Skip to main content

Abstract

Nature provides a vast array of biological materials and materials systems which have inspired innovations in novel applications and in new materials developments. These have included natural (animal) armor, flight systems inspired of course by birds, fasteners and attachments, and an array of photonic structures. Microbes producing methane and keratin–rubber composites pose novel systems along with branched biological systems which include trees, lungs, circulatory structures, and the like, which are governed by fractal geometry. The concept of protein factories is revisited in this chapter where virus and bacterial systems can act as protein factories to produce a complex array of drugs and related organic materials and functional systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam R, Fontaine DM, Branchini BR, Maye MM (2012) Designing quantum rods for optimizing energy transfer with firefly luciferase enzymes. Nanoletters 12(6):3251–3256

    Article  Google Scholar 

  • Alderson A, Alderson K (2007) Auxetic materials. J Aerosp Eng 221:565–575

    Google Scholar 

  • Armstrong R, Spiller N (2011) Synthetic biology: living quarters. Nature 607:916–918

    Google Scholar 

  • Arzt E, Gorb S, Spolenck R (2003) Evidence for van der Waals adhesion in gecko setae. Proc Natl Acad Sci U S A 100:10603–10606

    Article  Google Scholar 

  • Autumn K, Grovich N (2008) Gecko adhesion evolutionary nanotechnology. Philos Trans R Soc 366:1575–1590

    Article  Google Scholar 

  • Bar-Cohen Y (ed) (2006) Biomimetics: biologically inspired technologies. Taylor & Francis (CRC Press), Boca Raton

    Google Scholar 

  • Baumgartner W, Fidler F, Weth A, Habbecke M, Jacob P, Butenweg C, Bohme W (2013) Investigating the locomotion of the sandfish in desert sand using NMR-imaging. Plos One 3(10):e 3309

    Article  Google Scholar 

  • Bay A, Cloetens P, Suhonen H, Polvigneron J (2013) Improved light extraction in the bioluminescent lantern of a Photuris firefly (Lampyridae). Optics Express 21(1):764

    Article  Google Scholar 

  • Benyus JM (1997) Biomimicry: innovation inspired by nature. Morrow Publishers, New York

    Google Scholar 

  • Berthe RA, Westhoff G, Blackmann H, Gorb SN (2009) Surface structure and frictional properties of the skin of the Amazon tree boa Corallus hortulanus (Squamata, Boidae). J Comp Physiol A 195(3):311–318

    Article  Google Scholar 

  • Bruet BJF, Song J, Boyle MC, Ortiz C (2008) Materials design principles of ancient fish armour. Nat Mater 7:748–756

    Article  Google Scholar 

  • Burns JN, Lenaghan SC, Zhang M, Stewart CN (2012) Nanoparticle biofabrication using English ivy (Hedra helix). J Nanobiotechnol 10:41–50

    Article  Google Scholar 

  • Chawla KK (1996) Interfaces in metal matrix composites. Compos Interfaces 4(5):287–298

    Article  Google Scholar 

  • Contagal CH, Bachmann MH (2002) Advances in in-vivo bioluminescence imaging of gene expression. Ann Rev Biomed Eng 4:235–260

    Article  Google Scholar 

  • Gather MC, Yun S-H (2011) Cellular lasers. Nat Photon 5:438–441

    Article  Google Scholar 

  • Geim AK, Dubonas SV, Grigoresa IV, Novoselov KS, Zhokos AA, Shapoval SY (2003) Microfabricated adhesive mimicking gecko foot-hair. Nat Mater 2:461–463

    Article  Google Scholar 

  • Gibson LJ, Ashby MF (1982) The mechanics of three-dimensional cellular materials. Proc R Soc Lond A Math Phys Sci 383:43–59

    Article  Google Scholar 

  • Gibson DG, Glass JI, Latigue C, Naskov VN, Chuang RY, Agire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishna Kumar R, Asasad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi Z-O, Segall-Shapiro TH, Calvey CH, Pamar PP, Hutchison CA, Smith HO, Venter JC (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science (published online 20 May 2010).(doi:10.1126/science.1190719

    Google Scholar 

  • Goeddel DV, Kleid DG, Boliver F, Heyneker HC, Yansura DG, Crea R, Hirose T, Kraszewski A, Itakura K, Riggs AD (1979) Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc Natl Acad Sci U S A 76:106–110

    Article  Google Scholar 

  • Greaves G, Greer A, Lakes R, Rouxel T (2011) Poisson’s ratio and modern materials. Nat Mater 10:823–837

    Article  Google Scholar 

  • Grima JN, Cassar RN, Gatt R (2009) On the effect of hydrostatic pressure on the auxetic character of NAT-type silicates. J Non-Cryst Solids 355:1307–1312

    Article  Google Scholar 

  • Havlin S, Buldyrev SV, Goldberger AL, Mantegna RN, Ossadnik SM, Peng C-K, Simons M, Stanley HE (1995) Fractals in biology and medicine. Chaos Solut Fract 6:171–201

    Article  Google Scholar 

  • Hepburn HR, Ball A (1973) On the structure and mechanical properties of beetle shells. J Mater Sci 8:618–623

    Article  Google Scholar 

  • Hergenrother WL, Shultz LL, Lin CJ (2012) Keratin in rubber applications. US patent application number 20120329916

    Google Scholar 

  • Karthaus O (2013) Biomimetics in photonics. CRC Press (Taylor & Francis Group), Boca Raton

    Google Scholar 

  • Kim J-K, Mai Y-W (1998) Engineered interfaces in fiber reinforced composites. Elsevier Sciences, New York

    Google Scholar 

  • Kim J-J, Lee Y, Kim HG, Choi K-J, Kweon H-S, Park S, Jeong K-H (2012) Biologically inspired LED lens from cuticular nanostructures of firefly lantern. Proc Natl Acad Sci USA 109(46):18674–18678

    Article  Google Scholar 

  • Kinoshita S, Yoshioka S, Miyazaki J (2008) Physics of structural colors. Rep Prog Phys 71:1–30

    Article  Google Scholar 

  • Klonowski W, Stepien R, Stepien P (2010) Simple fractal method of assessment of histological images for application in medical diagnostics. Nonlinear Biomed Phys 4:7 (8 p)

    Google Scholar 

  • Lakes R (1987) Foam structures with a negative Poisson’s ratio. Science 235:1038–1040

    Article  Google Scholar 

  • Large M (ed) (2013) Optical biomimetics: materials and applications. Woodhead Publishing, Cambridge, UK

    Google Scholar 

  • Lee H, Lee BP, Messersmith PB (2007) A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448:338–341

    Article  Google Scholar 

  • Lewis SM, Cratsley CK (2008) Flash signal evolution, male choice, and predation in fireflies. Ann Rev Entomol 53:293–321

    Article  Google Scholar 

  • Lin AYM, Brunner R, Chen P-Y, Talke FE, Meyers MA (2009) Underwater adhesion of abalone: the role of van der Waals and capillary forces. Acta Mater I57:4178–4185

    Article  Google Scholar 

  • Macia J, Posas F, Sole RV (2012) Distributed computation: the new wave of synthetic biology devices. Trends Biotechnol 30(6):8 p

    Google Scholar 

  • Mandelbrot BB (1982) The fractal geometry of nature. W.H. Freeman, New York

    Google Scholar 

  • Mandelbrot BB (2012) The fractalist: memoir of a scientific maverick. Pantheon Books/Random House, New York

    Google Scholar 

  • Martines E, Seunarine K, Morgan H, Gadegaard N, Wilkinson CDW, Richle O (2005) Superhydrophobicity and superhydrophilicity of regular nanopatterns. Nano Lett 5:2097–2103

    Article  Google Scholar 

  • McNamara ME, Briggs DEG, Orr PJ, Nuh H, Cao H (2012) The original colors of fossil beetles. Proc Roy Soc B: Biol Sci 279(1731): 1114–1121

    Article  Google Scholar 

  • Meizer B, Steinbrecher T, Seidel R, Kraft O, Schwaiger R, Speck T (2010) The attachment strategy of English ivy: a complex mechanism acting on several hierarchical levels. J R Soc Interfaces 7:1387–1389

    Google Scholar 

  • Meyers MA, Lin AYM, Seki Y, Chen P-Y, Kad BK, Bodde S (2006) Structural biological composites: an overview. JOM 58(7):35–41

    Article  Google Scholar 

  • Parker AR, Lawrence CR (2001) Water capture by a desert beetle. Nature 414:33–34

    Article  Google Scholar 

  • Prawoto Y (2012) Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson’s ratio. Comput Mater Sci 58:140–153

    Article  Google Scholar 

  • Prum RO, Torres R, Kokach C, Williamson S, Goodman SM (1999) Coherent light scattering by nanostructured collagen arrays in the caruncles of the malagasy asities (Eurylaimidae: ares). J Exp Biol 202:3507–3522

    Google Scholar 

  • Ralston E, Swain G (2011) Can biomimicry and bioinspiration provide solutions for fouling control? Mar Technol Soc J 45:216–227

    Article  Google Scholar 

  • Rayneau-Kirkhope D, Mao Y, Farr R (2012) Ultralight fractal structures from hollow tubes. Phys Rev Lett 109:204301

    Article  Google Scholar 

  • Schmitz H, Murtz M, Blackmann H (1997) Infrared detection in a beetle. Nature 386(6627): 773–774

    Article  Google Scholar 

  • Seago AE, Brady P, Vigneron J-P, Shultz TD (2009) Gold bugs and beyond: a review of iridescence and structural color mechanisms in beetles (Coleoptera). J R Soc Interface 6:S165–S184

    Article  Google Scholar 

  • Shimomura M (2010) The new trends in next generation biomimetics material technology: learning from biodiversity. Quart Rev 37:53–75

    Google Scholar 

  • Tsujii K (2009) Superhydrophobicity and superhydrophilicity: mechanism and application. Yuneda Publishing, Tokyo

    Google Scholar 

  • Watanabe K, Hoshino T, Kanda K, Haruyama Y, Matsai S (2005) Fabrication of Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition. J Appl Phys 44:L48–L60

    Article  Google Scholar 

  • Wilson SJ, Hutley MC (1982) The optical properties of moth eye antireflection surfaces. J Mod Opt 29(7):993–1009

    Google Scholar 

  • Yang W, Zhong-Ming L, Shi W, Xie B, Yang W-B (2004) Review on auxetic materials. J Mater Sci 39:3269–3279

    Article  Google Scholar 

  • Youngquist JA, English BE, Scharmer RC, Chow P, Shook SR (1994) Literature review on use of nonwood plant fibers for building materials and panels. U.S. Department of Agriculture, Forest Products Laboratory general technical report FPL-GTR-80

    Google Scholar 

  • Yu J, Chary S, Das S, Tameller J, Pevika NS, Turner KL, Israelachvilli JN (2001) Gecko-inspired dry adhesive for robotic applications. Adv Funct Mater 21(16):3010–3018

    Article  Google Scholar 

  • Yurdumankan B, Raravikar NR, Ajayan PM, Dhinojwala A (2005) Synthetic gecko foot-hairs from multiwall carbon nanotubes. Chem Comm 5(30): 3799-3801

    Google Scholar 

  • Zhao J, Wang A, Campbell P, Green MA (1999) 19.8% efficient honeycomb multicrystalline silicon solar cell with improved light trapping. IEEE Trans Electron Devices 46(10):1978–1983

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence E. Murr .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Murr, L.E. (2015). Biomimetics and Biologically Inspired Materials. In: Handbook of Materials Structures, Properties, Processing and Performance. Springer, Cham. https://doi.org/10.1007/978-3-319-01815-7_30

Download citation

Publish with us

Policies and ethics