Skip to main content

An Introduction to the Process of Cell, Tissue, and Organ Differentiation, and Production of Secondary Metabolites

  • Living reference work entry
  • First Online:
Plant Cell and Tissue Differentiation and Secondary Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Plant cell and tissue cultures are indispensable tools to understand the process of differentiation that has become a powerful technology for commercial level production of micropropagated plants. Various technological innovations in growing and analyzing cell cultures have led to the production of useful primary and secondary metabolites from plant cell cultures using bioreactors up to a 75,000 L capacity. The processes of differentiation as well as production of secondary metabolites are complex, both involving a coordinated expression of several genes. Differentiation of cells and tissues causes qualitative and quantitative changes in the production of secondary metabolites. Metabolomics and transcriptome analysis of cells and tissues will provide more insight into genes involved in biosynthesis of secondary metabolites. In this brief overview, process of differentiation of cells, tissues, and organs and production of secondary metabolites as affected by plant cell and tissue differentiation are presented. The importance of unorganized and organized cultures as production system is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Pickens LB, Tang Y, Chooi Y-H (2011) Metabolic engineering for the production of natural products. Annu Rev Chem Biomol Eng 2:211–236. https://doi.org/10.1146/annurev-chembioeng-061010-114209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830:3670–3695. https://doi.org/10.1016/j.bbagen.2013.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shoji T, Yamada Y, Hashimoto T (2000) Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris. Plant Cell Physiol 41:831–839

    Article  CAS  PubMed  Google Scholar 

  4. Yazaki K (2006) ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett 580:1183–1191

    Article  CAS  PubMed  Google Scholar 

  5. Atanasov G, Waltenberger B, Pferschy-Wenzig EM et al (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33(8):1582–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–661

    Article  CAS  PubMed  Google Scholar 

  7. Seca AML, Pinto DCGA (2018) Plant secondary metabolites as anticancer agents: successes in clinical trials and therapeutic application. Int J Mol Sci 19(1):263. https://doi.org/10.3390/ijms19010263

    Article  CAS  PubMed Central  Google Scholar 

  8. Pommier Y (2013) Drugging topoisomerases: lessons and challenges. ACS Chem Biol 8(1):82–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Espinosa-Leal CA, Puente-Garza CA, Garcia-Lara S (2018) In vitro plant tissue culture: means for production of biological active compounds. Planta 248:1–18. https://doi.org/10.1007/s00425-018-2910-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ramawat KG, Goyal S (2009) Natural products in cancer chemoprevention and chemotherapy. In: Ramawat KG (ed) Herbal drugs: ethnomedicine to modern medicine. Springer, Heidelberg, pp 153–171

    Chapter  Google Scholar 

  11. Li F, Wang Y, Li D, Chen Y, Dou QP (2019) Are we seeing a resurgence in the use of natural products for new drug discovery? Expert Opin Drug Discovery 1–4. https://doi.org/10.1080/17460441.2019.1582639

  12. Butler MS, Robertson AAB, Cooper MA (2014) Natural product and natural product derived drugs in clinical trials. Nat Prod Rep 31:1612–1661

    Article  CAS  PubMed  Google Scholar 

  13. Patra B, Schluttenhofer C, Wu Y, Pattanaik S, Yuan L (2013) Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochim Biophys Acta 1829:1236–1247

    Article  CAS  PubMed  Google Scholar 

  14. Ramawat KG, Dass S, Mathur M (2009) The chemical diversity of bioactive molecules and therapeutic potential of medicinal plants. In: Ramawat KG (ed) Herbal drugs: ethnomedicine to modern medicine. Springer, Heidelberg, pp 7–32

    Chapter  Google Scholar 

  15. Goyal S, Lambert C, Cluzet S, Merillon JM, Ramawat KG (2011) Secondary metabolites and plant defence. In: Merillon JM, Ramawat KG (eds) Plant defence: biological control. Progress in biological control 12. Springer Science+Business Media B.V., Dordrecht. https://doi.org/10.1007/978-94-007-1933-0_5

    Chapter  Google Scholar 

  16. Ramawat KG, Goyal S (2019) Co-evolution of secondary metabolites during biological competition for survival and advantage: an overview. In: Merillon JM, Ramawat KG (eds) Co-evolution of secondary metabolites. Reference series in phytochemistry. Springer, Cham

    Google Scholar 

  17. Miller CO, Skoog F, Okumura FS, Malcolm H, Saltza V, Strong FM (1955) Structure and synthesis of kinetin. J Am Chem Soc 77(9):2662–2663

    Article  CAS  Google Scholar 

  18. Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–140

    CAS  PubMed  Google Scholar 

  19. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  20. Pantchev I, Rakleova G, Pavlov A, Atanassov A (2018) History of plant biotechnology development. In: Pavlov A, Bley T (eds) Bioprocessing of plant in vitro systems. Springer International Publishing AG, Cham. https://doi.org/10.1007/978-3-319-32004-5_25-1

    Chapter  Google Scholar 

  21. Yancheva S, Kondakova V (2018) Plant tissue culture technology: present and future development. In: Pavlov A, Bley T (eds) Bioprocessing of plant in vitro systems. Reference series in phytochemistry. Springer International Publishing AG, Cham. https://doi.org/10.1007/978-3-319-32004-5_16-1

    Chapter  Google Scholar 

  22. Summer LW, Yang DS, Bemch BJ et al (2018) Spatially resolved plant metabolomics. Annu Plant Rev 43:343. https://doi.org/10.1002/9781119312994.apr0471

    Article  Google Scholar 

  23. Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851

    Article  CAS  Google Scholar 

  24. Chaudhuri KN, Ghosh B, Tepfer DA, Jha S (2004) Genetic transformation of Tylophora indica with Agrobacterium rhizogenes A4: growth and tylophorine productivity in different transformed root clones. Plant Cell Rep 24:25–35

    Article  CAS  Google Scholar 

  25. Panda BM, Mehta UJ, Hazra S (2017) Optimizing culture conditions for establishment of hairy root culture of Semecarpus anacardium L. 3 Biotech 7(1):21. https://doi.org/10.1007/s13205-017-0608-x

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sarkar S, Ghosh I, Roychowdhury D, Jha S (2018) The effects of rol genes of Agrobacterium rhizogenes on morphogenesis and secondary metabolite accumulation in medicinal plants. In: Kumar N (ed) Biotechnological approaches for medicinal and aromatic plants. Springer, Singapore

    Google Scholar 

  27. Yesil-Celiktas O, Gurel A, Vardar-Sukan F (2010) Large scale cultivation of plant cell and tissue culture in bioreactors. Transworld Research Network, Kerala, pp 1–54. ISBN 978-81-7895-474-5

    Google Scholar 

  28. https://phytonbiotech.com/

  29. Ramawat KG, Mathur M (2007) Factors affecting production of secondary metabolites. In: Ramawat KG, Merillon JM (eds) Biotechnology: secondary metabolites. Science Publishers, Inc., Enfield, pp 59–102

    Chapter  Google Scholar 

  30. Murthy HN, Lee EJ, Paek KY (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult 118(1):1–16

    Article  CAS  Google Scholar 

  31. Ochoa-Villarreal M, Howat S, Hong S, Jang MO, Jin YW, Lee EK, Loake GJ (2016) Plant cell culture strategies for the production of natural products. BMB Rep 49(3):149–158. https://doi.org/10.5483/BMBRep.2016.49.3.264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Su YH, Liu YB, Zhang XS (2011) Auxin–Cytokinin interaction regulates meristem development. Mol Plant 4(4):616–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mok DW, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol 52:89–118

    Article  CAS  PubMed  Google Scholar 

  34. Lolo RD, Linhares FC, Scacchi E et al (2007) Cytokinins determine Arabidopsis root-meristem size. Curr Biol 17:678–682

    Article  CAS  Google Scholar 

  35. Azizi P, Rafii MY, Maziah M et al (2015) Understanding the shoot apical meristem regulation: a study of the phytohormones, auxin and cytokinin, in rice. Mech Dev 135:1–15

    Article  CAS  PubMed  Google Scholar 

  36. Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97(5):883–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shimizu-Sato S, Tanaka M, Mori H (2009) Auxin-cytokinin interactions in the control of shoot branching. Plant Mol Biol 69(4):429–435. https://doi.org/10.1007/s11103-008-9416-3

    Article  CAS  PubMed  Google Scholar 

  38. Ugartechea-Chirino Y, Swarup R, Swarup K et al (2010) The AUX1 LAX family of auxin influx carriers is required for the establishment of embryonic root cell organization in Arabidopsis thaliana. Ann Bot 105:277–289

    Article  CAS  PubMed  Google Scholar 

  39. Vandenbussche F, Petrášek J, Žádníková P et al (2010) The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thalianaseedlings. Development 137:597–606

    Article  CAS  PubMed  Google Scholar 

  40. Bennett MJ, Marchant A, Green HG, May ST et al (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273:948–950

    Article  CAS  PubMed  Google Scholar 

  41. Swarup K, Benková E, Swarup R et al (2008) The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol 10:946–954

    Article  CAS  PubMed  Google Scholar 

  42. Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme G, Bennett MJ (2001) Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev 15:2648–2653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jones AR, Kramer EM, Knox K, Swarup R et al (2009) Auxin transport through non-hair cells sustains root-hair development. Nat Cell Biol 11:78–84

    Article  CAS  PubMed  Google Scholar 

  44. Marchant A, Bhalerao R, Casimiro I, Eklöf J et al (2002) AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 14:589–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bainbridge K, Guyomarc’h S, Bayer E, Swarup R et al (2008) Auxin influx carriers stabilize phyllotactic patterning. Genes Dev 22:810–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guo H, Zhu N, Deyholos MK et al (2015) Calcium mobilization in salicylic acid-induced Salvia miltiorrhiza cell cultures and its effect on the accumulation of rosmarinic acid. Appl Biochem Biotechnol 175:2689. https://doi.org/10.1007/s12010-014-1459-0

    Article  CAS  PubMed  Google Scholar 

  47. Ganguly A, Sasayama D, Cho H-T (2012) Regulation of the polarity of protein trafficking by phosphorylation. Mol Cells 33:423–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lanková M, Smith RS, Pesek B, Kubes M et al (2010) Auxin influx inhibitors 1-NOA, 2-NOA, and CHPAA interfere with membrane dynamics in tobacco cells. J Exp Bot 61(13):3589–3598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Skalický V, Kubeš M, Napier R, Novák O (2018) Auxins and Cytokinins – the role of subcellular organization on homeostasis. Int J Mol Sci 19:3115. https://doi.org/10.3390/ijms19103115

    Article  CAS  PubMed Central  Google Scholar 

  50. Vanneste S, Friml J (1995) Auxin: a trigger for change in plant development. Cell 136:1005–1016

    Article  CAS  Google Scholar 

  51. Suri SS, Ramawat KG (1995) In vitro hormonal regulation of laticifer differentiation in Calotropis procera. Ann Bot 75(5):477–480

    Article  CAS  Google Scholar 

  52. Goyal S, Ramawat KG (2008) Synergistic effect of morphactin on cytokinin-induced production of isoflavonoids in cell cultures of Pueraria tuberosa (Roxb. ex. Willd.) DC. Plant Growth Regul 55:175–181

    Article  CAS  Google Scholar 

  53. Small CC, Degenhardt D (2018) Plant growth regulators for enhancing revegetation success in reclamation: a review. Ecol Eng 118:43–51

    Article  Google Scholar 

  54. Davies PJ (2012) Plant hormones and their role in plant growth and development. Springer Science & Business Media, Dordrecht, The Netherlands, p 732

    Google Scholar 

  55. Appelhagen I, Wulff-Vester AK, Wendell M et al (2018) Colour bio-factories: towards scale-up production of anthocyanins in plant cell cultures. Metab Eng 48:218–232. https://doi.org/10.1016/j.ymben.2018.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pesquet E, Wagner A, Grabber JH (2019) Cell culture systems: invaluable tools to investigate lignin formation and cell wall properties. Curr Opin Biotechnol 56:215–222. https://doi.org/10.1016/j.copbio.2019.02.001

    Article  CAS  PubMed  Google Scholar 

  57. Adams ZP, Ehlting J, Edwards R (2019) The regulatory role of shikimate in plant phenylalanine metabolism. J Theor Biol 462:158–170

    Article  CAS  PubMed  Google Scholar 

  58. Prado E, Demarco D (2018) Laticifers and secretory ducts: similarities and differences. Intechopen. https://doi.org/10.5772/intechopen.75705

  59. Chezem WR, Clay NK (2016) Regulation of plant secondary metabolism and associated specialized cell development by MYBs and bHLHs. Phytochemistry 131:26–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Suri SS, Ramawat KG (1997) Extracellular calcium deprivation stimulates laticifer differentiation in callus cultures of Calotropis procera. Ann Bot 79(4):371–374

    CAS  Google Scholar 

  61. Kumar S, Sonie KC, Ramawat KG (2004) Development of resin canals during somatic embryogenesis in callus cultures of Commiphora wightii. Indian J Biotechnol 3:267–270

    Google Scholar 

  62. Ramawat K, Mathur M, Dass S, Suthar S (2008) Guggulsterone: a potent natural hypolipidemic agent from Commiphora wightii – problems, perseverance, and prospects. In: Ramawat KG, Merillon JM (eds) Bioactive molecules and medicinal plants. Springer, Berlin/Heidelberg

    Chapter  Google Scholar 

  63. Suthar S, Ramawat KG (2010) Growth retardants stimulate guggulsterone production in the presence of fungal elicitor in fed-batch cultures of Commiphora wightii. Plant Biotechnol Rep 4:9–13

    Article  Google Scholar 

  64. Barros J, Serk H, Granlund I, Pesquet E (2015) The cell biology of lignification in higher plants. Ann Bot 115(7):1053–1074. https://doi.org/10.1093/aob/mcv046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mukherjee S, Kutty NN, Bera P et al (2019) Impact of light and sucrose supplementation on cellular differentiation, metabolic shift and modulation of gene expression in hairy roots of Daucus carota. Plant Cell Tissue Organ Cult 136:383. https://doi.org/10.1007/s11240-018-1523-5

    Article  CAS  Google Scholar 

  66. Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry & molecular biology of plants. American Society of Plant Physiologists, Maryland, pp 1250–1318

    Google Scholar 

  67. Lange BM, Croteau R (1999) Genetic engineering of essential oil production in mint. Curr Opin Plant Biol 2:139–144

    Article  CAS  PubMed  Google Scholar 

  68. Rehman R, Hanif MA, Mushtaq Z, Mochona B, Qi X (2016) Biosynthetic factories of essential oils: the aromatic plants. Nat Prod Chem Res 4:227. https://doi.org/10.4172/2329-6836.1000227

    Article  CAS  Google Scholar 

  69. Martin DM, Gershenzon J, Bohlmann J (2003) Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiol 132:1586–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Martin DM, Faldt J, Bohlmann J (2004) Functional characterization of nine Norway spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiol 135:1908–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Weid M, Ziegler J, Kutchan TM (2004) The roles of latex and the vascular bundle in morphine biosynthesis in the opium poppy, Papaver somniferum. Proc Natl Acad Sci USA 101:13957–13962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bird DA, Franceschi VR, Facchini PJ (2003) A tale of three cell types: alkaloid biosynthesis is localized to sieve elements in opium poppy. Plant Cell 15:2626–2635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Parrilla J, Gaillard C, Verbeke J, Maucourt M et al (2018) Comparative metabolomics and glycolysis enzyme profiling of embryogenic and nonembryogenic grape cells. FEBS Open Bio 8:784–798. https://doi.org/10.1002/2211-5463.12415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mahmud I, Thapaliya M, Boroujerdi A, Chowdhury K (2014) NMR-based metabolomics study of the biochemical relationship between sugarcane callus tissues and their respective nutrient culture media. Anal Bioanal Chem 406:5997–6005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tissue Organ Cult 74:15. https://doi.org/10.1023/A:1023345803336

    Article  CAS  Google Scholar 

  76. Teixeira da Silva JA, Jha S (2016) Micropropagation and genetic transformation of Tylophora indica (Burm. f.) Merr.: a review. Plant Cell Rep 35:2207. https://doi.org/10.1007/s00299-016-2041-8

    Article  CAS  PubMed  Google Scholar 

  77. Mousavi SM, Shabani L (2019) Rosmarinic acid accumulation in Melissa officinalis shoot cultures is mediated by ABA. Biol Plant 63:418–424

    CAS  Google Scholar 

  78. Ramawat KG, Merillon JM (eds) (2008) Bioactive molecules and medicinal plants. Springer, Heidelberg, p 391

    Google Scholar 

  79. Ramawat KG, Merillon JM (eds) (2013) Natural products: phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Springer, Heidelberg, p 4242

    Google Scholar 

  80. Nigutová K, Kusari S, Sezgin S, Petijová L et al (2019) Chemometric evaluation of hypericin and related phytochemicals in 17 in vitro cultured Hypericum species, hairy root cultures and hairy root-derived transgenic plants. J Pharm Pharmacol 71(1):46–57. https://doi.org/10.1111/jphp.12782

    Article  CAS  PubMed  Google Scholar 

  81. Gupta P, Goel R, Pathak S, Srivastava A et al (2013) De novo assembly, functional annotation and comparative analysis of Withania somnifera leaf and root transcriptomes to identify putative genes involved in the withanolides biosynthesis. PLoS One 8:e62714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Scossa F, Benina M, Alseekh S et al (2018) The integration of metabolomics and next-generation sequencing data to elucidate the pathways of natural product metabolism in medicinal plants. Planta Med. https://doi.org/10.1055/a-0630-1899

  83. Sivanandhan G, Kapil Dev G, Jeyaraj M et al (2013) Increased production of withanolide A, withanone, and withaferin A in hairy root cultures of Withania somnifera (L.) Dunal elicited with methyl jasmonate and salicylic acid. Plant Cell Tissue Organ Cult 114(1):121–129

    Article  CAS  Google Scholar 

  84. Qin B, Ma L, Wang Y, Chen M, Lan X, Wu N, Liao Z (2014) Effects of acetylsalicylic acid and UV-B on gene expression and tropane alkaloid biosynthesis in hairy root cultures of Anisodus luridus. Plant Cell Tissue Organ Cult 117(3):483–490

    Article  CAS  Google Scholar 

  85. Gabr AMM, Ghareeb H, El Shabrawi HM, Smetanska I, Bekheet SA (2016) Enhancement of silymarin and phenolic compound accumulation in tissue culture of Milk thistle using elicitor feeding and hairy root cultures. J Genet Eng Biotechnol 14(2):327–333

    Article  PubMed  PubMed Central  Google Scholar 

  86. Faisal A, Sari AV (2019) Enhancement of saponin accumulation in adventitious root culture of Javanese ginseng (Talinum paniculatum Gaertn.) through methyl jasmonate and salicylic acid elicitation. Afr J Biotechnol 18(6):130–135. https://doi.org/10.5897/AJB2018.16736

    Article  Google Scholar 

  87. Sheludko Y, Gerasymenko I (2013) Biosynthetic potential of hairy roots for production of new natural products. In: Chandra S et al (eds) Biotechnology for medicinal plants. Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-642-29974-2_10

    Chapter  Google Scholar 

  88. Ganjewala D, Kaur G, Verma PC (2018) An update on transcriptome sequencing of hairy root cultures of medicinally important plants. In: Srivastava V, Mehrotra S, Mishra S (eds) Hairy roots. Springer, Singapore, pp 295–310

    Chapter  Google Scholar 

  89. Le KC, Jeong CS, Lee H et al (2019) Ginsenoside accumulation profiles in long- and short-term cell suspension and adventitious root cultures in Panax ginseng. Hortic Environ Biotechnol 60(1):125–134

    Article  CAS  Google Scholar 

  90. Jeong GT, Park DH (2017) Mass production of transformed hairy root for secondary metabolites: a case study of Panax ginseng hairy roots. In: Malik S (ed) Production of plant derived natural compounds through hairy root culture. Springer, Cham, pp 183–201

    Chapter  Google Scholar 

  91. Chahel AA, Zeng S, Yousaf Z et al (2019) Plant-specific transcription factor LrTCP4 enhances secondary metabolite biosynthesis in Lycium ruthenicum hairy roots. Plant Cell Tissue Organ Cult 136:323. https://doi.org/10.1007/s11240-018-1518-2

    Article  CAS  Google Scholar 

  92. Transcriptome Characterization, Sequencing, and Assembly of Medicinal Plants Relevant to Human Health. https://apps.pharmacy.uic.edu/depts/pcrps/MedTranscriptomePlants/. Accessed 6 Apr 2019

  93. Lau W, Sattely ES (2015) Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science 349:1224–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xiao M, Zhang Y, Chen X et al (2013) Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J Biotechnol 166:122–134

    Article  CAS  PubMed  Google Scholar 

  95. Mehrotra S, Mishra S, Srivastva V (2018) Bioreactor technology for hairy roots cultivation. In: Pavlov A, Bley T (eds) Bioprocessing of plant in vitro systems. Reference series in phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-32004-5_10-1

    Chapter  Google Scholar 

  96. Ozlem Y-C, Aynur G, Fazilet V-S (2010) Large scale cultivation of plant cell and tissue culture in bioreactors. Transworld Research Network,37/661 (2),Trivandrum-695 023 Kerala, India,1–54

    Google Scholar 

Download references

Acknowledgments

Author is thankful to Prof S. Jha, Calcutta University, Kolkata, for providing photographs of hairy root cultures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Ramawat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ramawat, K.G. (2019). An Introduction to the Process of Cell, Tissue, and Organ Differentiation, and Production of Secondary Metabolites. In: Ramawat, K., Ekiert, H., Goyal, S. (eds) Plant Cell and Tissue Differentiation and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11253-0_35-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11253-0_35-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11253-0

  • Online ISBN: 978-3-030-11253-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics