Skip to main content

Algae: A New Biomass Resource

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology
Algae oxygenic photosynthetic organisms::

prokaryotic or eukaryotic, with organization ranging from unicellular to multicellular. Algae never have true stems, roots, and leaves, thus leading to their classification as “lower” plants.

Biofuel::

renewable energy-rich compound derived from living organisms or from their metabolic by-products.

Biomass::

organic raw material, stored as a result of the metabolism of a living organism, which can be used for food and biofuels.

Photoautotrophy::

the ability of a living organism to use light as source of energy for reducing carbon dioxide for biomass production.

Photosynthesis::

the general process that converts light energy into chemical energy, finally used to fix inorganic carbon dioxide into organic compounds needed for growth. In its oxygenic version, photosynthesis consists into two light-induced redox reactions working in series driving electron transport in a chain extracting electrons from water to produce NADPH and ATP. These are used...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  1. Hallmann A (2007) Algal transgenics and biotechnology. Transgenic Plant J 1:81–98

    Google Scholar 

  2. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639. doi:10.1111/j.1365-313X.2008.03492.x

    Article  CAS  Google Scholar 

  3. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240. http://www.ncbi.nlm.nih.gov/pubmed/9657713. Accessed 31 Jan 2017

    Article  CAS  Google Scholar 

  4. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96. doi:10.1263/jbb.101.87

    Article  CAS  Google Scholar 

  5. McHugh D (2003) A guide to the seaweed industry. FAO Fish Tech Pap 441:1–105

    Google Scholar 

  6. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648. doi:10.1007/s00253-004-1647-x

    Article  CAS  Google Scholar 

  7. Borowitzka M (1999) Commercial production of microalgae: ponds, tanks, tubes an d fermenters. J Biotechnol 70:313–321

    Article  CAS  Google Scholar 

  8. Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279. doi:10.1080/07388550290789513

    Article  CAS  Google Scholar 

  9. Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507. doi:10.1016/j.jbiotec.2006.05.002

    Article  CAS  Google Scholar 

  10. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. doi:10.1016/j.biotechadv.2007.02.001

    Article  CAS  Google Scholar 

  11. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131. doi:10.1016/j.tibtech.2007.12.002

    Article  CAS  Google Scholar 

  12. Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E, Melis A (2000) Microalgae: a green source of renewable H(2). Trends Biotechnol 18:506–511. http://www.ncbi.nlm.nih.gov/pubmed/11102662. Accessed 31 Jan 2017

    Article  CAS  Google Scholar 

  13. Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–136. http://www.ncbi.nlm.nih.gov/pubmed/10631256. Accessed 31 Jan 2017

    Article  CAS  Google Scholar 

  14. Melis A, Happe T (2004) Trails of green alga hydrogen research – from hans gaffron to new frontiers. Photosynth Res 80:401–409. doi:10.1023/B:PRES.0000030421.31730.cb

    Article  CAS  Google Scholar 

  15. Zhang L, Melis A (2002) Probing green algal hydrogen production. Philos Trans R Soc Lond Ser B Biol Sci 357:1499–1511. doi:10.1098/rstb.2002.1152

    Article  CAS  Google Scholar 

  16. Kruse O, Rupprecht J, Bader K-P, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005) Improved photobiological H2 production in engineered green algal cells. J Biol Chem 280:34170–34177. doi:10.1074/jbc.M503840200

    Article  CAS  Google Scholar 

  17. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371. doi:10.1126/science.1097403

    Article  CAS  Google Scholar 

  18. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187. doi:10.1038/35041539

    Article  CAS  Google Scholar 

  19. Caldeira K, Jain AK, Hoffert MI (2003) Climate sensitivity uncertainty and the need for energy without CO2 emission. Science 299:2052–2054. doi:10.1126/science.1078938

    Article  CAS  Google Scholar 

  20. de Morais MG, Costa JAV (2007) Carbon dioxide fixation by Chlorella Kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol Lett 29:1349–1352. doi:10.1007/s10529-007-9394-6

    Article  CAS  Google Scholar 

  21. Keffer JE, Kleinheinz GT (2002) Use of Chlorella vulgaris for CO(2) mitigation in a photobioreactor. J Ind Microbiol Biotechnol 29:275–280. doi:10.1038/sj.jim.7000313

    Article  CAS  Google Scholar 

  22. Otsuki T (2001) A study for the biological CO2 fixation and utilization system. Sci Total Environ 277:21–25. http://www.ncbi.nlm.nih.gov/pubmed/11589401. Accessed 1 Feb 2017

    Article  CAS  Google Scholar 

  23. Durrett TP, Benning C, Ohlrogge J (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J 54:593–607. doi:10.1111/j.1365-313X.2008.03442.x

    Article  CAS  Google Scholar 

  24. Benson AA, Calvin M (1950) Carbon dioxide fixation by green plants. Annu Rev Plant Physiol Plant Mol Biol 1:25–42

    Article  Google Scholar 

  25. Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:272–280

    Article  CAS  Google Scholar 

  26. Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293. http://www.ncbi.nlm.nih.gov/pubmed/11759675. Accessed 1 June 2015

    Article  CAS  Google Scholar 

  27. Lee Y (1997) Commercial production of microalgae in the Asia-Pacific rim. J Appl Phycol 9:403–411

    Article  Google Scholar 

  28. Borowitzka M (2005) The mass culture of Dunaliella salina. http://www.fao.org/docrep/field/003/AB728E/AB728E06.htm

  29. Huesemann MH, Hausmann TS, Bartha R, Aksoy M, Weissman JC, Benemann JR (2009) Biomass productivities in wild type and pigment mutant of Cyclotella sp. (diatom). Appl Biochem Biotechnol 157:507–526. doi:10.1007/s12010-008-8298-9

    Article  CAS  Google Scholar 

  30. Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028. doi:10.1016/j.biortech.2007.01.046

    Article  CAS  Google Scholar 

  31. Mann J, Myers J (1968) On pigments, growth and photosyn- thesis of Phaeodactylum tricornutum. J Phycol 4:349–355

    Article  CAS  Google Scholar 

  32. Grima E, Fernandez F, Camacho F, Rubio F, Chisti Y (2000) Scale-up of tubular photobioreactors. J Appl Phycol 12:355–368

    Article  CAS  Google Scholar 

  33. Melis A, Neidhardt J, Benemann J (1998) Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficien- cies than normally pigmented cells. J Appl Phycol 10:515–525

    Article  Google Scholar 

  34. Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321. doi:10.1016/j.cell.2006.12.006

    Article  CAS  Google Scholar 

  35. Bai Y, Lindhout P (2007) Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Ann Bot 100:1085–1094. doi:10.1093/aob/mcm150

    Article  Google Scholar 

  36. Kirk J (2011) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  37. Holt NE, Fleming GR, Niyogi KK (2004) Toward an understanding of the mechanism of nonphotochemical quenching in green plants. Biochemistry 43:8281–8289. doi:10.1021/bi0494020

    Article  CAS  Google Scholar 

  38. Niyogi KK (1999) PHOTOPROTECTION REVISITED: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359. doi:10.1146/annurev.arplant.50.1.333

    Article  CAS  Google Scholar 

  39. Wobbe L, Schwarz C, Nickelsen J, Kruse O (2008) Translational control of photosynthetic gene expression in phototrophic eukaryotes. Physiol Plant 133:507–515. doi:10.1111/j.1399-3054.2008.01091.x

    Article  CAS  Google Scholar 

  40. Teramoto H, Nakamori A, Minagawa J, Ono T (2002) Light-intensity-dependent expression of Lhc gene family encoding light-harvesting chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtii. Plant Physiol 130:325–333. doi:10.1104/pp.004622

    Article  CAS  Google Scholar 

  41. Durnford DG, Price JA, McKim SM, Sarchfield ML (2003) Light-harvesting complex gene expression is controlled by both transcriptional and post-transcriptional mechanisms during photoacclimation in Chlamydomonas reinhardtii. Physiol Plant 118:193–205. doi:10.1034/j.1399-3054.2003.00078.x

    Article  CAS  Google Scholar 

  42. Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35:15–44. doi:10.1146/annurev.pp.35.060184.000311

    Article  CAS  Google Scholar 

  43. Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage? Trends Plant Sci 4:130–135. http://www.ncbi.nlm.nih.gov/pubmed/10322546. Accessed 5 Jan 2014

    Article  CAS  Google Scholar 

  44. Nakajima Y, Tsuzuki M, Ueda R (1998) Reduced photoinhibition of a phycocyanin-deficient mutant of Synechocystis PCC 6714. J Appl Phycol 10:447–452. doi:10.1023/A:1008049901939

    Article  CAS  Google Scholar 

  45. Naus J, Melis A (1991) Changes of photosystem stoichiometry during cell growth in Dunaliella salina cultures. Plant Cell Physiol 32:569–575

    CAS  Google Scholar 

  46. Neidhardt J, Benemann JR, Zhang L, Melis A (1998) Photosystem-II repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and photosynthetic productivity in Dunaliella salina (green algae). Photosynth Res 56:175–184. doi:10.1023/A:1006024827225

    Article  CAS  Google Scholar 

  47. Vener AV, van Kan PJ, Rich PR, Ohad I, Andersson B (1997) Plastoquinol at the quinol oxidation site of reduced cytochrome bf mediates signal transduction between light and protein phosphorylation: thylakoid protein kinase deactivation by a single-turnover flash. Proc Natl Acad Sci U S A 94:1585–1590. http://www.ncbi.nlm.nih.gov/pubmed/11038603. Accessed 7 Feb 2017

    Article  CAS  Google Scholar 

  48. Kok B (1953) Experiments on photosynthesis by Chlorella in flashing light. In: Burlew JS (ed) Algal culture: from laboratory to pilot plant. The Carnegie Institution, Washington, DC, pp 63–75

    Google Scholar 

  49. Polle JE, Benemann JR, Tanaka A, Melis A (2000) Photosynthetic apparatus organization and function in the wild type and a chlorophyll b-less mutant of Chlamydomonas reinhardtii. Dependence on carbon source. Planta 211:335–344. doi:10.1007/s004250000279

    Article  CAS  Google Scholar 

  50. Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K, Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci U S A 95:12719–12723. http://www.ncbi.nlm.nih.gov/pubmed/9770552/. Accessed 7 Feb 2017

    Article  CAS  Google Scholar 

  51. Polle JE, Niyogi KK, Melis A (2001) Absence of lutein, violaxanthin and neoxanthin affects the functional chlorophyll antenna size of photosystem-II but not that of photosystem-I in the green alga Chlamydomonas reinhardtii. Plant Cell Physiol 42:482–491. http://www.ncbi.nlm.nih.gov/pubmed/11382814. Accessed 7 Feb 2017

    Article  CAS  Google Scholar 

  52. Elrad D, Niyogi KK, Grossman AR (2002) A major light-harvesting polypeptide of photosystem II functions in thermal dissipation. Plant Cell 14:1801–1816. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=151466&tool=pmcentrez&rendertype=abstract. Accessed 5 Jan 2014

    Article  CAS  Google Scholar 

  53. Baroli I, Gutman BL, Ledford HK, Shin JW, Chin BL, Havaux M, Niyogi KK (2004) Photo-oxidative stress in a xanthophyll-deficient mutant of Chlamydomonas. J Biol Chem 279:6337–6344. doi:10.1074/jbc.M312919200

    Article  CAS  Google Scholar 

  54. Dall’Osto L, Cazzaniga S, Havaux M, Bassi R (2010) Enhanced photoprotection by protein-bound vs free xanthophyll pools: a comparative analysis of chlorophyll b and xanthophyll biosynthesis mutants. Mol Plant 3:576–593. doi:10.1093/mp/ssp117

    Article  CAS  Google Scholar 

  55. Niyogi KK, Björkman O, Grossman AR (1997) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci U S A 94:14162–14167. http://www.ncbi.nlm.nih.gov/pubmed/9391170. Accessed 7 Feb 2017

    Article  CAS  Google Scholar 

  56. Cazzaniga S, Dall’Osto L, Szaub J, Scibilia L, Ballottari M, Purton S, Bassi R (2014) Domestication of the green alga Chlorella sorokiniana: reduction of antenna size improves light-use efficiency in a photobioreactor. Biotechnol Biofuels 7:157. doi:10.1186/s13068-014-0157-z

    Article  CAS  Google Scholar 

  57. Polle JEW, Kanakagiri S-D, Melis A (2003) tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Planta 217:49–59. doi:10.1007/s00425-002-0968-1

    CAS  Google Scholar 

  58. Mussgnug JH, Wobbe L, Elles I, Claus C, Hamilton M, Fink A, Kahmann U, Kapazoglou A, Mullineaux CW, Hippler M, Nickelsen J, Nixon PJ, Kruse O (2005) NAB1 is an RNA binding protein involved in the light-regulated differential expression of the light-harvesting antenna of Chlamydomonas reinhardtii. Plant Cell 17:3409–3421. doi:10.1105/tpc.105.035774

    Article  CAS  Google Scholar 

  59. Beckmann J, Lehr F, Finazzi G, Hankamer B, Posten C, Wobbe L, Kruse O (2009) Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J Biotechnol 142:70–77. doi:10.1016/j.jbiotec.2009.02.015

    Article  CAS  Google Scholar 

  60. Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5:802–814. doi:10.1111/j.1467-7652.2007.00285.x

    Article  CAS  Google Scholar 

  61. Ferrante P, Ballottari M, Bonente G, Giuliano G, Bassi R (2012) LHCBM1 and LHCBM2/7 polypeptides, components of major LHCII complex, have distinct functional roles in photosynthetic antenna system of Chlamydomonas reinhardtii. J Biol Chem 287:16276–16288. doi:10.1074/jbc.M111.316729

    Article  CAS  Google Scholar 

  62. Girolomoni L, Ferrante P, Berteotti S, Giuliano G, Bassi R, Ballottari M (2016) The function of LHCBM4/6/8 antenna proteins in Chlamydomonas reinhardtii. J Exp Bot. doi:10.1093/jxb/erw462

    Google Scholar 

  63. Wobbe L, Bassi R, Kruse O (2016) Multi-level light capture control in plants and green algae. Trends Plant Sci 21:55–68. doi:10.1016/j.tplants.2015.10.004

    Article  CAS  Google Scholar 

  64. Grewe S, Ballottari M, Alcocer M, D’Andrea C, Blifernez-Klassen O, Hankamer B, Mussgnug JH, Bassi R, Kruse O (2014) Light-harvesting complex protein LHCBM9 is critical for photosystem II activity and hydrogen production in chlamydomonas reinhardtii. Plant Cell 26:1598–1611. doi:10.1105/tpc.114.124198

    Article  CAS  Google Scholar 

  65. Li X, Jonikas MC (2016) High-throughput genetics strategies for identifying new components of lipid metabolism in the green alga Chlamydomonas reinhardtii. Subcell Biochem 86:223–247. doi:10.1007/978-3-319-25979-6_10

    Article  Google Scholar 

  66. Tetali SD, Mitra M, Melis A (2007) Development of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii is regulated by the novel Tla1 gene. Planta 225:813–829. doi:10.1007/s00425-006-0392-z

    Article  CAS  Google Scholar 

  67. Glick R, Melis A (1988) Minimum photosynthetic unit size in system-I and system-II of barley chloroplasts. Biochim Biophys Acta 934:151–155

    Article  CAS  Google Scholar 

  68. Falkowski P, Owens T (1980) Light-shade adaptation – 2 strategies in marine-phytoplankton. Plant Physiol 66:592–595

    Article  CAS  Google Scholar 

  69. Dall’Osto L, Caffarri S, Bassi R (2005) A mechanism of nonphotochemical energy dissipation, independent from PsbS, revealed by a conformational change in the antenna protein CP26. Plant Cell 17:1217–1232. doi:10.1105/tpc.104.030601

    Article  CAS  Google Scholar 

  70. de Bianchi S, Ballottari M, Dall’Osto L, Bassi R (2010) Regulation of plant light harvesting by thermal dissipation of excess energy. Biochem Soc Trans 38:651–660. doi:10.1042/BST0380651

    Article  CAS  Google Scholar 

  71. Li XP, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395. doi:10.1038/35000131

    Article  CAS  Google Scholar 

  72. Li X-P, Gilmore AM, Caffarri S, Bassi R, Golan T, Kramer D, Niyogi KK (2004) Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J Biol Chem 279:22866–22874. doi:10.1074/jbc.M402461200

    Article  CAS  Google Scholar 

  73. Bonente G, Howes BD, Caffarri S, Smulevich G, Bassi R (2008) Interactions between the photosystem II subunit PsbS and xanthophylls studied in vivo and in vitro. J Biol Chem 283:8434–8445. doi:10.1074/jbc.M708291200

    Article  CAS  Google Scholar 

  74. Ahn TK, Avenson TJ, Ballottari M, Cheng Y-C, Niyogi KK, Bassi R, Fleming GR (2008) Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320:794–797. doi:10.1126/science.1154800

    Article  CAS  Google Scholar 

  75. Holt NE, Zigmantas D, Valkunas L, Li X-P, Niyogi KK, Fleming GR (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307:433–436. doi:10.1126/science.1105833

    Article  CAS  Google Scholar 

  76. Correa-Galvis V, Redekop P, Guan K, Griess A, Truong TB, Wakao S, Niyogi KK, Jahns P (2016) Photosystem II subunit PsbS is involved in the induction of LHCSR protein-dependent energy dissipation in Chlamydomonas reinhardtii. J Biol Chem 291:17478–17487. doi:10.1074/jbc.M116.737312

    Article  CAS  Google Scholar 

  77. Allorent G, Lefebvre-Legendre L, Chappuis R, Kuntz M, Truong TB, Niyogi KK, Ulm R, Goldschmidt-Clermont M (2016) UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii. Proc Natl Acad Sci 113:14864–14869. doi:10.1073/pnas.1607695114

    Article  CAS  Google Scholar 

  78. Bonente G, Passarini F, Cazzaniga S, Mancone C, Buia MC, Tripodi M, Bassi R, Caffarri S (2008) The occurrence of the psbS gene product in Chlamydomonas reinhardtii and in other photosynthetic organisms and its correlation with energy quenching. Photochem Photobiol 84:1359–1370. doi:10.1111/j.1751-1097.2008.00456.x

    Article  CAS  Google Scholar 

  79. Niyogi KK, Bjorkman O, Grossman AR (1997) Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell 9:1369–1380. doi:10.1105/tpc.9.8.1369

    Article  CAS  Google Scholar 

  80. Alboresi A, Gerotto C, Giacometti GM, Bassi R, Morosinotto T (2010) Physcomitrella patens Mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization. Proc Natl Acad Sci U S A 107:11128–11133. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2890724&tool=pmcentrez&rendertype=abstract. Accessed 9 Aug 2012

    Article  CAS  Google Scholar 

  81. Peers G, Truong TB, Ostendorf E, Busch A, Elrad D, Grossman AR, Hippler M, Niyogi KK (2009) An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462:518–521. doi:10.1038/nature08587

    Article  CAS  Google Scholar 

  82. Bailleul B, Rogato A, de Martino A, Coesel S, Cardol P, Bowler C, Falciatore A, Finazzi G (2010) An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light. Proc Natl Acad Sci U S A 107:18214–18219. doi:10.1073/pnas.1007703107

    Article  CAS  Google Scholar 

  83. Wilson A, Ajlani G, Verbavatz J-M, Vass I, Kerfeld CA, Kirilovsky D (2006) A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18:992–1007. doi:10.1105/tpc.105.040121

    Article  CAS  Google Scholar 

  84. Berteotti S, Ballottari M, Bassi R (2016) Increased biomass productivity in green algae by tuning non-photochemical quenching. Sci Rep 6:21339. doi:10.1038/srep21339

    Article  CAS  Google Scholar 

  85. Quaas T, Berteotti S, Ballottari M, Flieger K, Bassi R, Wilhelm C, Goss R (2015) Non-photochemical quenching and xanthophyll cycle activities in six green algal species suggest mechanistic differences in the process of excess energy dissipation. J Plant Physiol 172:92–103. doi:10.1016/j.jplph.2014.07.023

    Article  CAS  Google Scholar 

  86. Ballottari M, Truong TB, De Re E, Erickson E, Stella GR, Fleming GR, Bassi R, Niyogi KK (2016) Identification of pH-sensing sites in the light harvesting complex stress-related 3 protein essential for triggering non-photochemical quenching in Chlamydomonas reinhardtii. J Biol Chem 291:7334–7346. doi:10.1074/jbc.M115.704601

    Article  CAS  Google Scholar 

  87. Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M, Niyogi KK, Long SP (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354:857–861. doi:10.1126/science.aai8878

    Article  CAS  Google Scholar 

  88. Eberhard S, Finazzi G, Wollman F-A (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515. doi:10.1146/annurev.genet.42.110807.091452

    Article  CAS  Google Scholar 

  89. Kramer DM, Avenson TJ, Edwards GE (2004) Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci 9:349–357. doi:10.1016/j.tplants.2004.05.001

    Article  CAS  Google Scholar 

  90. Hoefnagel MH, Atkin OK, Wiskich JT (1998) Interdependence between chloroplasts and mitochondria in the light and the dark. Biochim Biophys Acta Bioenerg 1366:235–255. doi:10.1016/S0005-2728(98)00126-1

    Article  CAS  Google Scholar 

  91. Raghavendra AS, Padmasree K (2003) Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Trends Plant Sci 8:546–553. doi:10.1016/j.tplants.2003.09.015

    Article  CAS  Google Scholar 

  92. Scheibe R (1987) NADP+−malate dehydrogenase in C3-plants: regulation and role of a light-activated enzyme. Physiol Plant 71:393–400. doi:10.1111/j.1399-3054.1987.tb04362.x

    Article  CAS  Google Scholar 

  93. Cardol P, Alric J, Girard-Bascou J, Franck F, Wollman F-A, Finazzi G (2009) Impaired respiration discloses the physiological significance of state transitions in Chlamydomonas. Proc Natl Acad Sci U S A 106:15979–15984. doi:10.1073/pnas.0908111106

    Article  CAS  Google Scholar 

  94. Cardol P, Gloire G, Havaux M, Remacle C, Matagne R, Franck F (2003) Photosynthesis and state transitions in mitochondrial mutants of Chlamydomonas reinhardtii affected in respiration. Plant Physiol 133:2010–2020. doi:10.1104/pp.103.028076

    Article  CAS  Google Scholar 

  95. Peltier G, Cournac L (2002) Chlororespiration. Annu Rev Plant Biol 53:523–550. doi:10.1146/annurev.arplant.53.100301.135242

    Article  CAS  Google Scholar 

  96. Scherer S (1990) Do photosynthetic and respiratory electron transport chains share redox proteins? Trends Biochem Sci 15:458–462. http://www.ncbi.nlm.nih.gov/pubmed/1963954. Accessed 7 Feb 2017

    Article  Google Scholar 

  97. Bennoun P (1982) Evidence for a respiratory chain in the chloroplast. Cell Biol 79:4352–4356

    CAS  Google Scholar 

  98. Jans F, Mignolet E, Houyoux P-A, Cardol P, Ghysels B, Cuiné S, Cournac L, Peltier G, Remacle C, Franck F (2008) A type II NAD(P)H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas. Proc Natl Acad Sci U S A 105:20546–20551. doi:10.1073/pnas.0806896105

    Article  CAS  Google Scholar 

  99. Mus F, Cournac L, Cardettini V, Caruana A, Peltier G (2005) Inhibitor studies on non-photochemical plastoquinone reduction and H2 photoproduction in Chlamydomonas reinhardtii. Biochim Biophys Acta Bioenerg 1708:322–332. doi:10.1016/j.bbabio.2005.05.003

    Article  CAS  Google Scholar 

  100. Bailey S, Melis A, Mackey KRM, Cardol P, Finazzi G, van Dijken G, Berg GM, Arrigo K, Shrager J, Grossman A (2008) Alternative photosynthetic electron flow to oxygen in marine Synechococcus. Biochim Biophys Acta 1777:269–276. doi:10.1016/j.bbabio.2008.01.002

    Article  CAS  Google Scholar 

  101. Cardol P, Bailleul B, Rappaport F, Derelle E, Beal D, Breyton C, Bailey S, Wollman FA, Grossman A, Moreau H, Finazzi G (2008) An original adaptation of photosynthesis in the marine green alga Ostreococcus. Proc Natl Acad Sci 105:7881–7886. doi:10.1073/pnas.0802762105

    Article  CAS  Google Scholar 

  102. Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandmann G, Mache R, Coupland G, Kuntz M (1999) Mutations in the Arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell 11:57–68. http://www.ncbi.nlm.nih.gov/pubmed/9878632. Accessed 7 Feb 2017

    Article  CAS  Google Scholar 

  103. Cournac L, Redding K, Ravenel J, Rumeau D, Josse EM, Kuntz M, Peltier G (2000) Electron flow between photosystem II and oxygen in chloroplasts of photosystem I-deficient algae is mediated by a quinol oxidase involved in chlororespiration. J Biol Chem 275:17256–17262. doi:10.1074/jbc.M908732199

    Article  CAS  Google Scholar 

  104. Wu D, Wright DA, Wetzel C, Voytas DF, Rodermel S (1999) The IMMUTANS variegation locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis. Plant Cell 11:43–55. http://www.ncbi.nlm.nih.gov/pubmed/9878631. Accessed 7 Feb 2017

    Article  CAS  Google Scholar 

  105. Finazzi G, Furia A, Barbagallo RP, Forti G (1999) State transitions, cyclic and linear electron transport and photophosphorylation in Chlamydomonas reinhardtii. Biochim Biophys Acta 1413:117–129. http://www.ncbi.nlm.nih.gov/pubmed/10556624. Accessed 7 Feb 2017

    Article  CAS  Google Scholar 

  106. Finazzi G, Rappaport F, Furia A, Fleischmann M, Rochaix J-D, Zito F, Forti G (2002) Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii. EMBO Rep 3:280–285. doi:10.1093/embo-reports/kvf047

    Article  CAS  Google Scholar 

  107. Vallon O, Bulte L, Dainese P, Olive J, Bassi R, Wollman FA (1991) Lateral redistribution of cytochrome b6/f complexes along thylakoid membranes upon state transitions. Proc Natl Acad Sci U S A 88:8262–8266. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=52487&tool=pmcentrez&rendertype=abstract. Accessed 4 Dec 2013

    Article  CAS  Google Scholar 

  108. Liska AJ, Shevchenko A, Pick U, Katz A (2004) Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiol 136:2806–2817. doi:10.1104/pp.104.039438

    Article  CAS  Google Scholar 

  109. Depège N, Bellafiore S, Rochaix J-D (2003) Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299:1572–1575. doi:10.1126/science.1081397

    Article  CAS  Google Scholar 

  110. Fleischmann MM, Ravanel S, Delosme R, Olive J, Zito F, Wollman FA, Rochaix JD (1999) Isolation and characterization of photoautotrophic mutants of Chlamydomonas reinhardtii deficient in state transition. J Biol Chem 274:30987–30994. http://www.ncbi.nlm.nih.gov/pubmed/10521495. Accessed 7 Feb 2017

    Article  CAS  Google Scholar 

  111. Rochaix J-D (2007) Role of thylakoid protein kinases in photosynthetic acclimation. FEBS Lett 581:2768–2775. doi:10.1016/j.febslet.2007.04.038

    Article  CAS  Google Scholar 

  112. Bonaventura C, Myers J (1969) Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim Biophys Acta 189:366–383. http://www.ncbi.nlm.nih.gov/pubmed/5370012. Accessed 12 Dec 2013

    Article  CAS  Google Scholar 

  113. Murata N (1969) Control of excitation transfer in photosynthesis. I. Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum. Biochim Biophys Acta 172:242–251. http://www.ncbi.nlm.nih.gov/pubmed/5775694. Accessed 5 Jan 2014

    Article  CAS  Google Scholar 

  114. Delosme R, Olive J, Wollman F-A (1996) Changes in light energy distribution upon state transitions: an in vivo photoacoustic study of the wild type and photosynthesis mutants from Chlamydomonas reinhardtii. Biochim Biophys Acta Bioenerg 1273:150–158. http://www.sciencedirect.com/science/article/pii/0005272895001433. Accessed 5 Jan 2014

    Article  Google Scholar 

  115. Bellafiore S, Barneche F, Peltier G, Rochaix J-D (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433:892–895. doi:10.1038/nature03286

    Article  CAS  Google Scholar 

  116. Ben-Amotz A, Shaish A, Avron M (1989) Mode of action of the massively accumulated beta-carotene of Dunaliella bardawil in protecting the alga against damage by excess irradiation. Plant Physiol 91:1040–1043. http://www.ncbi.nlm.nih.gov/pubmed/16667108. Accessed 8 Feb 2017

    Article  CAS  Google Scholar 

  117. Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496. doi:10.1007/s00253-004-1779-z

    Article  CAS  Google Scholar 

  118. Rabbani S, Beyer P, Lintig JV, Hugueney P, Kleinig H (n.d.) Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular alga dunaliella bardawil 1

    Google Scholar 

  119. Zhekisheva M, Boussiba S, Khozin-Goldberg I, Zarka A, Cohen Z (2002) Accumulation of oleic acid in haematococcus pluvialis (chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. J Phycol 38:325–331. doi:10.1046/j.1529-8817.2002.01107.x

    Article  CAS  Google Scholar 

  120. Muradyan EA, Klyachko-Gurvich GL, Tsoglin LN, Sergeyenko TV, Pronina NA (2004) Changes in lipid metabolism during adaptation of the Dunaliella salina photosynthetic apparatus to high CO2 concentration. Russ J Plant Physiol 51:53–62. doi:10.1023/B:RUPP.0000011303.11957.48

    Article  CAS  Google Scholar 

  121. Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112. doi:10.1002/bit.22033

    Article  CAS  Google Scholar 

  122. Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR (2007) Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 282:25475–25486. doi:10.1074/jbc.M701415200

    Article  CAS  Google Scholar 

  123. Roessler PG (1990) Purification and characterization of acetyl-CoA carboxylase from the diatom Cyclotella cryptica. Plant Physiol 92:73–78. http://www.ncbi.nlm.nih.gov/pubmed/16667268. Accessed 9 Feb 2017

    Article  CAS  Google Scholar 

  124. Roessler PG, Bleibaum JL, Thompson GA, Ohlrogge JB (1994) Characteristics of the gene that encodes acetyl-CoA carboxylase in the diatom Cyclotella cryptica. Ann N Y Acad Sci 721:250–256. http://www.ncbi.nlm.nih.gov/pubmed/7912057. Accessed 9 Feb 2017

    Article  CAS  Google Scholar 

  125. Roessler PG, Ohlrogge JB (1993) Cloning and characterization of the gene that encodes acetyl-coenzyme a carboxylase in the alga Cyclotella cryptica. J Biol Chem 268:19254–19259. http://www.ncbi.nlm.nih.gov/pubmed/8103514. Accessed 9 Feb 2017

    CAS  Google Scholar 

  126. Sheehan J, Dunahay T, Benemann J, Roessler P 1998 Look back at the U. S. Department of Energy’s Aquatic Species Program: biodiesel from algae. Close-Out Report

    Google Scholar 

  127. Shintani DK, Ohlrogge JB (1995) Feedback inhibition of fatty acid synthesis in tobacco suspension cells. Plant J 7:577–587. doi:10.1046/j.1365-313X.1995.7040577.x

    Article  CAS  Google Scholar 

  128. Klaus D, Ohlrogge JB, Neuhaus HE, Dörmann P (2004) Increased fatty acid production in potato by engineering of acetyl-CoA carboxylase. Planta 219:389–396. doi:10.1007/s00425-004-1236-3

    Article  CAS  Google Scholar 

  129. Roesler K, Shintani D, Savage L, Boddupalli S, Ohlrogge J (1997) Targeting of the Arabidopsis homomeric acetyl-coenzyme a carboxylase to plastids of rapeseeds. Plant Physiol 113:75–81. http://www.ncbi.nlm.nih.gov/pubmed/9008389. Accessed 9 Feb 2017

    Article  CAS  Google Scholar 

  130. Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S, Hu Q (2010) Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab Eng 12:387–391. doi:10.1016/j.ymben.2010.02.002

    Article  CAS  Google Scholar 

  131. Arisz SA, van Himbergen JA, Musgrave A, van den Ende H, Munnik T (2000) Polar glycerolipids of Chlamydomonas Moewusii. Phytochemistry 53:265–270. http://www.ncbi.nlm.nih.gov/pubmed/10680181. Accessed 9 Feb 2017

    Article  CAS  Google Scholar 

  132. Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186. doi:10.1016/j.plipres.2006.01.001

    Article  CAS  Google Scholar 

  133. Poerschmann J, Spijkerman E, Langer U (2004) Fatty acid patterns in Chlamydomonas sp. as a marker for nutritional regimes and temperature under extremely acidic conditions. Microb Ecol 48:78–89. doi:10.1007/s00248-003-0144-6

    Article  CAS  Google Scholar 

  134. Stefels J, Steinke M, Turner S, Malin G, Belviso S (2007) Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry 83:245–275. doi:10.1007/s10533-007-9091-5

    Article  CAS  Google Scholar 

  135. Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos Chem Phys Atmos Chem Phys 6:3181–3210. www.atmos-chem-phys.net/6/3181/2006/. Accessed 9 Feb 2017

    Article  CAS  Google Scholar 

  136. Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12:70–79. doi:10.1016/j.ymben.2009.10.001

    Article  CAS  Google Scholar 

  137. Bentley FK, Melis A (2012) Diffusion-based process for carbon dioxide uptake and isoprene emission in gaseous/aqueous two-phase photobioreactors by photosynthetic microorganisms. Biotechnol Bioeng 109:100–109. doi:10.1002/bit.23298

    Article  CAS  Google Scholar 

  138. Harvey BG, Wright ME, Quintana RL (2010) High-density renewable fuels based on the selective dimerization of pinenes. Energy Fuel 24:267–273. doi:10.1021/ef900799c

    Article  CAS  Google Scholar 

  139. Tracy NI, Chen D, Crunkleton DW, Price GL (2009) Hydrogenated monoterpenes as diesel fuel additives. Fuel 88:2238–2240. doi:10.1016/j.fuel.2009.02.002

    Article  CAS  Google Scholar 

  140. Davies FK, Work VH, Beliaev AS, Posewitz MC (2014) Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of synechococcus sp. PCC 7002. Front Bioeng Biotechnol 2:21. doi:10.3389/fbioe.2014.00021

    Article  Google Scholar 

  141. Formighieri C, Melis A (2014) Regulation of β-phellandrene synthase gene expression, recombinant protein accumulation, and monoterpene hydrocarbons production in Synechocystis transformants. Planta 240:309–324. doi:10.1007/s00425-014-2080-8

    Article  CAS  Google Scholar 

  142. Lauersen KJ, Baier T, Wichmann J, Wördenweber R, Mussgnug JH, Hübner W, Huser T, Kruse O (2016) Efficient phototrophic production of a high-value sesquiterpenoid from the eukaryotic microalga Chlamydomonas reinhardtii. Metab Eng 38:331–343. doi:10.1016/j.ymben.2016.07.013

    Article  CAS  Google Scholar 

  143. Bentley F, García-Cerdán J, Chen H, Melis A (2013) Paradigm of monoterpene (β-phellandrene) hydrocarbons production via photosynthesis in cyanobacteria. Bioenergy Res 6:917–929

    Article  CAS  Google Scholar 

  144. Bentley FK, Zurbriggen A, Melis A (2014) Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Mol Plant 7:71–86. doi:10.1093/mp/sst134

    Article  CAS  Google Scholar 

  145. Demissie Z, Sarker L, Mahmoud S (2011) Cloning and functional characterization of β-phellandrene synthase from Lavandula angustifolia. Planta 233:685–696

    Article  CAS  Google Scholar 

  146. Schilmiller AL, Schauvinhold I, Larson M, Xu R, Charbonneau AL, Schmidt A, Wilkerson C, Last RL, Pichersky E (2009) Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc Natl Acad Sci U S A 106:10865–10870. doi:10.1073/pnas.0904113106

    Article  CAS  Google Scholar 

  147. Rajaonarivony J, Gershenzon J, Croteau R (1992) Characterization and mechanism of (4S)-limonene synthase, a monoterpene cyclase from the glandular trichomes of peppermint (Mentha x piperita). Arch Biochem Biophys 296:49–57

    Article  CAS  Google Scholar 

  148. Formighieri C, Melis A (2015) A phycocyanin·phellandrene synthase fusion enhances recombinant protein expression and β-phellandrene (monoterpene) hydrocarbons production in Synechocystis (cyanobacteria). Metab Eng 32:116–124. doi:10.1016/j.ymben.2015.09.010

    Article  CAS  Google Scholar 

  149. Formighieri C, Melis A (2016) Sustainable heterologous production of terpene hydrocarbons in cyanobacteria. Photosynth Res 130:123–135. doi:10.1007/s11120-016-0233-2

    Article  CAS  Google Scholar 

  150. Grobbelaar J (2004) Algal nutrition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell, Oxford

    Google Scholar 

  151. Pyle DJ, Garcia RA, Wen Z (2008) Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. J Agric Food Chem 56:3933–3939. doi:10.1021/jf800602s

    Article  CAS  Google Scholar 

  152. Geng D, Wang Y, Wang P, Li W, Sun Y (2003) Stable expression of hepatitis B surface antigen gene in Dunaliella salina (Chlorophyta). J Appl Phycol 15:451–456. doi:10.1023/B:JAPH.0000004298.89183.e5

    Article  CAS  Google Scholar 

  153. Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci U S A 100:438–442. doi:10.1073/pnas.0237108100

    Article  CAS  Google Scholar 

  154. Mayfield SP, Franklin SE (2005) Expression of human antibodies in eukaryotic micro-algae. Vaccine 23:1828–1832. doi:10.1016/j.vaccine.2004.11.013

    Article  CAS  Google Scholar 

  155. Sayre R, Wagner R, Sirporanadulsil S, Farias C (2001) Transgenic algae for delivering antigens to an animal. Int. Patent Number W.O.01/98335 A2

    Google Scholar 

  156. Sun M, Qian K, Su N, Chang H, Liu J, Shen G, Chen G (2003) Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnol Lett 25:1087–1092. http://www.ncbi.nlm.nih.gov/pubmed/12889819. Accessed 9 Feb 2017

    Article  CAS  Google Scholar 

  157. Lauersen KJ, Berger H, Mussgnug JH, Kruse O (2013) Efficient recombinant protein production and secretion from nuclear transgenes in Chlamydomonas reinhardtii. J Biotechnol 167:101–110. doi:10.1016/j.jbiotec.2012.10.010

    Article  CAS  Google Scholar 

  158. Walker TL, Purton S, Becker DK, Collet C (2005) Microalgae as bioreactors. Plant Cell Rep 24:629–641. doi:10.1007/s00299-005-0004-6

    Article  CAS  Google Scholar 

  159. Govoni C, Morosinotto T, Giuliano G, Bassi R (2008) Exploiting photosynthesis for biofuel production. In: Biophotonics. Springer, Berlin/Heidelberg, pp 15–28. doi:10.1007/978-3-540-76782-4_2

    Chapter  Google Scholar 

  160. Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26:219–240. http://www.ncbi.nlm.nih.gov/pubmed/19873339. Accessed 9 Feb 2017

    Article  CAS  Google Scholar 

  161. Surzycki R, Cournac L, Peltier G, Rochaix J-D (2007) Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas. Proc Natl Acad Sci U S A 104:17548–17553. doi:10.1073/pnas.0704205104

    Article  CAS  Google Scholar 

  162. Bayro-Kaiser V, Nelson N (2016) Temperature-sensitive PSII: a novel approach for sustained photosynthetic hydrogen production. Photosynth Res 130:113–121. doi:10.1007/s11120-016-0232-3

    Article  CAS  Google Scholar 

  163. Purton S (2007) Tools and techniques for chloroplast transformation of Chlamydomonas. In: Transgenic microalgae as green cell factories. Springer, New York, pp 34–45. doi:10.1007/978-0-387-75532-8_4

    Chapter  Google Scholar 

  164. Molina Grima E, Belarbi E-H, Acién Fernández F, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515. doi:10.1016/S0734-9750(02)00050-2

    Article  CAS  Google Scholar 

  165. Belarbi EH, Molina E, Chisti Y (2000) A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzym Microb Technol 26:516–529. http://www.ncbi.nlm.nih.gov/pubmed/10771055. Accessed 9 Feb 2017

    Article  CAS  Google Scholar 

  166. Gachon CMM, Sime-Ngando T, Strittmatter M, Chambouvet A, Kim GH (2010) Algal diseases: spotlight on a black box. Trends Plant Sci 15:633–640. doi:10.1016/j.tplants.2010.08.005

    Article  CAS  Google Scholar 

  167. Bonny S (2016) Genetically modified herbicide-tolerant crops, weeds, and herbicides: overview and impact. Environ Manag 57:31–48. doi:10.1007/s00267-015-0589-7

    Article  Google Scholar 

  168. Ramos-Suárez JL, Carreras N (2014) Use of microalgae residues for biogas production. Chem Eng J 242:86–95. doi:10.1016/j.cej.2013.12.053

    Article  CAS  Google Scholar 

  169. Bruggeman AJ, Kuehler D, Weeks DP (2014) Evaluation of three herbicide resistance genes for use in genetic transformations and for potential crop protection in algae production. Plant Biotechnol J 12:894–902. doi:10.1111/pbi.12192

    Article  CAS  Google Scholar 

  170. Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation and use of biopesticides for integrated pest management. Philos Trans R Soc B Biol Sci 366:1987–1998. doi:10.1098/rstb.2010.0390

    Article  Google Scholar 

  171. Loera-Quezada MM, Leyva-González MA, Velázquez-Juárez G, Sanchez-Calderón L, Do Nascimento M, López-Arredondo D, Herrera-Estrella L (2016) A novel genetic engineering platform for the effective management of biological contaminants for the production of microalgae. Plant Biotechnol J 14:2066–2076. doi:10.1111/pbi.12564

    Article  CAS  Google Scholar 

  172. Stevens DR, Rochaix JD, Purton S (1996) The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. Mol Gen Genet 251:23–30. http://www.ncbi.nlm.nih.gov/pubmed/8628243. Accessed 9 Feb 2017

    CAS  Google Scholar 

  173. Dünahay TG, Jarvis EE, Zeiler KG, Roessler PG, Brown LM (1992) Genetic engineering of microalgae for fuel production. Appl Biochem Biotechnol 34–35:331–339. doi:10.1007/BF02920556

    Article  Google Scholar 

  174. Falciatore A, Casotti R, Leblanc C, Abrescia C, Bowler C (1999) Transformation of Nonselectable reporter genes in marine diatoms. Mar Biotechnol 1:239–251. http://www.ncbi.nlm.nih.gov/pubmed/10383998. Accessed 10 Feb 2017

    Article  CAS  Google Scholar 

  175. Merendino L, Perron K, Rahire M, Howald I, Rochaix J-D, Goldschmidt-Clermont M (2006) A novel multifunctional factor involved in trans-splicing of chloroplast introns in Chlamydomonas. Nucleic Acids Res 34:262–274. doi:10.1093/nar/gkj429

    Article  CAS  Google Scholar 

  176. Sizova I, Fuhrmann M, Hegemann P (2001) A Streptomyces Rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene 277:221–229. http://www.ncbi.nlm.nih.gov/pubmed/11602359. Accessed 10 Feb 2017

    Article  CAS  Google Scholar 

  177. Fischer N, Rochaix JD (2001) The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii. Mol Gen Genomics 265:888–894. http://www.ncbi.nlm.nih.gov/pubmed/11523806. Accessed 10 Feb 2017

    Article  CAS  Google Scholar 

  178. Schroda M, Blöcker D, Beck CF (2000) The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J 21:121–131. http://www.ncbi.nlm.nih.gov/pubmed/10743653. Accessed 10 Feb 2017

    Article  CAS  Google Scholar 

  179. Hallmann A, Sumper M (1994) An inducible arylsulfatase of Volvox Carteri with properties suitable for a reporter-gene system. Purification, characterization and molecular cloning. Eur J Biochem 221:143–150. http://www.ncbi.nlm.nih.gov/pubmed/8168504. Accessed 10 Feb 2017

    Article  CAS  Google Scholar 

  180. Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 14:441–447. doi:10.1046/j.1365-313X.1998.00145.x

    Article  CAS  Google Scholar 

  181. Cerutti H, Johnson AM, Gillham NW, Boynton JE (1997) Epigenetic silencing of a foreign gene in nuclear transformants of Chlamydomonas. Plant Cell 9:925–945. doi:10.1105/tpc.9.6.925

    Article  CAS  Google Scholar 

  182. Shin S-E, Lim J-M, Koh HG, Kim EK, Kang NK, Jeon S, Kwon S, Shin W-S, Lee B, Hwangbo K, Kim J, Ye SH, Yun J-Y, Seo H, Oh H-M, Kim K-J, Kim J-S, Jeong W-J, Chang YK, Jeong B (2016) CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci Rep 6:27810. doi:10.1038/srep27810

    Article  CAS  Google Scholar 

  183. Nymark M, Sharma AK, Sparstad T, Bones AM, Winge P (2016) A CRISPR/Cas9 system adapted for gene editing in marine algae. Sci Rep 6:24951. doi:10.1038/srep24951

    Article  CAS  Google Scholar 

  184. Kilian O, Benemann CSE, Niyogi KK, Vick B (2011) High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci U S A 108:21265–21269. doi:10.1073/pnas.1105861108

    Article  CAS  Google Scholar 

  185. Mayfield SP, Manuell AL, Chen S, Wu J, Tran M, Siefker D, Muto M, Marin-Navarro J (2007) Chlamydomonas reinhardtii Chloroplasts as protein factories. Curr Opin Biotechnol 18:126–133. doi:10.1016/j.copbio.2007.02.001

    Article  CAS  Google Scholar 

  186. Henikoff S, McCallum CM, Comai L, Greene EA (2000) Targeted screening for induced mutations. Nat Biotechnol 18:455–457. doi:10.1038/74542

    Article  CAS  Google Scholar 

  187. Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol 137:545–556. doi:10.1104/pp.104.055244

    Article  CAS  Google Scholar 

  188. Schierenbeck L, Ries D, Rogge K, Grewe S, Weisshaar B, Kruse O (2015) Fast forward genetics to identify mutations causing a high light tolerant phenotype in Chlamydomonas reinhardtii by whole-genome-sequencing. BMC Genomics 16:57. doi:10.1186/s12864-015-1232-y

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberta Pinnola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Pinnola, A., Formighieri, C., Bassi, R. (2017). Algae: A New Biomass Resource. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_436-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_436-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics