Skip to main content

Attitude Determination

  • Living reference work entry
  • First Online:
Encyclopedia of Geodesy
  • 681 Accesses

Definition

Attitude determination . The process of determining the orientation of an object with respect to a reference frame.

Introduction

The characterization of an object’s position in space, be it a vehicle or a measuring instrument, requires the knowledge of both its location and attitude (viz. orientation) with respect to a reference frame.

Attitude determination is a prerequisite for a number of applications that necessitate knowing the orientation in order to execute a task. These include autonomously navigating space, air, sea, and land vehicles, or pointing instruments at desired targets, such in spaceborne and airborne altimetry, satellite laser ranging, radar interferometry, and optical tracking.

The attitude of an object is formally identified by the relative orientation between a frame of coordinates attached to the object and a reference frame (cf. Figure 1). The orientation is described through a set of real-valued variables known as attitude parameters...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Reading

  • Anderson, R., Bilger, H. R., and Stedman, G. E., 1994. Sagnac effect: a century of Earth-rotated interferometers. American Journal of Physics, 62(11), 975–985.

    Article  Google Scholar 

  • Barbour, N. M., 2010. Inertial navigation sensors. DTIC Document. Cambridge, MA: Charles Stark Draper Lab.

    Google Scholar 

  • Diebel, J., 2006. Representing attitude: Euler angles, unit quaternions, and rotation vectors. Technical report, Stanford University.

    Google Scholar 

  • Eulero, L., 1776. Formulae generales pro translatione quacunque corporum rigidorum (General formulas for the translation of arbitrary rigid bodies). Novi Commentarii Academiae Scientiarum Petropolitanae, 20, 189–207.

    Google Scholar 

  • Everitt, F., Parkinson, B., and Kahn, B., 2007. The gravity probe B experiment. Post flight analysis – Final report. Project report: NASA, Stanford University and Lockheed Martin.

    Google Scholar 

  • Fairbank, J. D., Michelson, P. F., and Everitt, C. W., 1988. Near Zero: New Frontiers of Physics, 1st edn. New York: W.H. Freeman, p. 959 pp.

    Google Scholar 

  • Ghodssi, R., and Lin, P., 2011. MEMS Materials and Processes Handbook. Berlin: Springer. 1188 pp.

    Book  Google Scholar 

  • Giorgi, G., Teunissen, P. J. G., Verhagen, S., and Buist, P. J., 2010. Testing a new multivariate GNSS carrier phase attitude determination method for remote sensing platforms. Advances in Space Research, 46(2), 118–129.

    Article  Google Scholar 

  • Golub, G. H., and Van Loan, F. C., 1996. Matrix Computations, 3rd edn. Baltimore, MD: The Johns Hopkins University Press.

    Google Scholar 

  • Goodall, C., Carmichael, S., and Scannell, B., 2013. The battle between MEMS and FOGs for precision guidance. EDN Magazine.

    Google Scholar 

  • Hamilton, W. R., 1844–1850. On Quaternions; or on a new system of imaginaries in Algebra. In David, R. W. (ed.), The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science (3rd Series). xxv-xxxvi, 2000. Taylor & Francis, London

    Google Scholar 

  • Hofmann-Wellenhof, B., Legat, K., and Wieser, M., 2003. Navigation. Principles of Positioning and Guidance. New York: Springer. 420 pp.

    Google Scholar 

  • Klein, F., 1875. Ueber Binäre formen mit linearen transformationen in Sich Selbst. Mathematische Annalen, 9, 183–208.

    Article  Google Scholar 

  • Liebe, C. C., 1995. Star trackers for attitude determination. IEEE AES Systems Magazine, 10(6), 10–16.

    Article  Google Scholar 

  • Rodrigues, O., 1840. Des lois geometriques qui regissent les d´eplacements d’un systeme solide dans l’espace, et la variation des coordonnees provenant de ses d´eplacements consideres independamment des causes qui peuvent les produire. Journal de Mathematiques Pures et Appliquees, 5, 380–440.

    Google Scholar 

  • Shuster, M. D., 1993. A survey of attitude representations. The Journal of the Astronautical Sciences, 41(4), 439–517.

    Google Scholar 

  • Stuelpnagel, J., 1964. On the parameterization of the three-dimensional rotation group. SIAM Review, 6(4), 422–430.

    Article  Google Scholar 

  • Tapley, B. D., and Bettadpur, S., 2004. The gravity recovery and climate experiment: mission overview and early results. Geophysical Research Letters, 31, L09607.

    Article  Google Scholar 

  • Wahba, G., 1965. Problem 65-1: a least squares estimate of satellite attitude. SIAM Review, 7(3), 409.

    Article  Google Scholar 

  • Wertz, J. R., 1978. Spacecraft Attitude Determination and Control. Dordrecht: Kluwer. 858 pp.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Giorgi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Giorgi, G. (2015). Attitude Determination. In: Grafarend, E. (eds) Encyclopedia of Geodesy. Springer, Cham. https://doi.org/10.1007/978-3-319-02370-0_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02370-0_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-02370-0

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics