Skip to main content

Blade Design with Passive Flow Control Technologies

  • Living reference work entry
  • First Online:
Handbook of Wind Energy Aerodynamics

Abstract

This chapter focuses on the application of passive flow control technologies to wind turbine blades. The motivation of using these technologies is always an enhancement of the wind turbine performance (increase of power production, load reduction, noise reduction, etc.) in comparison to the standard blade.

Passive flow control solutions can be limited to static add-ons or involve more significant modifications of the blade for dynamic approaches. Furthermore, these technologies can be included in the initial design of the blade or included later as add-ons to improve the performance of an existing blade design.

A large number of passive technologies have been proposed for wind turbine applications, although the level of maturity is not the same for all of them ranging from conceptual studies in some cases to commercial products in others. Some representative examples of specific technologies are included in this chapter: vortex generators, static miniflaps, root spoilers, serrations, winglets, passive flaps, and aeroelastic coupling. For each technology, some aspects related to the state of the art, main concept, impact on the wind turbine performance, application, and design have been described.

Finally, passive flow control technologies have to be integrated into the design process of wind turbines. To select and properly apply the most suitable technology for each specific problem, the chapter highlights the importance of modeling tools, design methodologies, objectives and restrictions, design parameters, and scale of impact of each passive flow control solution. In addition, from a general point of view, some design guidelines have been mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    For this discussion, the serrations are simplified to having a stiff geometry which is flat or near flat in thickness and which has a triangular planform with sharp tooth tip and roots. A finite thickness is expected, but it should be only a small fraction of the boundary layer thickness – a tenth is considered a safe conservative ratio.

References

  • Ageze MB, Hu Y, Wu H (2017) Wind turbine aeroelastic modeling: basics and cutting edge trends. Int J Aerosp Eng 2017:Article ID 5263897, 15 pp. https://doi.org/10.1155/2017/5263897

  • Alber J, Pechlivanoglou G, Paschereit CO (2017) Parametric investigation of gurney flaps for the use on wind turbine blades. ASME Turbo Expo., American Society of Mechanical Engineers, pp GT2017–64475

    Google Scholar 

  • Aparicio M, Martín R, Muñoz A, González A (2016) D33 Results of a parametric study of flow devices, guidelines for design. Deliverable 3.3 of the AVATAR Project. http://www.eera-avatar.eu/fileadmin/avatar/user/V28D3.3AVATAR_D33.pdf

  • Arce León C, Ragni D, Pröbsting S, Scarano F, Madsen J (2016) Flow topology and acoustic emissions of trailing edge serrations at incidence. Exp Fluids 57(5):91. https://doi.org/10.1007/s00348-016-2181-1

    Google Scholar 

  • Arce León C, Merino-Martínez R, Pröbsting S, Ragni D, Avallone F (2017a) Acoustic emissions of semi-permeable trailing edge serrations. Acoust Aust 1–7. https://doi.org/10.1007/s40857-017-0093-8

  • Arce León C, Merino-Martínez R, Ragni D, Avallone F, Scarano F, Pröbsting S, Snellen M, Simons DG, Madsen J (2017b) Effect of trailing edge serration-flow misalignment on airfoil noise emissions. J Sound Vib 405:19–33. https://doi.org/10.1016/j.jsv.2017.05.035

    Google Scholar 

  • Arrieta AF, Kuder IK, Rist M, Waeber T, Ermanni P (2014) Passive load alleviation aerofoil concept with variable stiffness multi-stable composites. Compos Struct 116(1):235–242. https://doi.org/10.1016/j.compstruct.2014.05.016

    Google Scholar 

  • Ashwill TD, Kanaby G, Jackson K, Zuteck M (2010) Development of the sweep-twist adaptive rotor (STAR) blade. In: 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, Orlando

    Google Scholar 

  • Bach AB (2016) Gurney flaps and micro-tabs for load control on wind turbines. Ph.D. thesis, Technical University of Berlin, Berlin

    Google Scholar 

  • Bak C, Zahle F, Bitsche R, Kim T, Yde A, Henriksen L, Andersen P, Natarajan A, Hansen M (2013a) Description of the DTU 10 MW reference wind turbine. DTU Wind Energy Report-I-0092, Technical University of Denmark

    Google Scholar 

  • Bak C, Zahle F, Bitsche R, et al (2013b) The DTU 10-MW reference wind turbine. https://backend.orbit.dtu.dk/ws/portalfiles/portal/55645274/The_DTU_10MW_Reference_Turbine_Christian_Bak.pdf (Accessed 16 July 2018)

  • Bak C, Skrzypiñski W, Gaunaa M, Villanueva H, Brønnum NF, Kruse EK (2016) Full scale wind turbine test of vortex generators mounted on the entire blade. J Phys Conf Ser 753:022001. ISSN:1742-6596

    Google Scholar 

  • Baldacchino, D (2019) Vortex generators for flow separation control: Wind Turbine Applications; PhD thesis, Delft University of Technology, Delft, The Netherlands

    Google Scholar 

  • Baldacchino D, Ferreira C, De Tavernier D, Timmer WA, van Bussel GJW (2018) Experimental parameter study for passive vortex generators on a 30% thick airfoil. Wind Energy 21(9): 745–765

    Google Scholar 

  • Bao N, Ma H, Ye, Z (2000) Experimental study of wind turbine blade power augmentation using airfoil flaps, including the gurney flap. Wind Eng 24(1):25–34

    Google Scholar 

  • Barlas TK, van Kuik GAM (2010) Review of state of the art in smart rotor control research for wind turbines. Prog Aerosp Sci 46:1–27

    Google Scholar 

  • Bechert DW, Meyer R, Hage W (2000) Drag Reduction of Airfoils with Miniflaps. Can We Learn From Dragonflies? AIAA-2000-2315, Denver, CO

    Google Scholar 

  • Bielawa RL (1984) Analytic investigation of helicopter rotor blade appended aeroelastic devices. UTRC Report R84-915774-2

    Google Scholar 

  • Bisplinghoff RL, Ashley H, Halfman RL (1993) Aeroelasticity. Dover Publications Inc., Mineola, New York. ISBN:978-0486691893

    Google Scholar 

  • Borri M, Merlini T (1986) A large displacement formulation for anisotropic beam analysis. Meccanica 21:30. https://doi.org/10.1007/BF01556314

    MATH  Google Scholar 

  • Bortolotti P, Bottasso CL, Croce A, Sartori L (2018) Integration of multiple passive load mitigation technologies by automated design optimization—the case study of a medium-size onshore wind turbine. Wind Energy, under review

    Google Scholar 

  • Bottasso CL, Campagnolo F, Croce A, Tibaldi C (2013) Optimization-based study of bend–twist coupled rotor blades for passive and integrated passive/active load alleviation. Wind Energy 16(8):1149–1166. https://doi.org/10.1002/we.1543

    Google Scholar 

  • Bottasso CL, Croce A, Gualdoni F, Montinari P (2015) A new concept to mitigate loads for wind turbines based on a passive flap. 2015 American Control Conference (ACC), Chicago, IL, pp. 3066–3069. https://doi.org/10.1109/ACC.2015.7171803

  • Bottasso CL, Croce A, Gualdoni F, Montinari P (2016) Load mitigation for wind turbines by a passive aeroelastic device. J Wind Eng Ind Aerodyn 148:57–69. https://doi.org/10.1016/j.jweia.2015.11.001

    Google Scholar 

  • Bramwell ARS (2013) Bramwell’s helicopter dynamics. Elsevier India. ISBN:978-9382291305.

    Google Scholar 

  • Camocardi M, Marañon J, Delnero J, Colman J (2011) Experimental study of a Naca 4412 airfoil with movable gurney. In: 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, Orlando

    Google Scholar 

  • Cesnik CES, Hodges DH (1997) VABS: a new concept for composite rotor blade cross-sectional modeling. J Am Helicopter Soc 42(1):27–38. https://doi.org/10.4050/JAHS.42.27

    Google Scholar 

  • Choudhry A, Arjomandi M, Kelso R (2016) Methods to control dynamic stall for wind turbine applications. Renew Energy 86:26–37. ISSN 09601481

    Google Scholar 

  • Collar AR (1946) The expanding domain of aeroelasticity. J R Aeronaut Soc 50(428):613–636. https://doi.org/10.1017/S0368393100120358

    Google Scholar 

  • Cordes U, Lambie B, Hufnagel K, Spiegelberg H, Kampers G, Tropea C (2018) The adaptive camber concept – a passive approach for gust load alleviation on wind turbines. Wind Energy 1–13. https://doi.org/10.1002/we.2190

  • Corten G.P (2005) Energieonderzoek Centrum Nederland (ECN). Blade of a wind turbine. U.S. Patent 6:910867

    Google Scholar 

  • Croce A, Gualdoni F, Montinari P, Riboldi CED, Bottasso CL (2016a) Inertial and aerodynamic tuning of passive devices for load alleviation on wind turbines. J Phys Conf Ser 753(10):102005 (7 pp). https://doi.org/10.1088/1742-6596/753/10/102005

    Google Scholar 

  • Croce A, Sartori L, Lunghini MS, Clozza L, Bortolotti P, Bottasso CL (2016b) Lightweight rotor design by optimal spar cap offset; The Science of Making Torque from Wind (TORQUE 2016). J Phys Conf Ser 753:062003. https://doi.org/10.1088/1742-6596/753/6/062003

    Google Scholar 

  • Drela M (1989) Xfoil, an analysis and design system for low Reynolds number airfoils. In: Conference on low Reynolds number aerodynamics. University of Notre Dame

    Google Scholar 

  • Dykes K, Graf P (2014) Framework for unified systems engineering and design of wind plants (FUSED-Wind) cost models and case analyzer. Computer software. https://www.osti.gov//servlets/purl/1262606 Vers. 00. USDOE. 10 Sep 2014. Web

  • Eggleston DM, Stoddard FS (1987) Wind turbine engineering design. Kluwer Academic Pub. ISBN: 978-0442221959

    Google Scholar 

  • Fernandez-Gamiz U, Zulueta E, Boyano A, Ansoategui I, Uriarte I (2017) Five megawatt wind turbine power output improvements by passive flow control devices. Energies 10:742

    Google Scholar 

  • Giavotto V, Borri M, Mantegazza P, Ghiringhelli G, Carmaschi V, Maffioli GC, Mussi F (1983) Anisotropic beam theory and applications. Comput Struct 16(1):403–413. https://doi.org/10.1016/0045-7949(83)90179-7

  • Gonzalez-Salcedo A (2017) Aerodynamic flow control: final report. Deliverable 3.5 of the AVATAR Project. http://www.eera-avatar.eu/fileadmin/avatar/user/D35_draft_v9-_voor_website.pdf

  • Griffith DT, Chetan M (2018) Assessment of flutter prediction and trends in the design of large-scale wind turbine rotor blades. The science of making Torque from wind (TORQUE 2018). J Phys Conf Ser 1037:042008. https://doi.org/10.1088/1742-6596/1037/2/042008

  • Gruber M, Joseph P, Chong T (2011) On the mechanisms of serrated airfoil trailing edge noise reduction. In: 17th AIAA/CEAS aeroacoustics conference (32nd AIAA aeroacoustics conference), Portland, vol 2781. American Institute of Aeronautics and Astronautics, pp 5–8. https://doi.org/10.2514/6.2011-2781

  • Gruschwitz E, Schrenk O (1933) A simple method for increasing the lift of airplane wings by means of flaps. Technical Memorandums, National Advisory Committee for Aeronautics, No. 714.

    Google Scholar 

  • Hansen MH (2008) Aeroelastic instabilities problems for wind turbines. Wind Energy 10:551–577. https://doi.org/10.1002/we.242

    Google Scholar 

  • Hansen MOL, Velte CM, Øye S, Hansen R, Sørensen NN, Madsen J, Mikkelsen R (2015) Aerodynamically shaped vortex generators. Wind Energy 19(3):563–567

    Google Scholar 

  • Herráez I, Akay B, van Bussel GJW, Peinke J, Stoevesandt B (2016) Detailed analysis of the blade root flow of a horizontal axis wind turbine. Wind Energy Sci 1:89–100

    Google Scholar 

  • Horcas SG, Debrabandere F, Tartinville B, Hirsch C, Coussement G (2016) CFD study of DTU 10 MW RWT aeroelasticity and rotor-tower interactions. In: Ostachowicz W, McGugan M, Schröder-Hinrichs JU, Luczak M (eds) MARE-WINT. Springer, Cham

    Google Scholar 

  • Howe MS (1991a) Aerodynamic noise of a serrated trailing edge. J Fluids Struct 5(1):33–45. https://doi.org/10.1016/0889-9746(91)80010-B

    Google Scholar 

  • Howe MS (1991b) Noise produced by a sawtooth trailing edge. J Acoust Soc Am 90(1):482. https://doi.org/10.1121/1.401273

    Google Scholar 

  • Jain S, Sitaram N, Krishnaswamy S (2015) Effect of Reynolds number on aerodynamics of airfoil with gurney flap. Int J Rotating Mach. http://doi.org/10.1155/2015/628632

  • Jeffrey D et al (2000) Aerodynamics of gurney flaps on a single-element high-lift wing. J Aircraft 37:295–301

    Google Scholar 

  • Jensen PH, Chaviaropoulos T, Natarajan A (2017) LCOE reduction for the next generation offshore wind turbines. Outcomes from the INNWIND.EU Project. Technical report

    Google Scholar 

  • Johnson SJ, “Case” van Dam CP, Berg DE (2008) Active load control techniques for wind turbines. SANDIA REPORT SAND2008-4809

    Google Scholar 

  • Kentfield J (1994) Theoretically and experimentally obtained performances of Gurney-flap equipped wind turbines. Wind Eng 18:63–74

    Google Scholar 

  • Kinzel MP, Maughmer MD, Duque EP (2010) Numerical investigation on the aerodynamics of oscillating airfoils with deployable gurney flaps. AIAA J 48(7):1457–1469

    Google Scholar 

  • Lambie B, Jain M, Tropea C, Spelsberg-Korspeter G (2011) Passive camber change for wind turbine load alleviation. In: 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, 9 pp

    Google Scholar 

  • Larwood SM, Zutek M (2006) Swept wind turbine blade aeroelastic modeling for loads and dynamic behavior. Paper presented at WINDPOWER 2006 in Pittsburgh. https://scholarlycommons.pacific.edu/soecs-facpres/4

  • Lee T (2011) PIV study of near-field tip vortex behind perforated Gurney flaps. Exp Fluids 50(2):351–361

    Google Scholar 

  • Lee T, Ko LS (2009) PIV investigation of flowfield behind perforated Gurney-type flaps. Exp Fluids 46(6):1005–1019

    Google Scholar 

  • Lennie M, Pechlivanoglou G, Marten D, Nayeri CN, Paschereit O (2015) A review of wind turbine polar data and its effect on fatigue loads simulation accuracy. ASME Turbo Expo. Montreal

    Google Scholar 

  • Li Y, Wang J, Zhang P (2002) Effects of Gurney flaps on a NACA0012 airfoil. Flow Turbul Combust 68:27. https://doi.org/10.1023/A:1015679408150

    MATH  Google Scholar 

  • Li Y, Wang J, Zhang P (2003) Influences of mounting angles and locations on the effects of gurney flaps. J Aircraft 40(3). https://doi.org/10.2514/2.3144

  • Li-shu H, Chao G, Wen-Ping S et al (2013) Airfoil flow control using vortex generators and a Gurney flap. Proc Inst Mech Eng Part C – J Mech Eng Sci 227(12):2701–2706

    Google Scholar 

  • Liebst BS (1986) Wind turbine gust load alleviation utilizing curved blades. J Propuls Power 2(4):371–377. https://doi.org/10.2514/3.22897

    Google Scholar 

  • Liu T, Montefort J (2007) Thin-airfoil theoretical interpretation for gurney flap lift enhancement. J Aircraft 44(2):667–671

    Google Scholar 

  • LM Wind Power AS (2008) Wind turbine blade having a spoiler with effective separation of airflow. European Patent EP2141358A1

    Google Scholar 

  • Lobitz DW, Veers PS, Migliore PG (1996) Enhanced performance of HAWTs using adaptive blades. United States: N. p

    Google Scholar 

  • Lobitz DW, Veers PS, Laino DJ (2000) Performance of twist-coupled blades on variable speed rotors. In: 2000 ASME Wind energy symposium

    Google Scholar 

  • Mai H, Dietz G, Geißler W, Richter K, Bosbach J, Richard H, de Groot K (2008) Dynamic stall control by leading edge vortex generators. J Am Helicopter Soc 53(1):26–36. ISSN: 00028711

    Google Scholar 

  • Manwell JF, McGowan JG, Rogers AL (2010) Wind energy explained: theory, design and application. Wiley, Chichester

    Google Scholar 

  • Marten D, Lennie M, Pechlivanoglou G, Nayeri N, Paschereit CO (2015) Implementation, optimization and validation of a nonlinear lifting line free vortex wake module within the wind turbine simulation code QBlade. ASME Paper No. GTP-15-1421

    Google Scholar 

  • Marten D, Spiegelberg H, Pechlivanoglou G, Nayeri CN, Paschereit CO, Tropea C (2015) Configuration and numerical investigation of the adaptive camber airfoil as passive load alleviation mechanism for wind turbines. In: 33rd AIAA applied aerodynamics conference, 9 pp

    Google Scholar 

  • Matalanis CG, Eaton JK (2007) Wake vortex control using static segmented Gurney flaps. AIAA J 45(2):321–328

    Google Scholar 

  • Mathew J, Singh A, Madsen J, Arce León C (2016) Serration design methodology for wind turbine noise reduction. J Phys Conf Ser 753:22019. https://doi.org/10.1088/1742-6596/753/2/022019

    Google Scholar 

  • Mayda EA, van Dam CP, Yen Nakafuji D (2005) Computational investigation of finite width microtabs for aerodynamic load control. In: Aerospace sciences meetings, AIAA-2005-1185. American Institute of Aeronautics and Astronautics

    Google Scholar 

  • McWilliam MK et al (2018) Optimal aero-elastic design of a rotor with bend-twist coupling. J Phys Conf Ser 1037:042009. https://doi.org/10.1088/1742-6596/1037/4/042009

    Google Scholar 

  • Micallef D, Ferreira C, Sant T, van Bussel GJW (2013) An investigation of radial velocities for a horizontal axis wind turbine in axial and yawed flows. Wind Energy 16(4):529–544

    Google Scholar 

  • Miller SL, Quandt GA, Huang S (1998) Atmospheric tests of trailing-edge aerodynamic devices. Technical report, NREL/SR-500-22350

    Google Scholar 

  • Mohammadi M, Doosttalab A, Doosttalab M (2012) The effect of various gurney flap shapes on the performance of wind turbine airfoils. https://doi.org/10.13140/RG.2.1.3460.6800

  • Montinari P, Gualdoni F, Croce A, Bottasso CL (2018) Ultimate and fatigue load mitigation by an inertial-driven passive flap, using a geometrically exact multibody formulation. J Wind Eng Ind Aerodyn 175:169–178. https://doi.org/10.1016/j.jweia.2018.01.038

    Google Scholar 

  • Myose R, Papadakis M, Heron I (1998) Gurney flap experiments on airfoils, wings, and reflection plane models. J Aircraft 35(2):206–211. https://doi.org/10.2514/2.2309

    Google Scholar 

  • Navalkar ST, Bernhammer LO, Sodja J, Slinkman CJ, van Wingerden JW, van Kuik GAM (2016) Aeroelastic design and LPV modelling of an experimental wind turbine blade equipped with free-floating flaps. J Phys Conf Ser 753(4):042010 (11 pp). https://doi.org/10.1088/1742-6596/753/4/042010

    Google Scholar 

  • Neuhart DH, Pendergraft OC Jr (1988) A water tunnel study of gurney flaps. NASA TM-4071

    Google Scholar 

  • Oerlemans S (2011) Wind turbine noise: primary noise sources. Technical Report NLR-TP-2011-066, NLR

    Google Scholar 

  • Oerlemans S, Sijtsma P, Méndez López B (2007) Location and quantification of noise sources on a wind turbine. J Sound Vib 299(4):869–883. https://doi.org/10.1016/j.jsv.2006.07.032

    Google Scholar 

  • Oerlemans S, Fisher M, Maeder T, Kögler K (2009) Reduction of wind turbine noise using optimized airfoils and trailing-edge serrations. AIAA J 47(6):1470–1481. https://doi.org/10.2514/1.38888

    Google Scholar 

  • Pechlivanoglou G (2013) Passive and active flow control solutions for wind turbine blades. Ph.D. thesis, Technical University of Berlin, Berlin, Germany

    Google Scholar 

  • Pechlivanoglou GG, Nayeri CN, Paschereit CO (2012) Performance optimization of wind turbine rotors with active flow control. ASME. Turbo expo: power for land, sea, and air. Aircraft engine; ceramics; coal, biomass and alternative fuels; wind turbine technology, vol 1, pp 763–775. https://doi.org/10.1115/GT2011-45493

  • Resor BR (2013) Definition of a 5MW/61.5m wind turbine blade reference model. SANDIA Report, SAND2013-2569, Albuquerque

    Google Scholar 

  • Schatz M, Guenther B, Thiele F (2004) Computational Modeling of the Unsteady Wake behind Gurney-Flaps. In: 2nd AIAA flow control conference, AIAA-2417, Portland

    Google Scholar 

  • Schreck SJ (2007) Rotationally augmented flow structures and time varying loads on turbine blades. In: 45th AIAA aerospace sciences meeting and exhibition, wind energy symposium

    Google Scholar 

  • Schubauer GB, Spangenberg WG (1960) Forced mixing in boundary layers. J Fluid Mech 8:10–32

    MATH  Google Scholar 

  • Scott S, Capuzzi M, Langston D, Bossanyi E, McCann G, Weaver PM, Pirrera A (2017) Effects of aeroelastic tailoring on performance characteristics of wind turbine systems. Renew Energy Part B 114:887–903. https://doi.org/10.1016/j.renene.2017.06.048

    Google Scholar 

  • Shufflebarger CC, Donely P (1940) Tests of a gust-alleviating flap in the gust tunnel. NACA Technical Note No. 745

    Google Scholar 

  • Skrzypiński W, Gaunaa M, Bak C (2014) The effect of mounting vortex generators on the DTU 10MW reference wind turbine blade. J Phys Conf Ser 524:012034. ISSN 1742-6596. https://iopscience.iop.org/article/10.1088/1742-6596/524/1/012034

  • Snyder MH, Calhoun JT, Wentz JWH (1980) Feasibility study of aileron and spoiler control systems for large horizontal axis wind turbines. Technical report, NASA CR-159856

    Google Scholar 

  • Storms B, Jang CS (1994) Lift enhancement of an airfoil using a Gurney flap and vortex generators. J Aircraft 31(3):542–547. https://doi.org/10.2514/3.46528

    Google Scholar 

  • Sun Y (2018) Flow transition based passive loads reduction using tripping strips. In: AIAA 2018-0993, session: blade aerodynamics and aeroacoustics I. https://doi.org/10.2514/6.2018-0993

  • Timmer WA, van Rooij RM (2003) Summary of the Delft University wind turbine dedicated airfoils. In: ASME. ASME proceedings, wind energy symposium, pp 11–21. https://doi.org/10.1115/WIND2003-352

    Google Scholar 

  • Troolin DR, Longmire EK, Lai WT (2006) Time resolved PIV analysis of flow over a NACA 0015 airfoil with Gurney flap. Exp Fluids 41:241. https://doi.org/10.1007/s00348-006-0143

    Google Scholar 

  • van Dam CP, Yen DT, Vijgen PMHW (1999) Gurney flap experiments on airfoil and wings. J Aircraft 36(2):484–485

    Google Scholar 

  • Vimalakanthan K (2014) Passive flow control devices for a multi megawatt horizontal axis wind turbine. Ph.D thesis, Cranfield University, Cranfield, United Kingdom. (Preprint http://dspace.lib.cranfield.ac.uk/handle/1826/12132)

  • Wagner S, Bareiss R, Guidati G (2012) Wind turbine noise. Springer Science & Business Media, Berlin

    Google Scholar 

  • Wang J, Li Y, Choi KS (2008) Gurney flap—Lift enhancement, mechanisms and applications. Prog Aerosp Sci 44(1):22–47

    Google Scholar 

  • Wang L, Liu X, Kolios A (2016) State of the art in the aeroelasticity of wind turbine blades: aeroelastic modeling. Renew Sustain Energy Rev 64:195–210. https://doi.org/10.1016/j.rser.2016.06.007

    Google Scholar 

  • Zaparka F (1935) Aircraft and Control thereof. United States Patent RE-19412 (reissue)

    Google Scholar 

  • Zutech M (2002) Adaptive blade concept assessment: curved planform induced twist investigation. Sandia Report SAND 2002-2996, Sandia National Laboratories

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro González-Salcedo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

González-Salcedo, Á. et al. (2020). Blade Design with Passive Flow Control Technologies. In: Stoevesandt, B., Schepers, G., Fuglsang, P., Yuping, S. (eds) Handbook of Wind Energy Aerodynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-05455-7_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05455-7_6-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05455-7

  • Online ISBN: 978-3-030-05455-7

  • eBook Packages: Springer Reference EnergyReference Module Computer Science and Engineering

Publish with us

Policies and ethics