Skip to main content

Gravity Field of Planetary Bodies

  • Living reference work entry
  • First Online:
Encyclopedia of Geodesy
  • 635 Accesses

Definition

Planetary bodies. Natural massive objects in the solar system, including planets, moons, asteroids, and comets

Introduction

Satellite-based gravity field determination goes back to the very early days of the space age. It is obvious that the Earth attracted the attention first, but already in 1966 efforts in mapping the lunar gravity field have been successful (Akim, 1966). During the last decades of human space activity, gravity field information of numerous objects (mainly planets and moons) of the solar system could be retrieved. This is owing to the fact that gravity investigations are an integral part of mission design. Knowledge about the gravity field is the key to unlock the structure, rotational state, tidal deformation, crustal thickness, and thermal history of a body – just to mention a few geophysical properties (e.g., de Pater and Lissauer, 2010).

The quality of gravity field models varies considerably (cf. Wieczorek, 2007). It depends on the accuracy and type...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Reading

  • Akim, E. L., 1966. Determination of the gravitational field of the Moon from the motion of the artificial lunar satellite “Luna-10”. Doklady Akademii Nauk SSSR, 170, 799–802.

    Google Scholar 

  • Albee, A. L., Arvidson, R. E., Palluconi, F., and Thorpe, T., 2001. Overview of the Mars Global Surveyor mission. Journal of Geophysical Research, 106, 23291–23316, doi:10.1029/2000JE001306.

    Article  Google Scholar 

  • Bell, J., and Mitton, J., 2002. Asteroid Rendezvous – NEAR Shoemaker’s Adventures at Eros. Cambridge: Cambridge University Press. ISBN 9780521813600.

    Google Scholar 

  • Benkhoff, J., van Casteren, J., Hayakawa, H., Fujimoto, M., Laakso, H., Novara, M., Ferri, P., Middleton, H. R., and Ziethe, R., 2010. BepiColombo – comprehensive exploration of Mercury: mission overview and science goals. Planetary and Space Science, 58, 2–20, doi:10.1016/j.pss.2009.09.020.

    Article  Google Scholar 

  • Bruinsma, S., Förste, C., Abrikosov, O., Marty, J.-C., Rio, M.-H., Mulet, S., and Bonvalot, S., 2013. The new ESA satellite-only gravity field model via the direct approach. Geophysical Research Letters, 40, 3607–3612, doi:10.1002/grl.50716.

    Article  Google Scholar 

  • de Pater, I., and Lissauer, J. J., 2010. Planetary Sciences. Cambridge: Cambridge University Press. ISBN 9780521853712.

    Book  Google Scholar 

  • ESA SP-1233, 1999. The Four Candidate Earth Explorer Core Missions – Gravity Field and Steady-State Ocean Circulation Mission. European Space Agency, Report SP-1233(1), Granada.

    Google Scholar 

  • Heiskanen, W. A., and Moritz, H., 1967. Physical Geodesy. San Francisco: W.H. Freeman and Company.

    Google Scholar 

  • Kato, M., Sasaki, S., and Takizawa, Y., 2010. The Kaguya mission overview. Space Science Reviews, 154, 3–19, doi:10.1007/s11214-010-9678-3.

    Article  Google Scholar 

  • Kaula, W. M., 1966. Theory of Satellite Geodesy. Waltham: Blaisdell Publishing Co.

    Google Scholar 

  • Konopliv, A. S., Banerdt, W. B., and Sjogren, W. L., 1999. Venus gravity: 180th degree and order model. Icarus, 139, 3–18, doi:10.1006/icar.1999.6086.

    Article  Google Scholar 

  • Konopliv, A. S., Asmar, S. W., Carranza, E., Sjogren, W. L., and Yuan, D. N., 2001. Recent gravity models as a result of the Lunar Prospector mission. Icarus, 150, 1–18, doi:10.1006/icar.2000.6573.

    Article  Google Scholar 

  • Konopliv, A. S., Asmar, S. W., Folkner, W. M., Karatekin, Ö., Nunes, D. C., Smrekar, S. E., Yoder, C. F., and Zuber, M. T., 2011. Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus, 211, 401–428, doi:10.1016/j.icarus.2010.10.004.

    Article  Google Scholar 

  • Lemoine, F. G., Goossens, S., Sabaka, T. J., Nicholas, J. B., Mazarico, E., Rowlands, D. D., Loomis, B. D., Chinn, D. S., Neumann, G. A., Smith, D. E., and Zuber, M. T., 2014. GRGM900C: a degree 900 lunar gravity model from GRAIL primary and extended mission data. Geophysical Research Letters, 41, 3382–3389, doi:10.1002/2014GL060027.

    Article  Google Scholar 

  • Montenbruck, O., and Gill, E., 2000. Satellite Orbits: Models, Methods and Applications. Berlin/Heidelberg/New York: Springer. ISBN 9783540672807.

    Book  Google Scholar 

  • Reigber, C., Lühr, H., and Schwintzer, P., 2002. CHAMP mission status. Advances in Space Research, 30, 129–134, doi:10.1016/S0273-1177(02)00276-4.

    Article  Google Scholar 

  • Rowlands, D. D., Pavlis, D. E., Lemoine, F. G., Neumann, G. A., and Luthcke, S. B., 1999. The use of laser altimetry in the orbit and attitude determination of Mars Global Surveyor. Geophysical Research Letters, 26, 1191–1194.

    Article  Google Scholar 

  • Smith, D. E., Zuber, M. T., Phillips, R. J., Solomon, S. C., Hauck, S. A., II, Lemoine, F. G., Mazarico, E., Neumann, G. A., Peale, S. J., Jean-Luc Margot, J.-L., Johnson, C. L., Torrence, M. H., Perry, M. E., Rowlands, D. D., Goossens, S., Head, J. W., and Taylor, A. H., 2012. Gravity field and internal structure of Mercury from MESSENGER. Science, 336, 214–217, doi:10.1126/science.l218809.

    Article  Google Scholar 

  • Solomon, S. C., McNutt, R. L., Jr., Gold, R. E., and Domingue, D. L., 2007. MESSENGER mission overview. Space Science Reviews, 131, 3–39, doi:10.1007/sll214-007-9247-6.

    Article  Google Scholar 

  • Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., and Watkins, M. M., 2004. GRACE measurements of mass variability in the Earth system. Science, 305, 503–505, doi:10.1126/science.1099192.

    Article  Google Scholar 

  • Wieczorek, M. A., 2007. Gravity and topography of the terrestrial planets. Treatise on Geophysics, 10, 165–206, doi:10.1016/B978-044452748-6/00156-5.

    Article  Google Scholar 

  • Young, C., 1990. Magellan Venus Explorer’s Guide. NASA/JPL (online access www2.jpl.nasa.gov/magellan/guide.html).

  • Zuber, M. T., Lemoine, F. G., Smith, D. E., Konopliv, A. S., Smrekar, S. E., and Asmar, S. W., 2007. Mars Reconnaissance Orbiter radio science gravity investigation. Journal of Geophysical Research, 112, 7, doi:10.1029/2006JE002833.

    Article  Google Scholar 

  • Zuber, M. T., Smith, D. E., Lehman, D. H., Hoffman, T. L., Asmar, S. W., and Watkins, M. W., 2013. Gravity Recovery and Interior Laboratory (GRAIL): mapping the lunar interior from crust to core. Space Science Reviews, 178, 3–24, doi:10.1007/s11214-012-9952-7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Baur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Baur, O. (2014). Gravity Field of Planetary Bodies. In: Grafarend, E. (eds) Encyclopedia of Geodesy. Springer, Cham. https://doi.org/10.1007/978-3-319-02370-0_46-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02370-0_46-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-02370-0

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics