Skip to main content

Abstract

Nanomaterials are materials engineered with extremely small particle size having at least one dimension in the range of 1–100 nm. When materials are produced in nanoscale, they demonstrate unique electronic, magnetic, catalytic, and optical properties for a wide range of applications in a variety of fields such as engineering, medicine, and the environment. Nanomaterials with attractive chemical and physical properties are being explored for potential uses in energy and environmental applications. Due to the ability to enhance efficiency through control of bandgap, chemical composition, structural scheme, light propagation, charge collection/transport, etc., nanomaterials have attracted immense attention. Titanium dioxide (TiO2) nanoparticles are manufactured worldwide in large quantities for use in a wide range of applications. Nanostructured TiO2 has gained considerable attention in the energy and environment sectors due to their brilliant prospects in photocatalysis, solar cells, and environmental pollution treatment. Furthermore, TiO2 nanoparticles have the advantages of readily available, inexpensive, and low toxicity. This review summarizes the current knowledge about the chemical and physical properties, synthesis, application areas, health effects, exposure routes, and limits and measurement techniques of titanium dioxide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Peters RJB, Bemmel G, Rivera ZH et al (2014) Characterization of titanium dioxide nanoparticles in food products: analytical methods to define nanoparticles. J Agric Food Chem 62(27):6285–6293

    Article  CAS  Google Scholar 

  2. Lakshmanan VI, Bhowmick A, Abdul Halim M (2014) Titanium dioxide: production, properties and applications. In: Brown J (ed) Titanium dioxide: chemical properties, applications and environmental effects. Nova Science Publishers, New York

    Google Scholar 

  3. Hwu Y, Yao YD, Cheng NF et al (1997) X-ray absorption of nanocrystal TiO2. Nanostruct Mater 9:355–358

    Article  CAS  Google Scholar 

  4. Zhang H, Banfield JF (1998) Thermodynamic analysis of phase stability of nanocrystalline titania. J Mater Chem 8:2073–2076

    Article  CAS  Google Scholar 

  5. Samat MH, Ali AMM, Taib MFM, Hasan OH, Yahya MZA (2016) Hubbard U calculations on optical properties of 3d transition metal oxide TiO2. Res Phys 6:891–896

    Google Scholar 

  6. Brittain HG, Barbera G, DeVincentis J et al (1992) Titanium dioxide. Analytical profiles of drug substances and excipients. Academic, New Brunswick

    Google Scholar 

  7. Shi H, Magaye R, Castranova V et al (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:1–33

    Article  CAS  Google Scholar 

  8. Pawłowski L, Blanchart P (2018) Industrial chemistry of oxides for emerging applications. Wiley, New York

    Book  Google Scholar 

  9. Stepanov AL, Xiao X, Ren F (2013) Implantation of titanium dioxide with transition metal ions. In: Jha PK (ed) Titanium dioxide: applications, synthesis and toxicity. Nova Science Publishers, New York

    Google Scholar 

  10. Bak T, Nowotny J, Rekas M, Sorrell CC (2003) Defect chemistry and semiconducting properties of titanium dioxide: II. Defect diagrams. J Phys Chem Solids 64:1057–1067

    Article  CAS  Google Scholar 

  11. He Z, Que W, Xie H (2013) Titanium dioxide: synthesis and toxicity of TiO2 nanostructures. In: Jha PK (ed) Titanium dioxide: applications, synthesis and toxicity. Nova Science Publishers, New York

    Google Scholar 

  12. Toygun Ş, Köneçoğlu G, Kalpaklı Y (2013) General principles of sol-gel. Sigma J Eng Nat Sci 31:456–476

    Google Scholar 

  13. Niederberger M, Bartl MH, Stucky GD (2002) Benzyl alcohol and titanium tetrachloride – a versatile reaction system for the nonaqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles. Chem Mater 14:4364–4370

    Article  CAS  Google Scholar 

  14. Cozzoli PD, Comparelli R, Fanizza E, Curri ML, Agostiano A (2003) Photocatalytic activity of organic-capped anatase TiO2 nanocrystals in homogeneous organic solutions. Mater Sci Eng C 23:707–713

    Article  CAS  Google Scholar 

  15. Smirnova N, Eremenko A (2004) Sol-gel processed functional nanosized TiO2 and SiO2 based films for photocatalysts and other applications. J Solgel Sci Technol 32:357–362

    Article  CAS  Google Scholar 

  16. Joo J, Kwon SG, Yu T, Cho M, Lee J, Yoon J, Hyeon T (2005) Large-scale synthesis of TiO2 nanorods via nonhydrolytic sol−gel ester elimination reaction and their application to photocatalytic inactivation of E.coli. J Phys Chem B 109:15297–15302

    Article  CAS  Google Scholar 

  17. Zhang Z, Zhong X, Liu S, Li D, Han M (2005) Aminolysis route to monodisperse titania nanorods with tunable aspect ratio. Angew Chem Int Ed 44:3466–3470

    Article  CAS  Google Scholar 

  18. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  19. Sui R, Young JL, Berlinguette PC (2010) Sol-gel synthesis of linear Sn-doped TiO2 nanostructures. J Mater Chem 20:498–503

    Article  CAS  Google Scholar 

  20. Oh S, Kim J, Dar MA, Kim D (2019) Synthesis and characterization of uniform hollow TiO2 nanofibers using electrospun fibrous cellulosic templates for lithium-ion battery electrodes. J Alloy Compd 800:483–489

    Article  CAS  Google Scholar 

  21. Nyankson E, Agyei-Tuffour B, Asare J, Annan E, Rwenyagila ER, Konadu DS, Yaya A, Dodoo-Arhin D (2013) Nanostructured TiO2 and their energy applications-a review. ARPN J Eng Appl Sci 8(10):871–886

    CAS  Google Scholar 

  22. Donar YO, Bilge S, Sınağ A, Pliekhov O (2018) TiO2/carbon materials derived from hydrothermal carbonization of waste biomass: a highly efficient, low – cost – visible- light-driven photocatalyst. ChemCatChem 10(5):1134–1139

    Article  CAS  Google Scholar 

  23. Yang J, Mei S, Ferreira JMF (2001) Hydrothermal synthesis of TiO2 nanopowders from tetraalkylammonium hydroxide peptized sols. Mater Sci Eng C 15:183–185

    Article  Google Scholar 

  24. Chae SY, Park MK, Lee SK, Kim TY, Kim SK, Lee WI (2003) Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films. Chem Mater 15:3326–3331

    Article  CAS  Google Scholar 

  25. Ahirrao DJ, Wilson HM, Jha N (2019) TiO2-nanoflowers as flexible electrode for high performance supercapacitor. Appl Surf Sci 491:765–778

    Article  CAS  Google Scholar 

  26. Kitano M, Tsujimaru K, Anpo M (2008) Hydrogen production using highly active titanium oxide based photocatalyst. Top Catal 49:4–17

    Article  CAS  Google Scholar 

  27. Yang HG, Liu G, Qiao SZ, Sun CH (2009) Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. J Am Chem Soc 131:4078–4083

    Article  CAS  Google Scholar 

  28. Bhorde A, Bhopale S, Waykar R, Nair S, Borate H, Pandharkar S, Funde A, More M, Jadkar S (2019) Field emission investigations of solvothermal synthesized and soaked rutile-TiO2 nanostructures. J Mater Sci Mater Electron 30:4920–4930

    Article  CAS  Google Scholar 

  29. Khataee A, Mansoori GA (2011) Nanostructured titanium dioxide materials. World Scientific Publishing Europe, Singapore

    Book  Google Scholar 

  30. Wagner EH, Bret T, Hoffmann P (2005) Light- induced CVD of titanium dioxide thin films I: kinetics of deposition. Chem Vap Depos 11(1):21–28

    Article  CAS  Google Scholar 

  31. Li D, Bulou S, Gautier N, Elisabeth S, Goullet A, Richard-Plout M, Choquet P, Granier A (2019) Nanostructure and photocatalytic properties of TiO2 films deposited at low temperature by pulsed PECVD. Appl Surf Sci 466:63–69

    Article  CAS  Google Scholar 

  32. Arifin P, Mustajab MA, Haryono S, Adhika DR, Nugraha AA (2019) MOCVD growth and characterization of TiO2 thin films for hydrogen gas sensor application. Mater Res Exp 6(7):076313

    Article  CAS  Google Scholar 

  33. Wang F, Zhu N, Li T, Zhang HC (2019) Material and energy efficiency analysis of low pressure chemical vapor deposition of TiO2 film. Procedia CIRP 15:32–37

    Article  Google Scholar 

  34. Malik MA, Wani MY, Hashim MA (2012) Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials: 1st nano update. Arab J Chem 5(4):397–417

    Article  CAS  Google Scholar 

  35. Kim KD, Kim SH, Kim HT (2005) Applying the Taguchi method to the optimization for the synthesis of TiO2 nanoparticles by hydrolysis of TEOT in micelles. Colloids Surf A Physicochem Eng Asp 254:99–105

    Article  CAS  Google Scholar 

  36. Jang YH, Xin X, Byun M, Jang YJ, Lin Z, Kim DH (2012) An unconventional route to high-efficiency dye-sensitized solar cells via embedding graphitic thin films into TiO2 nanoparticle photoanode. Nano Lett 12(1):479–485

    Article  CAS  Google Scholar 

  37. Yuenyongsuwan J, Nithiyakorn N, Sabkird P, O’Rear EA, Pongprayoon T (2018) Surfactant effect on phase-controlled synthesis and photocatalyst property of TiO2 nanoparticles. Mater Chem Phys 214:330–336

    Article  CAS  Google Scholar 

  38. Liu S, Huang K (2005) Straightforward fabrication of highly ordered TiO2 nanowire arrays in AAM on aluminum substrate. Sol Energy Mater Sol Cells 85(1):125–131

    CAS  Google Scholar 

  39. Anuratha KS, Peng HS, Xiao Y, Su TS, Wei TC, Lin JY (2019) Electrodeposition of nanostructured TiO2 thin film as an efficient bifunctional layer for perovskite solar cells. Electrochim Acta 295:662–667

    Article  CAS  Google Scholar 

  40. Su TS, Hsieh TY, Hong CY, Wei TC (2015) Electrodeposited ultrathin TiO2 blocking layers for efficient perovskite solar cells. Sci Rep 5:1–5

    Google Scholar 

  41. Dikici T, Yurddaskal M (2018) Characterization and photocatalytic properties of TiO2 coatings produced by anodic spark oxidation. J BAUN Inst Sci Technol 20(1):83–93

    Google Scholar 

  42. Sul YT, Johansson CB, Jeong Y, Albrektsson T (2001) The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med Eng Phys 23(5):329–346

    Article  CAS  Google Scholar 

  43. Diamanti MV, Pedeferri MP (2007) Effect of anodic oxidation parameters on the titanium oxides formation. Corros Sci 49(2):939–948

    Article  CAS  Google Scholar 

  44. Diamanti MV, Ormellese M, Pedeferri MP (2015) Application-wise nanostructuring of anodic films on titanium: a review. J Exp Nanosci 10(17):1285–1308

    Article  CAS  Google Scholar 

  45. Guo J, Zhu S, Chen Z, Li Y, Yu Z, Liu Q, Li J, Feng C, Zhang D (2011) Sonochemical synthesis of TiO2 nanoparticles on graphene for use as photocatalyst. Ultrason Sonochem 18:1082–1090

    Article  CAS  Google Scholar 

  46. Mansour SA (2019) Non-isothermal crystallization kinetics of nano-sized amorphous TiO2 prepared by facile sonochemical hydrolysis route. Ceram Int 45:2893–2898

    Article  CAS  Google Scholar 

  47. Wu X, Jiang QZ, Ma ZF, Fu M, Shangguan WF (2005) Synthesis of titania nanotubes by microwave irradiation. Solid State Commun 136:513–517

    Article  CAS  Google Scholar 

  48. Vinodhini J, Mayandi J, Atchudan R, Jayabal P, Sasirekha V, Pearce JM (2019) Effect of microwave power irradiation on TiO2 nano-structures and binder free paste screen printed dye sensitized solar cells. Ceram Int 45:4667–4673

    Article  CAS  Google Scholar 

  49. Fries R, Simko M (2012) (Nano-)titanium dioxide (part I): basics, production, applications. Institute of Technology Assessment of the Austrian Academy of Sciences. NanoTrust-Dossiers. Available via DIALOG. http://epub.oeaw.ac.at/ita/nanotrust-dossiers/dossier033en.pdf. Accessed 19 Sept 2019

  50. Kallio T, Alajoki S, Pore V, Ritala M, Laine J, Leskela M, Stenius P (2006) Antifouling properties of TiO2: photocatalytic decomposition and adhesion of fatty and rosin acids, sterols and lipophilic wood extractives. Colloids Surf A: Physicochem Eng Aspects 291:162–176

    Article  CAS  Google Scholar 

  51. Yang HG, Liu G, Lu GQ (2011) Synthetic chemistry of titanium dioxide. In: Yang P (ed) The chemistry of nanostructured materials. World Scientific Publisher, Singapore

    Chapter  Google Scholar 

  52. Mondal K (2017) Recent advances in the synthesis of metal oxide nanofibers and their environmental remediation applications. Inventions 2(2):9

    Article  Google Scholar 

  53. Gülşen G, İnci MN (2002) Thermal optical properties of TiO2 films. Opt Mater 18:373–381

    Article  Google Scholar 

  54. Nwanya AC, Ezema FI, Ejikeme PM (2011) Dyed sensitized solar cells: a technically and economically alternative concept to p-n junction photovoltaic devices. Int J Phys Sci 6(22):5190–5201

    CAS  Google Scholar 

  55. Bharathi J, Pappayee N (2014) Titanium dioxide (TiO2) thin film based gas sensors. JCHPS Special Issue 4:59–61

    Google Scholar 

  56. Savage NO, Akbar SA, Dutta PK (2001) Titanium dioxide based high temperature carbon monoxide selective sensor. Sensor Actuat B 72:239–248

    Article  CAS  Google Scholar 

  57. Khataee AR, Kasiri MB (2010) Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes. J Mol Catal A 328:8–26

    Article  CAS  Google Scholar 

  58. Skocaj M, Filipic M, Petkovic J, Novak S (2011) Titanium dioxide in our everyday life; is it safe? Radiol Oncol 45(4):227–247

    Article  CAS  Google Scholar 

  59. Youkhana EQ, Feltis B, Blencowe A, Geso M (2017) Titanium dioxide nanoparticles as radiosensitisers: an in vitro and phantom-based study. Int J Med Sci 14(6):602–614

    Article  CAS  Google Scholar 

  60. Ruiz PA, Moron B, Becker HM, Lang S, Atrott K, Spalinger MR, Scharl M, Wojtal KA, Fischbeck-Terhalle A, Frey-Wagner I, Hausmann M, Kraemer T, Rogler G (2017) Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome. Gut 66:1216–1224

    Article  CAS  Google Scholar 

  61. Ma-Hock L, Burkhardt S, Strauss V, Gamer AO, Wiench K, van Ravenzwaay B, Landsiedel R (2009) Development of a short-term inhalation test in the rat using nano-titanium dioxide as a model substance. Inhal Toxicol 21:102–118

    Article  CAS  Google Scholar 

  62. Wang JX, Li YF, Zhou GQ, Li B, Jiao F, Chen CY, Gao YX, Zhao YL, Chai ZF (2007) Influence of intranasal instilled titanium dioxide nanoparticles on monoaminergic neurotransmitters of female mice at different exposure time. Zhonghua Yu Fang Yi Xue Za Zhi 41(2):91–95

    CAS  Google Scholar 

  63. Liu R, Yin L, Pu Y, Liang G, Zhang J, Su Y, Xiao Z, Ye B (2009) Pulmonary toxicity induced by three forms of titanium dioxide nanoparticles via intra-tracheal instillation in rats. Prog Nat Sci 19:573–579

    Article  CAS  Google Scholar 

  64. Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, Everitt JI (2004) Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 77:347–357

    Article  CAS  Google Scholar 

  65. Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69:8784–8789

    Article  CAS  Google Scholar 

  66. Jugan ML, Barillet S, Simon-Deckers A, Herlin-Boime N, Sauvaigo S, Douki T, Carriere M (2012) Titanium dioxide nanoparticles exhibit genotoxicity and impair DNA repair activity in A549 cells. Nanotoxicology 6:501–513

    Article  CAS  Google Scholar 

  67. Jaeger A, Weiss DG, Jonas L, Kriehuber R (2012) Oxidative stress-induced cytotoxic and genotoxic effects of nano-sized titanium dioxide particles in human HaCaT keratinocytes. Toxicology 296:27–36

    Article  CAS  Google Scholar 

  68. Yoo KC, Yoon CH, Kwon D, Hyun KH, Woo SJ, Kim RK, Lim EJ, Suh Y, Kim MJ, Yoon TH, Lee SJ (2012) Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated fas upregulation and bax activation. Int J Nanomedicine 7:1203–1214

    CAS  Google Scholar 

  69. Meena R, Rani M, Pal R, Rajamani P (2012) Nano-TiO2-induced apoptosis by oxidative stress-mediated DNA damage and activation of p53 in human embryonic kidney cells. Appl Biochem Biotechnol 167:791–808

    Article  CAS  Google Scholar 

  70. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    Article  CAS  Google Scholar 

  71. Swidwińska-Gajewska AM, Czerczak S (2014) Titanium dioxide nanoparticles: occupational exposure limits. Med Pr 65(3):407–418

    Google Scholar 

  72. Tiede K, Boxall AB, Tear SP, Lewis J, David H, Hassellov M (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam 25(7):795–821

    Article  CAS  Google Scholar 

  73. Zanchet D, Hall BD, Ugarte D (2011) X-ray characterization of nanoparticles. In: Wang ZL (ed) Characterization of nanophase materials. Wiley, New York

    Google Scholar 

  74. Briggs D (2003) XPS: basic principles, spectral features and qualitative analysis. In: Briggs D, Grant JT (eds) Surface analysis by auger and X-ray photoelectron spectroscopy. IM Publications, Chichester

    Google Scholar 

  75. Ali SM, Bonnier F, Lambkin H, Flynn K, McDonagh V, Healy C, Lee TC, Lyng F, Byrne H (2013) A comparison of Raman, FTIR and ATR-FTIR micro spectroscopy for imaging human skin tissue sections. Anal Methods 5:2281–2291

    Article  CAS  Google Scholar 

  76. Ates M (2018) Measuring and inspection techniques of nanoparticles. Turk J Sci Rev 11(1):63–69

    Google Scholar 

  77. Brouwer P (2003) Theory of XRF. PANalytical BV, Almelo

    Google Scholar 

  78. Blagojevic D, Lazic D, Keselj D, Ostojic G, Imamovic M (2018) Determination of titanium dioxide content in bauxites using X-ray fluorescence spectrometry by fusion and by pressing. Acta Chim Slov 65:380–387

    Article  CAS  Google Scholar 

  79. Yurddaskal M, Dikici T, Yıldırım S, Yurddaskal M, Toparlı M, Celik E (2015) Fabrication and characterization of nanostructured anatase TiO2 films prepared by electrochemical anodization and their photocatalytic properties. J Alloy Compd 651:59–71

    Article  CAS  Google Scholar 

  80. Serrano E, Rus G, Garcia-Martinez J (2009) Nanotechnology for sustainable energy. Renew Sustain Energy Rev 13:2373–2384

    Article  CAS  Google Scholar 

  81. Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44(12):8269–8285

    Article  CAS  Google Scholar 

  82. Ozturk M, Elbir A, Ozek N, Yakut AK (2011) Investigation of solar hydrogen production methods. Paper presented at the 6th international advanced technologies symposium, Elazığ, Turkey, 16–18 May 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şana Sungur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sungur, Ş. (2020). Titanium Dioxide Nanoparticles. In: Kharissova, O., Martínez, L., Kharisov, B. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics