao, A., Scherzer, O.: Kaczmarz methods for regularizing nonlinear ill-posed equations II: applications. Inverse Prob. Imaging 1, 507–523 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  45. Haltmeier, M., Leitao, A., Resmerita, E.: On regularization methods of EM-Kaczmarz type. Inverse Prob. 25(7), 17 (2009)

    Article  MathSciNet  Google Scholar 

  46. Hanke, M.: A regularization Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems. Inverse Prob. 13, 79–95 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  47. Hanke, M.: Regularizing properties of a truncated Newton-CG algorithm for nonlinear inverse problems. Numer. Funct. Anal. Optim. 18, 971–993 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  48. Hanke, M.: The regularizing Levenberg-Marquardt scheme is of optimal order. J. Integr. Equ. Appl. 22, 259–283 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  49. Hanke, M., Neubauer, A., Scherzer, O.: A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numer. Math. 72, 21–37 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  50. He, L., Burger, M., Osher, S.: Iterative total variation regularization with non-quadratic fidelity. J. Math. Imaging Vis. 26, 167–184 (2006)

    Article  MathSciNet  Google Scholar 

  51. Hein, T., Kazimierski, K.: Modified Landweber iteration in Banach spaces – convergence and convergence rates. Numer. Funct. Anal. Optim. 31(10), 1158–1184 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  52. Hochbruck, M., Hönig, M., Ostermann, A.: A convergence analysis of the exponential euler iteration for nonlinear ill-posed problems. Inverse Prob. 25, 075,009 (18 pp) (2009)

    Google Scholar 

  53. Hochbruck, M., Hönig, M., Ostermann, A.: Regularization of nonlinear ill-posed problems by exponential integrators. Math. Mod. Numer. Anal. 43, 709–720 (2009)

    Article  MATH  Google Scholar 

  54. Hohage, T.: Logarithmic convergence rates of the iteratively regularized Gauß-Newton method for an inverse potential and an inverse scattering problem. Inverse Prob. 13, 1279–1299 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  55. Hohage, T.: Iterative methods in inverse obstacle scattering: regularization theory of linear and nonlinear exponentially ill-posed problems. Ph.D. thesis, University of Linz (1999)

    Google Scholar 

  56. Hohage, T.: Regularization of exponentially ill-posed problems. Numer. Funct. Anal. Optim. 21, 439–464 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  57. Hohage, T., Werner, F.: Iteratively regularized Newton methods with general data misfit functionals and applications to Poisson data. Numer. Math. 123, 745–779 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  58. Jin, Q.: Inexact Newton-Landweber iteration for solving nonlinear inverse problems in Banach spaces. Inverse Prob. 28(6), 15 (2012)

    Article  Google Scholar 

  59. Kaltenbacher, B.: Some Newton type methods for the regularization of nonlinear ill-posed problems. Inverse Prob. 13, 729–753 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  60. Kaltenbacher, B.: On Broyden’s method for ill-posed problems. Numer. Funct. Anal. Optim. 19, 807–833 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  61. Kaltenbacher, B.: A posteriori parameter choice strategies for some Newton type methods for the regularization of nonlinear ill-posed problems. Numer. Math. 79, 501–528 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  62. Kaltenbacher, B.: A projection-regularized Newton method for nonlinear ill-posed problems and its application to parameter identification problems with finite element discretization. SIAM J. Numer. Anal. 37, 1885–1908 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  63. Kaltenbacher, B.: On the regularizing properties of a full multigrid method for ill-posed problems. Inverse Prob. 17, 767–788 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  64. Kaltenbacher, B.: Convergence rates for the iteratively regularized Landweber iteration in Banach space. In: Hmberg, D., Trltzsch, F. (eds.) System Modeling and Optimization. 25th IFIP TC 7 Conference on System Modeling and Optimization, CSMO 2011, Berlin, Germany, September 12–16, 2011. Revised Selected Papers, pp. 38–48. Springer, Heidelberg (2013)

    Google Scholar 

  65. Kaltenbacher, B., Hofmann, B.: Convergence rates for the iteratively regularized Gauss-Newton method in Banach spaces. Inverse Prob. 26, 035,007 (2010)

    Article  MathSciNet  Google Scholar 

  66. Kaltenbacher, B., Neubauer, A.: Convergence of projected iterative regularization methods for nonlinear problems with smooth solutions. Inverse Prob. 22, 1105–1119 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  67. Kaltenbacher, B., Schicho, J.: A multi-grid method with a priori and a posteriori level choice for the regularization of nonlinear ill-posed problems. Numer. Math. 93, 77–107 (2002)

    MATH  MathSciNet  Google Scholar 

  68. Kaltenbacher, B., Tomba, I.: Convergence rates for an iteratively regularized Newton-Landweber iteration in Banach space. Inverse Prob. 29, 025010 (2013). doi:10.1088/0266-5611/29/2/025010

    Article  MathSciNet  Google Scholar 

  69. Kaltenbacher, B., Neubauer, A., Ramm, A.G.: Convergence rates of the continuous regularized Gauss-Newton method. J. Inverse Ill-Posed Prob. 10, 261–280 (2002)

    MATH  MathSciNet  Google Scholar 

  70. Kaltenbacher, B., Neubauer, A., Scherzer, O.: Iterative Regularization Methods for Nonlinear Ill-Posed Problems. Radon Series on Computational and Applied Mathematics. de Gruyter, Berlin (2008)

    Book  MATH  Google Scholar 

  71. Kaltenbacher, B., Schöpfer, F., Schuster, T.: Iterative methods for nonlinear ill-posed problems in Banach spaces: convergence and applications to parameter identification problems. Inverse Prob. 25, 065,003 (19 pp) (2009)

    Google Scholar 

  72. Kaltenbacher, B., Kirchner, A., Veljovic, S.: Goal oriented adaptivity in the IRGNM for parameter identification in PDEs I: reduced formulation Inverse Prob. 30, 045001 (2014)

    Google Scholar 

  73. Kaltenbacher, B., Kirchner, A., Vexler, B.: Goal oriented adaptivity in the IRGNM for parameter identification in PDEs II: all-at once formulations Inverse Prob. 30, 045002 (2014)

    Google Scholar 

  74. Kindermann, S.: Convergence analysis of minimization-based noise level-free parameter choice rules for linear ill-posed problems. ETNA 38, 233–257 (2011)

    MATH  MathSciNet  Google Scholar 

  75. Kindermann, S., Neubauer, A.: On the convergence of the quasioptimality criterion for (iterated) Tikhonov regularization. Inverse Prob. Imaging 2, 291–299 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  76. King, J.T.: Multilevel algorithms for ill-posed problems. Numer. Math. 61, 311–334 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  77. Kowar, R., Scherzer, O.: Convergence analysis of a Landweber-Kaczmarz method for solving nonlinear ill-posed problems. In: Romanov, V.G., Kabanikhin, S.I., Anikonov, Y.E., Bukhgeim, A.L. (eds.) Ill-Posed and Inverse Problems, pp. 69–90. VSP, Zeist (2002)

    Google Scholar 

  78. Krein, S.G., Petunin, J.I.: Scales of Banach spaces. Russ. Math. Surv. 21, 85–160 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  79. Kügler, P.: A derivative free Landweber iteration for parameter identification in certain elliptic PDEs. Inverse Prob. 19, 1407–1426 (2003)

    Article  MATH  Google Scholar 

  80. Kügler, P.: A derivative free Landweber method for parameter identification in elliptic partial differential equations with application to the manufacture of car windshields. Ph.D. thesis, Johannes Kepler University, Linz, Austria (2003)

    Google Scholar 

  81. Langer, S.: Preconditioned Newton methods for ill-posed problems. Ph.D. thesis, University of Göttingen (2007)

    Google Scholar 

  82. Langer, S., Hohage, T.: Convergence analysis of an inexact iteratively regularized Gauss-Newton method under general source conditions. J. Inverse Ill-Posed Prob. 15, 19–35 (2007)

    Article  MathSciNet  Google Scholar 

  83. Leitao, A., Marques Alves, M.: On Landweber-Kaczmarz methods for regularizing systems of ill-posed equations in Banach spaces. Inverse Prob. 28, 104,008 (15 pp) (2012)

    Google Scholar 

  84. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  85. Mülthei, H.N., Schorr, B.: On properties of the iterative maximum likelihood reconstruction method. Math. Methods Appl. Sci. 11, 331–342 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  86. Natterer, F., Wübbeling, F.: Mathematical Methods in Image Reconstruction. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2001)

    Google Scholar 

  87. Neubauer, A.: Tikhonov regularization of nonlinear ill-posed problems in Hilbert scales. Appl. Anal. 46, 59–72 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  88. Neubauer, A.: On Landweber iteration for nonlinear ill-posed problems in Hilbert scales. Numer. Math. 85, 309–328 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  89. Neubauer, A.: The convergence of a new heuristic parameter selection criterion for general regularization methods. Inverse Prob. 24, 055,005 (10 pp) (2008)

    Google Scholar 

  90. Neubauer, A., Scherzer, O.: A convergent rate result for a steepest descent method and a minimal error method for the solution of nonlinear ill-posed problems. ZAA 14, 369–377 (1995)

    MATH  MathSciNet  Google Scholar 

  91. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation based image restoration. SIAM Multiscale Model. Simul. 4, 460–489 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  92. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  93. Resmerita, E., Engl, H.W., Iusem, A.N.: The expectation-maximization algorithm for ill-posed integral equations: a convergence analysis. Inverse Prob. 23, 2575–2588 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  94. Rieder, A.: On the regularization of nonlinear ill-posed problems via inexact Newton iterations. Inverse Prob. 15, 309–327 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  95. Rieder, A.: On convergence rates of inexact Newton regularizations. Numer. Math. 88, 347–365 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  96. Rieder, A.: Inexact Newton regularization using conjugate gradients as inner iteration. SIAM J. Numer. Anal. 43, 604–622 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  97. Sawatzky, A., Brune, C., Wübbeling, F., Kösters, T., Schäfers, K., Burger, M.: Accurate EM-TV algorithm in PET with low SNR. Nuclear Science Symposium Conference Record, 2008. NSS ’08, pp. 5133–5137. IEEE, New York (2008)

    Google Scholar 

  98. Scherzer, O.: A modified Landweber iteration for solving parameter estimation problems. Appl. Math. Optim. 38, 45–68 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  99. Schöpfer, F., Louis, A.K., Schuster, T.: Nonlinear iterative methods for linear ill-posed problems in Banach spaces. Inverse Prob. 22, 311–329 (2006)

    Article  MATH  Google Scholar 

  100. Schöpfer, F., Schuster, T., Louis, A.K.: An iterative regularization method for the solution of the split feasibility problem in Banach spaces. Inverse Prob. 24, 055,008 (20pp) (2008)

    Google Scholar 

  101. Schuster, T., Kaltenbacher, B., Hofmann, B., Kazimierski, K.: Regularization Methods in Banach Spaces. Radon Series on Computational and Applied Mathematics. de Gruyter, Berlin/New York (2012)

    Book  MATH  Google Scholar 

  102. Stück, R., Burger, M., Hohage, T.: The iteratively regularized gauss-newton method with convex constraints and applications in 4pi-microscopy. Inverse Prob. 28, 015,012 (2012)

    Article  Google Scholar 

  103. Vardi, Y., Shepp, L.A., Kaufman, L.: A statistical model for positron emission tomography with discussion. J. Am. Stat. Assoc. 80, 8–37 (1985)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Burger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Burger, M., Kaltenbacher, B., Neubauer, A. (2015). Iterative Solution Methods. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0790-8_9

Download citation

Publish with us

Policies and ethics