Skip to main content

AIM and Brain Tumors

  • Living reference work entry
  • First Online:
Artificial Intelligence in Medicine
  • 78 Accesses

Abstract

Brain tumors are among the deadliest human cancers, and despite decades of intensive research the survival for many types of malignant primary brain tumors has not improved significantly. Since we continuously generate enormous amounts of clinical data of various modalities that help clinicians not only diagnose brain tumors, but also monitor, quantify, and assess the treatment process, implementing data-driven approaches to analyze such complex data automatically is becoming extremely important. In this chapter, we review artificial intelligence (Al)-powered approaches for this task, and discuss how AI can bring value into the clinical setting through automating tedious data analysis tasks, and extracting information from medical data that may directly affect the treatment pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Abdalla HEM, Esmail MY. Brain tumor detection by using artificial neural network. In: Proceedings of ICCCEEE; 2018. p. 1–6.

    Google Scholar 

  2. Agarwal M, Mahajan R. Medical images contrast enhancement using quad weighted histogram equalization with adaptive GAMA correction and homomorphic filtering. Procedia Comput Sci. 2017;115:509–17.

    Article  Google Scholar 

  3. Aldape K, Brindle KM, Chesler L, Chopra R, Gajjar A, Gilbert MR, Gottardo N, Gutmann DH, Hargrave D, Holland EC, Jones DTW, Joyce JA, Kearns P, Kieran MW, Mellinghoff IK, Merchant M, Pfister SM, Pollard SM, Ramaswamy V, Rich JN, Robinson GW, Rowitch DH, Sampson JH, Taylor MD, Workman P, Gilbertson RJ. Challenges to curing primary brain tumours. Nat Rev Clin Oncol. 2019;16(8):509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aljabar P, Heckemann R, Hammers A, Hajnal J, Rueckert D. Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. NeuroImage. 2009;46(3):726–38.

    Article  CAS  PubMed  Google Scholar 

  5. Ansari MA, Mehrotra R, Agrawal R. Detection and classification of brain tumor in MRI images using wavelet transform and support vector machine. J Interdiscip Math. 2020;23(5):955–66.

    Article  Google Scholar 

  6. Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby J, Freymann J, Farahani K, Davatzikos C. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat Sci Data. 2017a;4:1–13. https://doi.org/10.1038/sdata.2017.117.

    Article  Google Scholar 

  7. Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby JS, Freymann JB, Farahani K, Davatzikos C. Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. 2017b. https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q.

  8. Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby JS, Freymann JB, Farahani K, Davatzikos C. Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. 2017c. https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF.

  9. Bakas S, Reyes M, Jakab A, Bauer S, Remper M, Crimi A, Shinohara RT, Berger C, Ha SM, Rozycki M, Prastawa M, Alberts E, Lipková J, Freymann JB, Kirby JS, Bilello M, et al. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. CoRR abs/1811.02629. 2018. http://arxiv.org/abs/1811.02629

  10. Basheera S, Ram MSS. Classification of brain tumors using deep features extracted using CNN. J Phys Conf Ser. 2019;1172:012016.

    Article  Google Scholar 

  11. Bauer S, Seiler C, Bardyn T, Buechler P, Reyes M. Atlas-based segmentation of brain tumor images using a Markov Random Field-based tumor growth model and non-rigid registration. In: Proceedings of IEEE EMBC; 2010. p. 4080–3.

    Google Scholar 

  12. Ben Rabeh A, Benzarti F, Amiri H. Segmentation of brain MRI using active contour model. Int J Imaging Syst Technol. 2017;27(1):3–11.

    Article  Google Scholar 

  13. Castro E, Cardoso JS, Pereira JC. Elastic deformations for data augmentation in breast cancer mass detection. In: Proceedings of IEEE BHI; 2018. p. 230–4.

    Google Scholar 

  14. Chahal PK, Pandey S, Goel S. A survey on brain tumor detection techniques for MR images. Multimed Tools Appl. 2020;79(29):21771–814.

    Article  Google Scholar 

  15. Chander A, Chatterjee A, Siarry P. A new social and momentum component adaptive PSO algorithm for image segmentation. Expert Syst Appl. 2011;38(5):4998–5004.

    Article  Google Scholar 

  16. Chang K, Beers AL, Bai HX, Brown JM, Ly KI, Li X, Senders JT, Kavouridis VK, Boaro A, Su C, Bi WL, Rapalino O, Liao W, Shen Q, Zhou H, Xiao B, Wang Y, Zhang PJ, Pinho MC, Wen PY, Batchelor TT, Boxerman JL, Arnaout O, Rosen BR, Gerstner ER, Yang L, Huang RY, Kalpathy-Cramer J. Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement. Neuro-Oncology. 2019;21(11):1412–22.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cheng J, Huang W, Cao S, Yang R, Yang W, Yun Z, Wang Z, Feng Q. Enhanced performance of brain tumor classification via tumor region augmentation and partition. PLoS One. 2015;10(10):1–13.

    Article  Google Scholar 

  18. Chukwueke UN, Wen PY. Use of the response assessment in neuro-oncology (RANO) criteria in clinical trials and clinical practice. CNS Oncol. 2019;8(1):CNS28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dai L, Li T, Shu H, Zhong L, Shen H, Zhu H. Automatic brain tumor segmentation with domain adaptation. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T, editors. Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Cham: Springer International Publishing; 2019. p. 380–92.

    Chapter  Google Scholar 

  20. Deepak S, Ameer P. Brain tumor classification using deep CNN features via transfer learning. Comput Biol Med. 2019;111:103345.

    Article  CAS  PubMed  Google Scholar 

  21. Deng W, Xiao W, Deng H, Liu J. MRI brain tumor segmentation with region growing method based on the gradients and variances along and inside of the boundary curve. In: Proceedings of ICBEI, vol. 1; 2010. p. 393–6.

    Google Scholar 

  22. Despotović I, Goossens B, Philips W. MRI segmentation of the human brain: challenges, methods, and applications. Computat Math Methods Med. 2015;2015:450341.

    Google Scholar 

  23. Dickie DA, Shenkin SD, Anblagan D, Lee J, Blesa Cabez M, Rodriguez D, Boardman JP, Waldman A, Job DE, Wardlaw JM. Whole brain magnetic resonance image atlases: a systematic review of existing atlases and caveats for use in population imaging. Front Neuroinform. 2017;11:1.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.

    Article  CAS  PubMed  Google Scholar 

  25. Fan X, Yang J, Zheng Y, Cheng L, Zhu Y. A novel unsupervised segmentation method for MR brain images based on fuzzy methods. In: Liu Y, Jiang T, Zhang C, editors. Proceedings of CVBIA. Berlin: Springer; 2005. p. 160–9.

    Google Scholar 

  26. Fang L, He H. Three pathways U-Net for brain tumor segmentation. In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries – 4th international workshop, BrainLes 2018, held in conjunction with MICCAI 2018, Granada, Spain, pre-conference proceedings; 2018. p. 119–26.

    Google Scholar 

  27. Fenster A, Chiu B. Evaluation of segmentation algorithms for medical imaging. In: Proceedings of IEEE EMB; 2005. p. 7186–9.

    Google Scholar 

  28. Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J, Greenspan H. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing. 2018;321:321–31.

    Article  Google Scholar 

  29. Ge C, Gu IYH, Jakola AS, Yang J. Deep semi-supervised learning for brain tumor classification. BMC Med Imaging. 2020;20(1):87.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Geremia E, Clatz O, Menze BH, Konukoglu E, Criminisi A, Ayache N. Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images. NeuroImage. 2011;57(2):378–90.

    Article  PubMed  Google Scholar 

  31. Ghafoorian M, Mehrtash A, Kapur T, Karssemeijer N, Marchiori E, Pesteie M, Guttmann CRG, de Leeuw FE, Tempany CM, van Ginneken B, Fedorov A, Abolmaesumi P, Platel B, Wells W. Transfer learning for domain adaptation in MRI: application in brain lesion segmentation. In: Proceedings of MICCAI; 2017. p. 516–24.

    Google Scholar 

  32. Gholami A, Subramanian S, Shenoy V, Himthani N, Yue X, Zhao S, Jin PH, Biros G, Keutzer K. A novel domain adaptation framework for medical image segmentation. In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries – 4th international workshop, BrainLes 2018, held in conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, revised selected papers, part II; 2018. p. 289–98.

    Google Scholar 

  33. Gu S, Meng X, Sciurba FC, Ma H, Leader JK, Kaminski N, Gur D, Pu J. Bidirectional elastic image registration using B-spline affine transformation. Comput Med Imaging Graph. 2014;38(4):306–14.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Guo C, Niu K, Luo Y, Shi L, Wang Z, Zhao M, Wang D, Zhu W, Zhang H, Sun L. Intra-scanner and inter-scanner reproducibility of automatic white matter hyperintensities quantification. Front Neurosci. 2019;13:679.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hallgren KA. Computing inter-rater reliability for observational data: an overview and tutorial. Tutor Quant Methods Psychol. 2012;8(1):23–34.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hamid MAA, Khan NA. Investigation and classification of MRI brain tumors using feature extraction technique. J Med Biol Eng. 2020;40(2):307–17.

    Article  Google Scholar 

  37. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin PM, Larochelle H. Brain tumor segmentation with deep neural networks. Med Image Anal. 2017;35:18–31.

    Article  PubMed  Google Scholar 

  38. Huang Z, Cohen FS. Affine-invariant B-spline moments for curve matching. IEEE Trans Image Process. 1996;5(10):1473–80.

    Article  CAS  PubMed  Google Scholar 

  39. Huttenlocher DP, Klanderman GA, Rucklidge WJ. Comparing images using the Hausdorff distance. IEEE Trans Pattern Anal Mach Intell. 1993;15(9):850–63.

    Article  Google Scholar 

  40. Ilhan U, Ilhan A. Brain tumor segmentation based on a new threshold approach. Procedia Comput Sci. 2017;120:580–7.

    Article  Google Scholar 

  41. Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH. No newnet. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T, editors. Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Cham: Springer International Publishing; 2019. p. 234–44.

    Chapter  Google Scholar 

  42. Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2020;18:203.

    Article  PubMed  CAS  Google Scholar 

  43. Kamnitsas K, Bai W, Ferrante E, McDonagh SG, Sinclair M, Pawlowski N, Rajchl M, Lee M, Kainz B, Rueckert D, Glocker B. Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injury. Springer; 2018. p. 450–62.

    Chapter  Google Scholar 

  44. Khalid N, Ibrahim S, Haniff P. MRI brain abnormalities segmentation using k-NN. Int J Comput Sci Eng. 2011;3(2):980–90.

    Google Scholar 

  45. Khan MA, Ashraf I, Alhaisoni M, Damaeviius R, Scherer R, Rehman A, Bukhari SAC. Multimodal brain tumor classification using deep learning and robust feature selection: a machine learning application for radiologists. Diagnostics. 2020;10(8):565.

    Article  PubMed Central  Google Scholar 

  46. Krawczyk B. Learning from imbalanced data: open challenges and future directions. Progr Artif Intell. 2016;5(4):221–32.

    Article  Google Scholar 

  47. Kumar S, Dabas C, Godara S. Classification of brain MRI tumor images: a hybrid approach. Procedia Comput Sci. 2017;122:510–7.

    Article  Google Scholar 

  48. Kvålseth TO. Measurement of interobserver disagreement: correction of Cohen’s kappa for negative values. J Probab Stat. 2015;2015:751803.

    Article  Google Scholar 

  49. Ladgham A, Torkhani G, Sakly A, Mtibaa A. Modified support vector machines for MR brain images recognition. In: Proceedings of CoDIT; 2013. p. 032–5.

    Google Scholar 

  50. Langlotz CP, Allen B, Erickson BJ, Kalpathy-Cramer J, Bigelow K, Cook TS, Flanders AE, Lungren MP, Mendelson DS, Rudie JD, Wang G, Kandarpa K. A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/The Academy Workshop. Radiology. 2019;291(3):781–91.

    Article  PubMed  Google Scholar 

  51. Lin NU, Lee EQ, Aoyama H, Barani IJ, Barboriak DP, Baumert BG, Bendszus M, Brown PD, Camidge DR, Chang SM, Dancey J, de Vries EGE, Gaspar LE, Harris GJ, Hodi FS, Kalkanis SN, Linskey ME, Macdonald DR, Margolin K, Mehta MP, Schiff D, Soffietti R, Suh JH, van den Bent MJ, Vogelbaum MA, Wen PY. Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol. 2015;16(6):e270–8.

    Article  PubMed  Google Scholar 

  52. Liu J, Li M, Wang J, Wu F, Liu T, Pan Y. A survey of MRI-based brain tumor segmentation methods. Tsinghua Sci Technol. 2014;19(6):578–95.

    Article  CAS  Google Scholar 

  53. Liu Y, Stojadinovic S, Hrycushko B, Wardak Z, Lau S, Lu W, Yan Y, Jiang SB, Zhen X, Timmerman R, Nedzi L, Gu X. A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery. PLoS One. 2017;12(10):1–17.

    Article  Google Scholar 

  54. Lorenzo PR, Nalepa J, Bobek-Billewicz B, Wawrzyniak P, Mrukwa G, Kawulok M, Ulrych P, Hayball MP. Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks. Comput Methods Prog Biomed. 2019;176:135–48.

    Article  Google Scholar 

  55. Macdonald DR, Cascino TL, Schold SC, Cairncross JG. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol. 1990;8(7):1277–80.

    Article  CAS  PubMed  Google Scholar 

  56. Marcinkiewicz M, Nalepa J, Lorenzo PR, Dudzik W, Mrukwa G. Segmenting brain tumors from MRI using cascaded multi-modal U-Nets. In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries – 4th international workshop, BrainLes 2018, held in conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, revised selected papers, part II; 2018. p. 13–24.

    Google Scholar 

  57. Mehrotra R, Ansari M, Agrawal R, Anand R. A transfer learning approach for AI-based classification of brain tumors. Mach Learn Appl. 2020;2:100003.

    Google Scholar 

  58. Mei PA, de Carvalho Carneiro C, Fraser SJ, Min LL, Reis F. Analysis of neoplastic lesions in magnetic resonance imaging using self-organizing maps. J Neurol Sci. 2015;359(1–2):78–83.

    Article  PubMed  Google Scholar 

  59. Meier R, Knecht U, Loosli T, Bauer S, Slotboom J, Wiest R, Reyes M. Clinical evaluation of a fully-automatic segmentation method for longitudinal brain tumor volumetry. Sci Rep. 2016;6(1):23376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer. 1981;47(1):207–14.

    Article  CAS  PubMed  Google Scholar 

  61. Moeskops P, Viergever MA, Mendrik AM, de Vries LS, Benders MJNL, Isgum I. Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans Med Imaging. 2016;35(5):1252–61.

    Article  PubMed  Google Scholar 

  62. Nalepa J, Marcinkiewicz M, Kawulok M. Data augmentation for brain-tumor segmentation: a review. Front Comput Neurosci. 2019a;13:83.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nalepa J, Mrukwa G, Piechaczek S, Lorenzo PR, Marcinkiewicz M, Bobek-Billewicz B, Wawrzyniak P, Ulrych P, Szymanek J, Cwiek M, Dudzik W, Kawulok M, Hayball MP. Data augmentation via image registration. In: Proceedings of IEEE ICIP; 2019b. p. 4250–4.

    Google Scholar 

  64. Nalepa J, Myller M, Kawulok M. Transfer learning for segmenting dimensionally reduced hyperspectral images. IEEE Geosci Remote Sens Lett. 2020a;17(7):1228–32.

    Article  Google Scholar 

  65. Nalepa J, Ribalta Lorenzo P, Marcinkiewicz M, Bobek-Billewicz B, Wawrzyniak P, Walczak M, Kawulok M, Dudzik W, Kotowski K, Burda I, Machura B, Mrukwa G, Ulrych P, Hayball MP. Fully-automated deep learning-powered system for DCE-MRI analysis of brain tumors. Artif Intell Med. 2020b;102:101769.

    Article  PubMed  Google Scholar 

  66. Park MTM, Pipitone J, Baer LH, Winterburn JL, Shah Y, Chavez S, Schira MM, Lobaugh NJ, Lerch JP, Voineskos AN, Chakravarty MM. Derivation of high-resolution MRI atlases of the human cerebellum at 3T and segmentation using multiple automatically generated templates. NeuroImage. 2014;95:217–31.

    Article  PubMed  Google Scholar 

  67. Park JE, Park SY, Kim HJ, Kim HS. Reproducibility and generalizability in radiomics modeling: possible strategies in radiologic and statistical perspectives. Korean J Radiol. 2019;20(7):1124–37.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pesapane F, Codari M, Sardanelli F. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp. 2018;2(1):35.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Pinto A, Pereira S, Correia H, Oliveira J, Rasteiro DMLD, Silva CA. Brain tumour segmentation based on extremely randomized forest with high-level features. In: Proceedings of IEEE EMBC; 2015. p. 3037–40.

    Google Scholar 

  70. Pipitone J, Park MTM, Winterburn J, Lett TA, Lerch JP, Pruessner JC, Lepage M, Voineskos AN, Chakravarty MM. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. NeuroImage. 2014;101:494–512.

    Article  PubMed  Google Scholar 

  71. Potvin O, Khademi A, Chouinard I, Farokhian F, Dieumegarde L, Leppert I, Hoge R, Rajah MN, Bellec P, Duchesne S, et al. Measurement variability following MRI system upgrade. Front Neurol. 2019;10:726.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Prastawa M, Bullitt E, Gerig G. Synthetic ground truth for validation of brain tumor MRI segmentation. In: Duncan JS, Gerig G, editors. Medical image computing and computer-assisted intervention – MICCAI 2005. Berlin/Heidelberg: Springer Berlin Heidelberg; 2005. p. 26–33.

    Chapter  Google Scholar 

  73. Ranjith G, Parvathy R, Vikas V, Chandrasekharan K, Nair S. Machine learning methods for the classification of gliomas: initial results using features extracted from MR spectroscopy. Neuroradiol J. 2015;28(2):106–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Renard F, Guedria S, Palma ND, Vuillerme N. Variability and reproducibility in deep learning for medical image segmentation. Sci Rep. 2020;10(1):13724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sahnoun M, Kallel F, Dammak M, Mhiri C, Ben Mahfoudh K, Ben Hamida A. A comparative study of MRI contrast enhancement techniques based on traditional gamma correction and adaptive gamma correction: case of multiple sclerosis pathology. In: Proceedings of IEEE ATSIP; 2018. p. 1–7.

    Google Scholar 

  76. Saman S, Jamjala Narayanan S. Survey on brain tumor segmentation and feature extraction of MR images. Int J Multimedia Inf Retr. 2019;8(2):79–99.

    Article  Google Scholar 

  77. Segato A, Marzullo A, Calimeri F, De Momi E. Artificial intelligence for brain diseases: a systematic review. APL Bioeng. 2020;4(4):041503.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sheller MJ, Reina GA, Edwards B, Martin J, Bakas S. Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T, editors. Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Cham: Springer International Publishing; 2019. p. 92–104.

    Chapter  Google Scholar 

  79. Sheller MJ, Edwards B, Reina GA, Martin J, Pati S, Kotrotsou A, Milchenko M, Xu W, Marcus D, Colen RR, Bakas S. Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci Rep. 2020;10(1):12598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Shen Y, Gao M. Brain tumor segmentation on MRI with missing modalities. CoRR abs/1904.07290. 2019.

    Google Scholar 

  81. Soltaninejad M, Yang G, Lambrou T, Allinson N, Jones TL, Barrick TR, Howe FA, Ye X. Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI. Int J Comput Assist Radiol Surg. 2017;12(2):183–203.

    Article  PubMed  Google Scholar 

  82. Steenwijk MD, Pouwels PJ, Daams M, van Dalen JW, Caan MW, Richard E, Barkhof F, Vrenken H. Accurate white matter lesion segmentation by k nearest neighbor classification with tissue type priors (kNN-TTPs). NeuroImage: Clin. 2013;3:462–9.

    Article  Google Scholar 

  83. Stonnington CM, Tan G, Klppel S, Chu C, Draganski B, Jack CR, Chen K, Ashburner J, Frackowiak RS. Interpreting scan data acquired from multiple scanners: a study with Alzheimer’s disease. NeuroImage. 2008;39(3):1180–5.

    Article  PubMed  Google Scholar 

  84. Sultan HH, Salem NM, Al-Atabany W. Multi-classification of brain tumor images using deep neural network. IEEE Access. 2019;7:69215–25.

    Article  Google Scholar 

  85. Taha AA, Hanbury A. Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging. 2015;15(1):29.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Taherdangkoo M, Bagheri MH, Yazdi M, Andriole KP. An effective method for segmentation of MR brain images using the ant colony optimization algorithm. J Digit Imaging. 2013;26(6):1116–23.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Tarasiewicz T, Nalepa J, Kawulok M. Skinny: a lightweight U-Net for skin detection and segmentation. In: Proceedings of IEEE ICIP; 2020. p. 2386–90.

    Google Scholar 

  88. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG. New guidelines to evaluate the response to treatment in solid tumors. JNCI: J Natl Cancer Inst. 2000;92(3):205–16.

    Article  CAS  PubMed  Google Scholar 

  89. Villanueva-Meyer JE, Mabray MC, Cha S. Current clinical brain tumor imaging. Neurosurgery. 2017;81(3):397–415.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Visser M, Mller D, van Duijn R, Smits M, Verburg N, Hendriks E, Nabuurs R, Bot J, Eijgelaar R, Witte M, van Herk M, Barkhof F, de Witt Hamer P, de Munck J. Inter-rater agreement in glioma segmentations on longitudinal MRI. NeuroImage: Clin. 2019;22:101727.

    Article  CAS  Google Scholar 

  91. Vreeland A, Persons KR, Primo HR, Bishop M, Garriott KM, Doyle MK, Silver E, Brown DM, Bashall C. Considerations for exchanging and sharing medical images for improved collaboration and patient care: HIMSS-SIIM collaborative white paper. J Digit Imaging. 2016;29(5):547–58.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wadhwa A, Bhardwaj A, Verma VS. A review on brain tumor segmentation of MRI images. Magn Reson Imaging. 2019;61:247–59.

    Article  PubMed  Google Scholar 

  93. Waghmare VK, Kolekar MH. Brain tumor classification using deep learning. Singapore: Springer Singapore; 2021. p. 155–75.

    Google Scholar 

  94. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, DeGroot J, Wick W, Gilbert MR, Lassman AB, Tsien C, Mikkelsen T, Wong ET, Chamberlain MC, Stupp R, Lamborn KR, Vogelbaum MA, van den Bent MJ, Chang SM. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28(11):1963–72.

    Article  PubMed  Google Scholar 

  95. Wu W, Chen AYC, Zhao L, Corso JJ. Brain tumor detection and segmentation in a CRF framework with pixel-pairwise affinity and superpixel-level features. Int J Comput Assist Radiol Surg. 2014;9(2):241–53.

    Article  PubMed  Google Scholar 

  96. Zeineldin RA, Karar ME, et al. Deepseg: deep neural network framework for automatic brain tumor segmentation using magnetic resonance FLAIR images. Int J Comput Assist Radiol Surg. 2020;15(6):909–20.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zhao X, Wu Y, Song G, Li Z, Zhang Y, Fan Y. A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. CoRR abs/1702.04528. 2017.

    Google Scholar 

  98. Zhou T, Canu S, Vera P, Ruan S. Brain tumor segmentation with missing modalities via latent multi-source correlation representation. In: Martel AL, Abolmaesumi P, Stoyanov D, Mateus D, Zuluaga MA, Zhou SK, Racoceanu D, Joskowicz L, editors. Medical image computing and computer assisted intervention – MICCAI 2020 – 23rd international conference, Lima, Peru, October 4–8, 2020, proceedings, part IV, Lecture notes in computer science, vol. 12264. Springer; 2020. p. 533–41.

    Google Scholar 

  99. Zhu J, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. CoRR abs/1703.10593. 2017.

    Google Scholar 

  100. Zhuge Y, Krauze AV, Ning H, Cheng JY, Arora BC, Camphausen K, Miller RW. Brain tumor segmentation using holistically nested neural networks in MRI images. Med Phys. 2017;44:5234–43.

    Article  PubMed  Google Scholar 

  101. Zikic D, Glocker B, Konukoglu E, Criminisi A, Demiralp C, Shotton J, Thomas OM, Das T, Jena R, Price SJ. Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Proceedings of MICCAI. Springer; 2012. p. 369–76.

    Google Scholar 

  102. Zou KH, Warfield SK, Bharatha A, Tempany CMC, Kaus MR, Haker SJ, Wells William MR, Jolesz FA, Kikinis R. Statistical validation of image segmentation quality based on a spatial overlap index. Acad Radiol. 2004;11(2):178–89.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This chapter is in memory of Dr. Grzegorz Nalepa, an extraordinary scientist and pediatric hematologist/oncologist at Riley Hospital for Children, Indianapolis, USA, who helped countless patients and their families through the most challenging moments of their lives.

The work was supported by the Silesian University of Technology grant for maintaining and developing research potential, and by Rectors Research and Development Grant 02/080/RGJ20/0003. The author thanks Krzysztof Kotowski for implementing the RANO visualization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Nalepa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nalepa, J. (2021). AIM and Brain Tumors. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-58080-3_284-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58080-3_284-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58080-3

  • Online ISBN: 978-3-030-58080-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics