Skip to main content

Eukaryotic Hydrocarbon Degraders

  • Reference work entry
  • First Online:
Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Hydrocarbons have been part of the biosphere for millions of years, and a diverse group of eukaryotes has evolved to degrade them. Most of the cultures “in captivity” are fungi, but there are also examples from several algal phyla, and there are reports that some protozoa can degrade hydrocarbons. To date, all hydrocarbon degradation by eukaryotes seems to be aerobic. Only a few fungi and a single achlorophyllous green alga are known to be able to grow on hydrocarbons as their sole source of carbon and energy, but several are economically important, either in “spoiling” fuels or in biofilters. Many more fungi are able to degrade polycyclic aromatic hydrocarbons at a fast enough rate to be useful in the remediation of contaminated soil, and they may play an important role in the attenuation of the perennial natural production of these pyrogenic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo F, Pizzul L, del Pilar Castillo M, Cuevas R, Diez MC (2011) Degradation of polycyclic aromatic hydrocarbons by the Chilean white-rot fungus Anthracophyllum discolor. J Hazard Mater 185:212–219

    Article  CAS  PubMed  Google Scholar 

  • Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle GU, Fensome RA, Fredericq S, James TY (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Euk Microbiol 52:399–451

    Google Scholar 

  • Algaebase (2017) www.algaebase.org/index.lasso

  • Amanchukwu SC, Obafemi A, Okpokwasili GC (1989) Hydrocarbon degradation and utilization by a palm-wine yeast isolate. FEMS Microbiol Lett 57:151–154

    Article  CAS  Google Scholar 

  • Antić MP, Jovancicevic B, Vrvić MM, Schwarzbauer J (2006) Petroleum pollutant degradation by surface water microorganisms. Environ Sci Pollut Res 13:320–327

    Article  CAS  Google Scholar 

  • April TM, Abbott SP, Foght JM, Currah RS (1998) Degradation of hydrocarbons in crude oil by the ascomycete Pseudallescheria boydii (Microascaceae). Can J Microbiol 44:270–278

    Article  CAS  PubMed  Google Scholar 

  • Aranda E, Kinne M, Kluge M, Ullrich R, Hofrichter M (2009) Conversion of dibenzothiophene by the mushrooms Agrocybe aegerita and Coprinellus radians and their extracellular peroxygenases. Appl Microbiol Biotechnol 82:1057–1066

    Article  CAS  PubMed  Google Scholar 

  • Aranda E, Godoy P, Reina R, Badia-Fabregat M, Rosell M, Marco-Urrea E, García-Romera I (2017) Isolation of Ascomycota fungi with capability to transform PAHs: Insights into the biodegradation mechanisms of Penicillium oxalicum. Int Biodeter Biodegr 122:141–150

    Article  CAS  Google Scholar 

  • Baldi F, Pepi M, Fava F (2003) Growth of Rhodosporidium toruloides strain DBVPG 6662 on dibenzothiophene crystals and Orimulsion. Appl Environ Microbiol 69:4689–4696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batista-García RA, Kumar VV, Ariste A, Tovar-Herrera OE, Savary O, Peidro-Guzmán H, González-Abradelo D, Jackson SA, Dobson AD, del Rayo Sánchez-Carbente M, Folch-Mallol JL (2017) Simple screening protocol for identification of potential mycoremediation tools for the elimination of polycyclic aromatic hydrocarbons and phenols from hyperalkalophile industrial effluents. J Environ Manag 198:1–11

    Article  CAS  Google Scholar 

  • Boonchan S, Britz ML, Stanley GA (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl Environ Microbiol 66:1007–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bossert I, Bartha R (1984) The fate of petroleum in soil ecosystems. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 435–473

    Google Scholar 

  • Braun-Lüllemann A, Hüttermann A, Majcherczyk A (1999) Screening of ectomycorrhizal fungi for degradation of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 53:127–132

    Article  Google Scholar 

  • Brodie J, Lewis J (2007) Unravelling the algae; The past, present and future of algal systematics. CRC Press, Boca Raton

    Book  Google Scholar 

  • Cambria MT, Minniti Z, Librando V, Cambria A (2008) Degradation of polycyclic aromatic hydrocarbons by Rigidoporus lignosus and its laccase in the presence of redox mediators. Appl Biochem Biotechnol 149:1–8

    Article  CAS  PubMed  Google Scholar 

  • Cavaliere M, Feng S, Soyer OS, Jiménez JI (2017) Cooperation in microbial communities and their biotechnological applications. Environ Microbiol 19:2949–2963

    Article  PubMed  PubMed Central  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    Article  CAS  Google Scholar 

  • Cerniglia CE, Hebert RL, Szaniszlo PJ, Gibson DT (1978) Fungal transformation of naphthalene. Arch Microbiol 117:135–143

    Article  CAS  PubMed  Google Scholar 

  • Cerniglia CE, Gibson DT, Van Baalen C (1980) Oxidation of naphthalene by cyanobacteria and microalgae. J Gen Microbiol 116:495–500

    CAS  Google Scholar 

  • Cerniglia CE, Gibson DT, Van Baalen C (1982) Naphthalene metabolism by diatoms isolated from the Kachemak Bay region of Alaska. J Gen Microbiol 128:987–990

    CAS  Google Scholar 

  • Chaillan F, Le Flèche A, Bury E, Phantavong Y, Grimont P, Saliot A, Oudot J (2004) Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res Microbiol 155:587–595

    Article  CAS  PubMed  Google Scholar 

  • Chaîneau CH, Morel J, Dupont J, Bury E, Oudot J (1999) Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil. Sci Total Environ 227:237–247

    Article  PubMed  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucl Acid Res 37:D141–D145

    Article  CAS  Google Scholar 

  • da Silva M, Cerniglia CE, Pothuluri JV, Canhos VP, Esposito E (2003) Screening filamentous fungi isolated from estuarine sediments for the ability to oxidize polycyclic aromatic hydrocarbons. World J Microbiol Biotechnol 19:399–405

    Article  Google Scholar 

  • Dai CC, Tian LS, Zhao YT, Chen Y, Xie H (2010) Degradation of phenanthrene by the endophytic fungus Ceratobasidum (sic) stevensii found in Bischofia polycarpa. Biodegradation 21:245–255

    Article  CAS  PubMed  Google Scholar 

  • Darwin CR (1862) On the various contrivances by which British and Foreign orchids are fertilised by insects, and on the good effects of intercrossing. John Murray, London

    Google Scholar 

  • Darwin CR, Wallace AR (1858) On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. J Proc Linn Soc Lond Zool 3:46–50

    Google Scholar 

  • Davis W (2005) Decadence and the organic metaphor. Representations 89:131–151

    Article  Google Scholar 

  • Dodge RH, Cerniglia CE, Gibson DT (1979) Fungal metabolism of biphenyl. Biochem J 178:223–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sheekh MM, Hamouda RA, Nizam AA (2013) Biodegradation of crude oil by Scenedesmus obliquus and Chlorella vulgaris growing under heterotrophic conditions. Int Biodeter Biodegr 82:67–72

    Article  CAS  Google Scholar 

  • Embar K, Forgacs C, Sivan A (2006) The role of indigenous bacterial and fungal soil populations in the biodegradation of crude oil in a desert soil. Biodegradation 17:369–377

    Article  CAS  PubMed  Google Scholar 

  • Engler KH, Kelly SL, Coker RD, Evans IH (2000) Toxin-binding properties of cytochrome P450 in Saccharomyces cerevisiae and Kluyveromyces marxianus. Biotechnol Lett 22:3–8

    Article  CAS  Google Scholar 

  • Fedorak PM, Semple KM, Westlake DW (1984) Oil-degrading capabilities of yeasts and fungi isolated from coastal marine environments. Can J Microbiol 30:565–571

    Article  CAS  Google Scholar 

  • Field JA, De Jong E, Costa GF, De Bont JAM (1992) Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl Environ Microbiol 58:2219–2226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Floodgate GD (1984) The fate of petroleum in marine ecosystems. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 355–397

    Google Scholar 

  • Gamila HA, Ibrahim MBM (2004) Algal bioassay for evaluating the role of algae in bioremediation of crude oil: I-Isolated strains. Bull Environ Contam Toxicol 73:883–889

    Article  CAS  PubMed  Google Scholar 

  • Garon D, Sage L, Seigle-Murandi F (2004) Effects of fungal bioaugmentation and cyclodextrin amendment on fluorene degradation in soil slurry. Biodegradation 15:1–8

    Article  CAS  PubMed  Google Scholar 

  • Garzoli L, Gnavi G, Tamma F, Tosi S, Varese GC, Picco AM (2015) Sink or swim: updated knowledge on marine fungi associated with wood substrates in the Mediterranean Sea and hints about their potential to remediate hydrocarbons. Prog Oceanogr 137:140–148

    Article  Google Scholar 

  • Gaylarde CC, Bento FM, Kelley J (1999) Microbial contamination of stored hydrocarbon fuels and its control. Rev Microbiol 30:1–10

    Article  CAS  Google Scholar 

  • Gesell M, Hammer E, Specht M, Francke W, Schauer F (2001) Biotransformation of biphenyl by Paecilomyces lilacinus and characterization of ring cleavage products. Appl Environ Microbiol 67:1551–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gest H (1999) Bacterial classification and taxonomy: a ‘primer’ for the new millennium. Microbiol Today 26:70–71

    Google Scholar 

  • Giraud F, Guiraud P, Kadri M, Blake G, Steiman R (2001) Biodegradation of anthracene and fluoranthene by fungi isolated from an experimental constructed wetland for wastewater treatment. Water Res 35:4126–4136

    Article  CAS  PubMed  Google Scholar 

  • Gramss G, Voigt KD, Kirsche B (1999) Degradation of polycyclic aromatic hydrocarbons with three to seven aromatic rings by higher fungi in sterile and unsterile soils. Biodegradation 10:51–62

    Article  CAS  PubMed  Google Scholar 

  • Hadibarata T, Kristanti RA (2012) Fate and cometabolic degradation of benzo[a]pyrene by white-rot fungus Armillaria sp. F022. Bioresour Technol 107:314–318

    Article  CAS  PubMed  Google Scholar 

  • Haemmerli SD, Leisola MS, Sanglard D, Fiechter A (1986) Oxidation of benzo[a]pyrene by extracellular ligninases of Phanerochaete chrysosporium. Veratryl alcohol and stability of ligninase. J Biol Chem 261:6900–6903

    CAS  PubMed  Google Scholar 

  • Hawksworth DL (2012) Global species numbers of fungi: are tropical studies and molecular approaches contributing to a more robust estimate? Biodivers Conserv 21:2425–2433

    Article  Google Scholar 

  • Hawksworth DL, Crous PW, Redhead SA, Reynolds DR, Samson RA, Seifert KA, Taylor JW, Wingfield MJ, Abaci Ö, Aime C, Asan A, Bai FY, de Beer ZW, Begerow D, Berikten D, Boekhout T, Buchanan PK, Burgess T, Buzina W, Cai L, Cannon PF, Crane JL, Damm U, Daniel HM, van Diepeningen AD, Druzhinina I, Dyer PS, Eberhardt U, Fell JW, Frisvad JC, Geiser DM, Geml J, Glienke C, Gräfenhan T, Groenewald JZ, Groenewald M, de Gruyter J, Guého-Kellermann E, Guo LD, Hibbett DS, Hong SB, de Hoog GS, Houbraken J, Huhndorf SM, Hyde KD, Ismail A, Johnston PR, Kadaifciler DG, Kirk PM, Kõljalg U, Kurtzman CP, Lagneau PE, Lévesque CA, Liu X, Lombard L, Meyer W, Miller A, Minter DW, Najafzadeh MJ, Norvell L, Ozerskaya SM, Öziç R, Pennycook SR, Peterson SW, Pettersson OV, Quaedvlieg W, Robert VA, Ruibal C, Schnürer J, Schroers HJ, Shivas R, Slippers B, Spierenburg H, Takashima M, Taşkın E, Thines M, Thrane U, Uztan AH, van Raak M, Varga J, Vasco A, Verkley G, Videira SIR, de Vries RP, Weir BS, Yilmaz N, Yurkov A, Zhang N (2011) The Amsterdam declaration on fungal nomenclature. IMA Fungus 2:105–112

    Article  PubMed  PubMed Central  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Lumbsch T, Lutzoni F, Matheny PB, Mclaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde K, Ironside JE, Kõljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miądlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüßler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiß M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • Hildén KS, Bortfeldt R, Hofrichter M, Hatakka A, Lundell TK (2008) Molecular characterization of the basidiomycete isolate Nematoloma frowardii b19 and its manganese peroxidase places the fungus in the corticioid genus Phlebia. Microbiology 154:2371–2379

    Article  CAS  PubMed  Google Scholar 

  • Hofrichter M, Scheibner K, Schneegaß L, Fritsche W (1998) Enzymatic combustion of aromatic and aliphatic compounds by manganese peroxidase from Nematoloma frowardii. Appl Environ Microbiol 64:399–404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong YW, Yuan DX, Lin QM, Yang TL (2008) Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Mar Poll Bull 56:1400–1405

    Article  CAS  Google Scholar 

  • Hong JW, Park JY, Gadd GM (2010) Pyrene degradation and copper and zinc uptake by Fusarium solani and Hypocrea lixii isolated from petrol station soil. J Appl Microbiol 108:2030–2040

    Article  CAS  PubMed  Google Scholar 

  • Index Fungorum (2018) www.indexfungorum.org

  • James TY, Kauff F, Schoch C, Matheny PB, Hofstetter V, Cox CJ, Celio G, Geuidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung G-H, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüßler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman A, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann- Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443: 818–822

    Google Scholar 

  • Jin Y, Veiga MC, Kennes C (2006) Performance optimization of the fungal biodegradation of α-pinene in gas-phase biofilter. Proc Biochem 41:1722–1728

    Article  CAS  Google Scholar 

  • Juckpech K, Pinyakong O, Rerngsamran P (2012) Degradation of polycyclic aromatic hydrocarbons by newly isolated Curvularia sp. F18, Lentinus sp. S5, and Phanerochaete sp. T20. ScienceAsia 38:147–156

    Article  CAS  Google Scholar 

  • Kachieng’a L, Momba MN (2017) Kinetics of petroleum oil biodegradation by a consortium of three protozoan isolates (Aspidisca sp., Trachelophyllum sp. and Peranema sp.). Biotechnol Rep 15:125–1231

    Google Scholar 

  • Kannangara S, Ambadeniya P, Undugoda L, Abeywickrama K (2016) Polyaromatic hydrocarbon degradation of moss endophytic fungi isolated from Macromitrium sp. in Sri Lanka. J Agric Sci Technol A 6:171–182

    CAS  Google Scholar 

  • Katemai W, Maneerat S, Kawai F, Kanzaki H, Nitoda T (2008) Purification and characterization of a biosurfactant produced by Issatchenkia orientalis SR4. J Gen Appl Microbiol 54:79–82

    Article  CAS  PubMed  Google Scholar 

  • Kelley J (2002) Detection method. World Patent WO2/068959

    Google Scholar 

  • Kitamoto D, Ikegami T, Suzuki GT, Sasaki A, Takeyama YI, Idemoto Y, Koura N, Yanagishita H (2001) Microbial conversion of n-alkanes into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma (Candida antarctica). Biotechnol Lett 23:1709–1714

    Article  CAS  Google Scholar 

  • Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822

    Article  CAS  PubMed  Google Scholar 

  • Kotterman MJJ, Vis EH, Field JA (1998) Successive mineralization and detoxification of benzo[a]pyrene by the white rot fungus Bjerkandera sp. Strain BOS55 and indigenous microflora. Appl Environ Microbiol 64:2853–2858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krivobok S, Miriouchkine E, Seigle-Murandi F, Benoit-Guyod JL (1998) Biodegradation of anthracene by soil fungi. Chemosphere 37:523–530

    Article  CAS  PubMed  Google Scholar 

  • Lambert M, Kremer S, Sterner O, Anke H (1994) Metabolism of pyrene by the Basidiomycete Crinipellis stipitaria and identification of pyrenequinones and their hydroxylated precursors in strain JK375. Appl Environ Microbiol 60:3597–3601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lange J, Hammer E, Specht M, Francke W, Schauer F (1998) Biodegradation of biphenyl by the ascomycetous yeast Debaryomyces vanrijiae. Appl Microbiol Biotechnol 50:364–368

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Jang Y, Kim JM, Kim GH, Kim JJ (2013) White-rot fungus Merulius tremellosus KUC9161 identified as an effective degrader of polycyclic aromatic hydrocarbons. J Basic Microbiol 53:195–199

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Jang Y, Choi YS, Kim MJ, Lee J, Lee H, Hong JH, Lee YM, Kim GH, Kim JJ (2014) Biotechnological procedures to select white rot fungi for the degradation of PAHs. J Microbiol Methods 97:56–62

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Yun SY, Jang S, Kim GH, Kim JJ (2015) Bioremediation of polycyclic aromatic hydrocarbons in creosote-contaminated soil by Peniophora incarnata KUC8836. Bioremediation J 19:1–8

    Article  CAS  Google Scholar 

  • Liebe B, Fock HP (1992) Growth and adaptation of the green alga Chlamydomonas reinhardtii on diesel exhaust particle extracts. J Gen Microbiol 138:973–978

    Article  CAS  Google Scholar 

  • Lima ALC, Farrington JW, Reddy CM (2005) Combustion-derived polycyclic aromatic hydrocarbons in the environment – a review. Environ Forensics 6:109–131

    Article  CAS  Google Scholar 

  • Lin L, Fang W, Liao X, Wang F, Wei D, Leger RJ (2011) The MrCYP52 cytochrome P450 monoxygenase gene of Metarhizium robertsii is important for utilizing insect epicuticular hydrocarbons. PLoS One 6(12):e28984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Luan TG, Lu NN, Lan CY (2006) Toxicity of fluoranthene and its biodegradation by Cyclotella caspia alga. J Integr Plant Biol 48:169–180

    Article  CAS  Google Scholar 

  • Lücking R, Dal-Forno M, Sikaroodi M, Gillevet PM, Bungartz F, Moncada B, Yánez-Ayabaca A, Chaves JL, Coca LF, Lawrey JD (2014) A single macrolichen constitutes hundreds of unrecognized species. Proc Natl Acad Sci USA 111:11091–11096

    Article  CAS  PubMed  Google Scholar 

  • Luo S, Chen B, Lin L, Wang X, Tam NF, Luan T (2014) Pyrene degradation accelerated by constructed consortium of bacterium and microalga: effects of degradation products on the microalgal growth. Environ Sci Technol 48:13917–13924

    Article  CAS  PubMed  Google Scholar 

  • Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G, Dentinger B, Padamsee M, Hibbett D, James TY, Baloch E, Grube M, Reeb V, Hofstetter V, Schoch C, Arnold AE, Miadlikowska J, Spatafora J, Johnson D, Hambleton S, Crockett M, Shoemaker R, Sung GH, Lücking R, Lumbsch T, O’Donnell K, Binder M, Diederich P, Ertz D, Gueidan C, Hansen K, Harris RC, Hosaka K, Lim YW, Matheny B, Nishida H, Pfister D, Rogers J, Rossman A, Schmitt I, Sipman H, Stone J, Sugiyama J, Yahr R, Vilgalys R (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot 91:1446–1480

    Article  PubMed  Google Scholar 

  • Markovetz AJ, Cazin J, Allen JE (1968) Assimilation of alkanes and alkenes by fungi. Appl Microbiol 16:487–489

    Google Scholar 

  • Martens R, Zadrazil F (1998) Screening of white-rot fungi for their ability to mineralize polycyclic aromatic hydrocarbons in soil. Folia Microbiol (Praha) 43:97–103

    Article  CAS  Google Scholar 

  • Mauersberger S, Wang HJ, Gaillardin C, Barth G, Nicaud JM (2001) Insertional mutagenesis in the n-alkane-assimilating yeast Yarrowia lipolytica: generation of tagged mutations in genes involved in hydrophobic substrate utilization. J Bacteriol 183:5102–5109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Middelhoven WJ, Scorzetti G, Fell JW (2000) Trichosporon veenhuisii sp. nov., an alkane-assimilating anamorphic basidiomycetous yeast. Int J Syst Evol Microbiol 50:381–387

    Article  CAS  PubMed  Google Scholar 

  • Moreira D, López-García P (2017) Evolution: king-size plastid genomes in a new red algal clade. Curr Biol 27:R651–R653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moustafa AM (2016) Bioremediation of oil spill in kingdom of Saudi Arabia by using fungi isolated from polluted soils. Int J Curr Microbiol Appl Sci 5:680–691

    Article  CAS  Google Scholar 

  • Mueller JG, Cerniglia CE, Pritchard PH (1996) Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons. In: Crawford RL, Crawford DL (eds) Bioremediation. Cambridge University Press, Cambridge, pp 125–194

    Chapter  Google Scholar 

  • Mycobank (2018) http://www.mycobank.org/DefaultPage.aspx

  • NCBI Taxonomy Homepage (2018) http://www.ncbi.nlm.nih.gov/Taxonomy/

  • Neihof RA (1988) Microbes in fuel; an overview with a naval perspective. In: Chesnau HL, Dorris M (eds) Distillate fuel: contamination, storage and handling ASTM. STP 1005. American Society for Testing and Materials, Philadelphia, pp 6–14

    Chapter  Google Scholar 

  • Nelson DR (2017) Cytochrome P450 diversity in the tree of life. Biochim Biophys Acta 1866:141–154

    Article  CAS  PubMed Central  Google Scholar 

  • Novotny C, Erbanova P, Cajthaml T, Rothschild N, Dosoretz C, Sasek V (2000) Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Appl Microbiol Biotechnol 54:850–853

    Article  CAS  PubMed  Google Scholar 

  • Oudot J, Dupont J, Haloui S, Roquebert MF (1993) Biodegradation potential of hydrocarbon-assimilating tropical fungi. Soil Biol Biochem 25:1167–1173

    Article  CAS  Google Scholar 

  • Pan F, Yang Q, Zhang Y, Zhang S, Yang M (2004) Biodegradation of polycyclic aromatic hydrocarbons by Pichia anomala. Biotechnol Lett 26:803–806

    Article  CAS  PubMed  Google Scholar 

  • Parker DS, Kaiser RI (2017) On the formation of nitrogen-substituted polycyclic aromatic hydrocarbons (NPAHs) in circumstellar and interstellar environments. Chem Soc Rev 46:452–463

    Article  CAS  PubMed  Google Scholar 

  • Pickard MA, Roman R, Tinoco R, Vazquez-Duhalt R (1999) Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260-laccase. Appl Environ Microbiol 65:3805–3809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Potin O, Rafin C, Veignie E (2004) Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by filamentous fungi isolated from the soil. Int Biodeter Biodegr 54:45–52

    Article  CAS  Google Scholar 

  • Prenafeta-Boldú FX, Andrea KU, Luykx DM, Heidrun AN, van Groenestijn JW (2001) Isolation and characterisation of fungi growing on volatile aromatic hydrocarbons as their sole carbon and energy source. Mycol Res 105:477–484

    Google Scholar 

  • Prenafeta-Boldú FX, De Hoog GS, Summerbell RC (2018) Fungal communities in hydrocarbon degradation. In: TJ McGenity (ed) Microbial communities utilizing hydrocarbons and lipids. Handbook of hydrocarbon and lipid microbiology. Springer, Cham. https://doi.org/10.1007/978-3-319-60063-5_8-2

  • Prince RC, Walters CC (2016) Biodegradation of oil and its implications for source identification. In: Stout SA, Wang Z (eds) Standard handbook oil spill environmental forensics, 2nd edn. Academic, Burlington, pp 869–916. 01803

    Chapter  Google Scholar 

  • Prince RC, Amande TJ, McGenity TJ (2018) Prokaryotic hydrocarbon degraders. In: TJ McGenity (ed) Taxonomy, genomics and ecophysiology of hydrocarbon-degrading microbes. Handbook of hydrocarbon and lipid microbiology. Springer, Cham. https://doi.org/10.1007/978-3-319-60053-6_15-1

  • Rafin C, Veignie E (2018) Hormoconis resinae, the kerosene fungus. In: TJ McGenity (ed) Taxonomy, genomics and ecophysiology of hydrocarbon-degrading microbes. Handbook of hydrocarbon and lipid microbiology. Springer, Cham. https://doi.org/10.1007/978-3-319-60053-6_3-1

  • Ravelet C, Krivobok S, Sage L, Steiman R (1999) Biodegradation of pyrene by sediment fungi. Chemosphere 40:557–563

    Article  Google Scholar 

  • Rodriguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Loffelhardt W, Bohnert HJ, Philippe H, Lang BF (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol 15:1325–1330

    Article  CAS  PubMed  Google Scholar 

  • Sack U, Heinze TM, Deck J, Cerniglia CE, Martens R, Zadrazil F, Fritsche W (1997) Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi. Appl Environ Microbiol 10:3919–3925

    Google Scholar 

  • Seifert KA, Hughes SJ, Boulay H, Louis-Seize G (2007) Taxonomy, nomenclature and phylogeny of three cladosporium-like hyphomycetes, Sorocybe resinae, Seifertia azaleae and the Hormoconis anamorph of Amorphotheca resinae. Stud Mycol 58:235–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shenoy BD, Jeewon R, Hyde KD (2007) Impact of DNA sequence-data on the taxonomy of anamorphic fungi. Fungal Divers 26:1–54

    Google Scholar 

  • Silva IS, Grossman M, Durrant LR (2009) Degradation of polycyclic aromatic hydrocarbons (2–7 rings) under microaerobic and very-low-oxygen conditions by soil fungi. Int Biodeter Biodegr 63:244–229

    Google Scholar 

  • Snellman EA, Collins RP, Cooke JC (1988) Utilization of fuel oils by fungi isolated from oceanic tar balls. Lett Appl Microbiol 6:105–107

    Article  Google Scholar 

  • Spatafora JW, Aime MC, Grigoriev IV, Martin F, Stajich JE, Blackwell M (2017) The fungal tree of life: from molecular systematics to genome-scale phylogenies. In: Heitman J, Howlett BJ, Crous PW, Stukenbrock EH, James TY, Gow NAR (eds) The fungal kingdom. ASM Press, Washington, DC. https://doi.org/10.1128/microbiolspec.FUNK-0053-2016

    Chapter  Google Scholar 

  • Steffen KT, Hatakka A, Hofrichter M (2002) Removal and mineralization of polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 60:212–217

    Article  CAS  PubMed  Google Scholar 

  • Sutherland JB, Cross EL, Heinze TM, Freeman JP, Moody JD (2005) Fungal biotransformation of benzo[f]quinoline, benzo[h]quinoline, and phenanthridine. Appl Microbiol Biotechnol 67:405–411

    Article  CAS  PubMed  Google Scholar 

  • Swift ST (1988) Identification and control of microbial growth in fuel handling systems. In: Chesnau HL, Dorris M (eds) Distillate fuel: contamination, storage and handling. ASTM STP 1005. American Society for Testing and Materials, Philadelphia, pp 15–26

    Chapter  Google Scholar 

  • Thompson H, Angelova A, Bowler B, Jones M, Gutierrez T (2017) Enhanced crude oil biodegradative potential of natural phytoplankton-associated hydrocarbonoclastic bacteria. Environ Microbiol 19:2843–2861

    Article  CAS  PubMed  Google Scholar 

  • Tian LS, Dai CC, Zhao YT, Zhao M, Yong YH, Wang XX (2007) The degradation of phenanthrene by endophytic fungi Phomopsis sp. single and co-cultured with rice. China Environ Sci Chin Ed 27:757–762

    CAS  Google Scholar 

  • Todd SJ, Cain RB, Schmidt S (2002) Biotransformation of naphthalene and diaryl ethers by green microalgae. Biodegradation 13:229–238

    Article  CAS  PubMed  Google Scholar 

  • Valentín L, Feijoo G, Moreira MT, Lema JM (2006) Biodegradation of polycyclic aromatic hydrocarbons in forest and salt marsh soils by white-rot fungi. Int Biodeter Biodegr 58:15–21

    Article  CAS  Google Scholar 

  • Valentine DL, Reddy CM (2015) Latent hydrocarbons from cyanobacteria. Proc Natl Acad Sci USA 112:13434–13435

    Article  CAS  PubMed  Google Scholar 

  • Vandenbroucke M, Largeau C (2007) Kerogen origin, evolution and structure. Org Geochem 38:719–833

    Article  CAS  Google Scholar 

  • Walker JD, Colwell RR, Petrakis L (1975) Degradation of petroleum by an alga, Prototheca zopfii. Appl Environ Microbiol 30:79–81

    CAS  Google Scholar 

  • Waller RF, McFadden GI (2005) The apicoplast: a review of the derived plastid of apicomplexan parasites. Curr Issues Mol Biol 7:57–80

    PubMed  Google Scholar 

  • Wang C, Liu H, Li J, Sun H (2014a) Degradation of PAHs in soil by Lasiodiplodia theobromae and enhanced benzo[a]pyrene degradation by the addition of Tween-80. Environ Sci Pollut Res 21:10614–10625

    Article  CAS  Google Scholar 

  • Wang Z, Yang C, Parrott JL, Frank RA, Yang Z, Brown CE, Hollebone BP, Landriault M, Fieldhouse B, Liu Y, Zhang G (2014b) Forensic source differentiation of petrogenic, pyrogenic, and biogenic hydrocarbons in Canadian oil sands environmental samples. J Hazard Mater 271:166–177

    Article  CAS  PubMed  Google Scholar 

  • Warshawsky D, Cody T, Radike M, Reilman R, Schumann B, LaDow K, Schneider J (1995) Biotransformation of benzo[a]pyrene and other polycyclic aromatic hydrocarbons and heterocyclic analogs by several green algae and other algal species under gold and white light. Chem Biol Interact 97:131–148

    Article  CAS  PubMed  Google Scholar 

  • Warshawsky D, LaDow K, Schneider J (2007) Enhanced degradation of benzo[a]pyrene by Mycobacterium sp. in conjunction with green alga. Chemosphere 69:500–506

    Article  CAS  PubMed  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolff G, Plante I, Lang BF, Kück U, Burger G (1994) Complete sequence of the mitochondrial DNA of the chlorophyte alga Prototheca wickerhamii: gene content and genome organization. J Mol Biol 237:75–86

    Article  CAS  PubMed  Google Scholar 

  • World Register of Marine Species (2017) http://www.marinespecies.org/index.php

  • Wunch KG, Feibelman T, Bennett JW (1997) Screening for fungi capable of removing benzo[a]pyrene in culture. Appl Microbiol Biotechnol 47:620–624

    Article  CAS  Google Scholar 

  • Yanto DH, Tachibana S (2013) Biodegradation of petroleum hydrocarbons by a newly isolated Pestalotiopsis sp. NG007. Int Biodeter Biodegr 85:438–450

    Article  CAS  Google Scholar 

  • Yanto DH, Tachibana S (2014) Potential of fungal co-culturing for accelerated biodegradation of petroleum hydrocarbons in soil. J Hazard Mater 278:454–463

    Article  CAS  PubMed  Google Scholar 

  • Yemashova NA, Murygina VP, Zhukov DV, Zakharyantz AA, Gladchenko MA, Appanna V, Kalyuzhnyi SV (2007) Biodeterioration of crude oil and oil derived products: a review. Rev Environ Sci Bio/Technol 6:315–337

    Google Scholar 

  • Zinjarde SS, Pant AA (2002) Hydrocarbon degraders from tropical marine environments. Mar Pollut Bull 44:118–121

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger C. Prince .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Prince, R.C. (2019). Eukaryotic Hydrocarbon Degraders. In: McGenity, T. (eds) Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-030-14796-9_16

Download citation

Publish with us

Policies and ethics