Skip to main content

Fully Dynamic Minimum Spanning Trees

  • Reference work entry
  • First Online:
Encyclopedia of Algorithms
  • 123 Accesses

Years and Authors of Summarized Original Work

  • 2000; Holm, de Lichtenberg, Thorup

Problem Definition

Let \( G=(V,E) \) be an undirected weighted graph. The problem considered here is concerned with maintaining efficiently information about a minimum spanning tree of G (or minimum spanning forest if G is not connected), when G is subject to dynamic changes, such as edge insertions, edge deletions and edge weight updates. One expects from the dynamic algorithm to perform update operations faster than recomputing the entire minimum spanning tree from scratch.

Throughout, an algorithm is said to be fully dynamic if it can handle both edge insertions and edge deletions. A partially dynamic algorithm can handle either edge insertions or edge deletions, but not both: it is incremental if it supports insertions only, and decremental if it supports deletions only.

Key Results

The dynamic minimum spanning forest algorithm presented in this section builds upon the dynamic connectivity algorithm...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Alberts D, Cattaneo G, Italiano GF (1997) An empirical study of dynamic graph algorithms. ACM J Exp Algorithm 2

    Google Scholar 

  2. Cattaneo G, Faruolo P, Ferraro Petrillo U, Italiano GF (2002) Maintaining dynamic minimum spanning trees: an experimental study. In: Proceeding 4th workshop on algorithm engineering and experiments (ALENEX 02), 6–8 Jan, pp 111–125

    Google Scholar 

  3. Eppstein D (1992) Finding the k smallest spanning trees. BIT 32:237–248

    Article  MathSciNet  MATH  Google Scholar 

  4. Eppstein D (1994) Tree-weighted neighbors and geometric k smallest spanning trees. Int J Comput Geom Appl 4:229–238

    Article  MathSciNet  MATH  Google Scholar 

  5. Eppstein D, Galil Z, Italiano GF, Nissenzweig A (1997) Sparsification – a technique for speeding up dynamic graph algorithms. J Assoc Comput Mach 44(5):669–696

    Article  MathSciNet  MATH  Google Scholar 

  6. Eppstein D, Italiano GF, Tamassia R, Tarjan RE, Westbrook J, Yung M (1992) Maintenance of a minimum spanning forest in a dynamic plane graph. J Algorithms 13:33–54

    Article  MathSciNet  MATH  Google Scholar 

  7. Feder T, Mihail M (1992) Balanced matroids. In: Proceeding 24th ACM symposium on theory of computing, Victoria, 04–06 May, pp 26–38

    Google Scholar 

  8. Frederickson GN (1985) Data structures for on-line updating of minimum spanning trees. SIAM J Comput 14:781–798

    Article  MathSciNet  MATH  Google Scholar 

  9. Frederickson GN (1991) Ambivalent data structures for dynamic 2-edge-connectivity and k smallest spanning trees. In: Proceeding 32nd symposium on foundations of computer science, San Juan, 01–04 Oct, pp 632–641

    Google Scholar 

  10. Frederickson GN, Srinivas MA (1989) Algorithms and data structures for an expanded family of matroid intersection problems. SIAM J Comput 18:112–138

    Article  MathSciNet  MATH  Google Scholar 

  11. Henzinger MR, King V (2001) Maintaining minimum spanning forests in dynamic graphs. SIAM J Comput 31(2):364–374

    Article  MathSciNet  MATH  Google Scholar 

  12. Henzinger MR, King V (1999) Randomized fully dynamic graph algorithms with polylogarithmic time per operation. J ACM 46(4):502–516

    Article  MathSciNet  MATH  Google Scholar 

  13. Holm J, de Lichtenberg K, Thorup M (2001) Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J ACM 48:723–760

    Article  MathSciNet  MATH  Google Scholar 

  14. Paul J, Simon W (1980) Decision trees and random access machines. In: Symposium über Logik und Algorithmik; See also Mehlhorn K (1984) Sorting and searching. Springer, Berlin, pp 85–97

    Google Scholar 

  15. Tarjan RE, Vishkin U (1985) An efficient parallel biconnectivity algorithm. SIAM J Comput 14:862–874

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Italiano, G.F. (2016). Fully Dynamic Minimum Spanning Trees. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2864-4_156

Download citation

Publish with us

Policies and ethics