Skip to main content

Drug Delivery with Porous Silicon

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Porous Silicon

Abstract

Biodegradable porous silicon is under preclinical assessment for a range of drug delivery applications, and in this updated review, data is now available on more than 30 active pharmaceutical ingredients (API). Studies to date on oral, subcutaneous, intravenous, intravitreal, and intratumoral modes of delivery are covered. Sustained delivery of an increasing range of biological actives, like peptides and antibodies, is under evaluation, as are bioavailability enhancements for small hydrophobic APIs. Both the merits and existing challenges of this nanostructured carrier are raised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anglin EJ, Schwartz MP, Ng VP, Perelman LA, Sailor MJ (2004) Engineering the chemistry and nanostructure of porous silicon Fabry-Pérot films for loading and release of a steroid. Langmuir 20(25):11264–11269

    Article  Google Scholar 

  • Araujo F, Shrestha N, Shahbazi M-A, Liu D, Herranz-Blanco B, Mäkilä EM, Salonen JJ, Hirvonen JT, Granja PL, Sarmento B (2015) Microfluidic assembly of a multifunctional tailorable composite system designed for site specific combined oral delivery of peptide-drugs. ACS Nano 9:8291–8302

    Article  Google Scholar 

  • Bao Z, Weatherspoon MR, Shian S, Cai Y, Graham PD, Allan SM, Ahmad G, Dickerson MB, Church BC, Kang Z, Abernathy Iii HW, Summers CJ, Liu M, Sandhage KH (2007) Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 446(7132):172–175 . http://www.nature.com/nature/journal/v446/n7132/suppinfo/nature05570_S1.html

    Article  Google Scholar 

  • Barnes TJ, Prestidge CA (2015) Recent advances in porous silicon-based therapeutic delivery. Ther Deliv 6(2):97–100. doi:10.4155/tde.14.112

    Article  Google Scholar 

  • Batchelor L, Loni A, Canham LT, Hasan M, Coffer JL (2012) Manufacture of mesoporous silicon from living plants and agricultural waste: an environmentally friendly and scalable process. SILICON 4(4):259–266. doi:10.1007/s12633-012-9129-8

    Article  Google Scholar 

  • Bayliss SC, Heald R, Fletcher DI, Buckberry LD (1999) The culture of mammalian cells on nanostructured silicon. Adv Mater 11(4):318–321

    Article  Google Scholar 

  • Behray M, Webster CA, Pereira S, Ghosh P, Krishnamurthy S, Al-Jamal WT, Chao YM (2016) Synthesis of diagnostic silicon nanoparticles for targeted delivery of thiourea to epidermal growth factor receptor-expressing cancer cells. ACS Appl Mater Interfaces 8(14):8908–8917. doi:10.1021/acsami.5b12283

    Article  Google Scholar 

  • Bimbo LM, Sarparanta M, Santos HA, Airaksinen AJ, Makila E, Laaksonen T, Peltonen L, Lehto VP, Hirvonen J, Salonen J (2010) Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. ACS Nano 4(6):3023–3032. doi:10.1021/nn901657w

    Article  Google Scholar 

  • Bimbo LM, Makila E, Laaksonen T, Lehto VP, Salonen J, Hirvonen J, Santos HA (2011) Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. Biomaterials 32(10):2625–2633. doi:10.1016/j.biomaterials.2010.12.011

    Article  Google Scholar 

  • Brayden DJ (2003) Controlled release technologies for drug delivery. Drug Discov Today 8:976–978

    Article  Google Scholar 

  • Canham LT (1995) Bioactive silicon structure fabrication through nanoetching techniques. Adv Mater 7(12):1033–1037

    Article  Google Scholar 

  • Canham LT (1997) Biomedical applications of porous silicon. In: Canham LT (ed) Properties of porous silicon, EMIS datareviews, vol 18. Short Run Press Ltd., London, pp 12–22

    Google Scholar 

  • Canham LT, Reeves CL (1996) Apatite nucleation on low porosity silicon in acellular simulated body fluids. In: Cotell CM, Meyer AE, Gorbatkin SM, Grobe GL (eds) Thin films and surfaces for bioactivity and biomedical applications, Materials research society symposium proceedings, vol 414. Materials Research Soc, Pittsburgh, pp 189–194

    Google Scholar 

  • Canham LT, Newey JP, Reeves CL, Houlton MR, Loni A, Simmons AJ, Cox TI (1996a) The effects of DC electric currents on the in-vitro calcification of bioactive si wafers. Adv Mater 8(10):847–849

    Article  Google Scholar 

  • Canham LT, Reeves CL, King DO, Branfield PJ, Crabb JG, Ward MCL (1996b) Bioactive polycrystalline silicon. Adv Mater 8(10):850–852

    Article  Google Scholar 

  • Canham LT, Reeves CL, Loni A, Houlton MR, Newey JP, Simons AJ, Cox TI (1997) Calcium phosphate nucleation on porous silicon: factors influencing kinetics in acellular simulated body fluids. Thin Solid Films 297(1–2):304–307

    Article  Google Scholar 

  • Chadwick EG, Beloshapkin S, Tanner DA (2012) Microstructural characterisation of metallurgical grade porous silicon nanosponge particles. J Mater Sci 47(5):2396–2404. doi:10.1007/s10853-011-6060-0

    Article  Google Scholar 

  • Chen S, Ni B, Hiang H, Chen X, Ma H (2014) siRNA loaded PEGylated porous silicon nanoparticles for lung cancer therapy. J. Nanoparticle Res 16:2648

    Article  Google Scholar 

  • Cheng L, Anglin E, Cunin F, Kim D, Sailor MJ, Falkenstein I, Tammewar A, Freeman WR (2008) Intravitreal properties of porous silicon photonic crystals: a potential self-reporting intraocular drug delivery vehicle. Br J Ophthalmol 92(5):705–711. doi:10.1136/bjo.2007.133587

    Article  Google Scholar 

  • Chhablani J, Nieto A, Hou H, Wu EC, Freeman WR, Sailor MJ, Cheng L (2013) Oxidized porous silicon particles covalently grafted with daunorubicin as a sustained intraocular drug delivery system. Invest Ophthalmol Vis Sci 54(2):1268–1279

    Article  Google Scholar 

  • Desai T, Hansford D, Kulinsky L, Nashat A, Rasi G, Tu J, Wang Y, Zhang M, Ferrari M (1999) Nanopore technology for biomedical applications. Biomed Microdevices 2:11–40

    Article  Google Scholar 

  • Fan DM, Loni A, Canham LT, Coffer JL (2009) Location-dependent controlled release kinetics of model hydrophobic compounds from mesoporous silicon/biopolymer composite fibers. Physica Status Solidi A-Appl Mater Sci 206(6):1322–1325. doi:10.1002/pssa.200881118

    Article  Google Scholar 

  • Fan DM, Akkaraju GR, Couch EF, Canham LT, Coffer JL (2011) The role of nanostructured mesoporous silicon in discriminating in vitro calcification for electrospun composite tissue engineering scaffolds. Nanoscale 3(2):354–361. doi:10.1039/c0nr00550a

    Article  Google Scholar 

  • Foraker AB, Walczak RJ, Cohen MH, Boiarski TA, Grove CF, Swaan PW (2003) Microfabricated porous silicon particles enhance paracellular delivery of insulin across intestinal Caco-2 cell monolayers. Pharm Res 20(1):110–116

    Article  Google Scholar 

  • Godin B, Chiappini C, Srinivasan S, Alexander JF, Yokoi K, Ferrari M, Decuzzi P, Liu XW (2012) Discoidal porous silicon particles: fabrication and biodistribution in breast cancer bearing mice. Adv Funct Mater 22(20):4225–4235. doi:10.1002/adfm.201200869

    Article  Google Scholar 

  • Haidary SM, Mohammed AB, Corcoles EP, Ali NK, Ahmad MR (2016) Effect of coatings and surface modification on porous silicon nanoparticles for delivery of the anticancer drug tamoxifen. Microelectron Eng 161:1–6. doi:10.1016/j.mee.2016.03.051

    Article  Google Scholar 

  • Hou HY, Nieto A, Belghith A, Nan KH, Li YY, Freeman WR, Sailor MJ, Cheng LY (2015) A sustained intravitreal drug delivery system with remote real time monitoring capability. Acta Biomater 24:309–321. doi:10.1016/j.actbio.2015.06.012

    Article  Google Scholar 

  • Hou HY, Wang CY, Nan KH, Freeman WR, Sailor MJ, Cheng LY (2016) Controlled release of dexamethasone from an intravitreal delivery system using porous silicon dioxide. Invest Ophthalmol Vis Sci 57(2):557–566. doi:10.1167/iovs.15-18559

    Article  Google Scholar 

  • Joo J, Liu XY, Kotamraju VR, Ruoslahti E, Nam Y, Sailor MJ (2015) Gated luminescence imaging of silicon nanoparticles. ACS Nano 9(6):6233–6241. doi:10.1021/acsnano.5b01594

    Article  Google Scholar 

  • Joo J, Kwon EJ, Kang J, Skalak M, Anglin EJ, Mann AP, Ruoslati E, Bhatia SN, Sailor MJ (2016) Porous silicon graphene oxide core-shell nanoparticles for targeted delivery of siRNA to the injured brain. Nanoscale Horizons 1:407–414

    Article  Google Scholar 

  • Jugdaohsingh R, Tucker KL, Qiao N, Cupples LA, Kiel DP, Powell JJ (2004) Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort. J Bone Miner Res 19(2):297–307. doi:10.1359/jbmr.0301225

    Article  Google Scholar 

  • Kashanian S, Rostami E, Harding FJ, McInnes SJP, Al-Bataineh S, Voelcker NH (2016) Controlled delivery of levothyroxine using porous silicon as a drug nanocontainer. Aust J Chem 69(2):204–211. doi:10.1071/ch15315

    Article  Google Scholar 

  • Kaukonen AM, Laitinen L, Salonen J, Tuura J, Heikkila T, Limnell T, Hirvonen J, Lehto V-P (2007) Enhanced in vitro permeation of furosemide loaded into thermally carbonized mesoporous silicon (TCPSi) microparticles. Eur J Pharm Biopharm 66(3):348–356

    Article  Google Scholar 

  • Kilpelainen M, Riikonen J, Vlasova MA, Huotari A, Lehto VP, Salonen J, Herzig KH, Jarvinen K (2009) In vivo delivery of a peptide, ghrelin antagonist, with mesoporous silicon microparticles. J Control Release 137(2):166–170. doi:10.1016/j.jconrel.2009.03.017

    Article  Google Scholar 

  • Kilpelainen M, Monkare J, Vlasova MA, Riikonen J, Lehto VP, Salonen J, Jarvinen K, Herzig KH (2011) Nanostructured porous silicon microparticles enable sustained peptide (Melanotan II) delivery. Eur J Pharm Biopharm 77(1):20–25. doi:10.1016/j.ejpb.2010.10.004

    Article  Google Scholar 

  • Kovalainen M, Monkare J, Makila E, Salonen J, Lehto VP, Herzig KH, Jarvinen K (2012) Mesoporous silicon (PSi) for sustained peptide delivery: effect of PSi microparticle surface chemistry on peptide YY3-36 release. Pharm Res 29(3):837–846. doi:10.1007/s11095-011-0611-6

    Article  Google Scholar 

  • Kovalainen M, Mönkäre J, Kaasalainen M, Riikonen J, Lehto V-P, Salonen J, Herzig K-H, Järvinen K (2013) Development of porous silicon nanocarriers for parenteral peptide delivery. Mol Pharm. doi:10.1021/mp300494p

    Google Scholar 

  • Kovalainen M, Monkare J, Riikonen J, Pesonen U, Vlasova M, Salonen J, Lehto V-P, Jarvinen K, Herzig K-H (2015) Novel delivery systems for improving the clinical use of peptides. Pharmacol Rev 67(3):541–561. doi:10.1124/pr.113.008367

    Article  Google Scholar 

  • Kumar A, Mansour HM, Friedman A, Blough ER (2013) Nanomedicine in drug delivery. Taylor & Francis, London

    Book  Google Scholar 

  • Lehto V-P, Salonen J, Santos H, Riikonen J (2013) Nanostructured silicon-based materials as a drug delivery system for water-insoluble drugs. In: Drug delivery strategies for poorly water-soluble drugs. John Wiley & Sons Ltd, Singapore, pp 477–508. doi:10.1002/9781118444726.ch15

    Chapter  Google Scholar 

  • Leong WY, Loni A, Canham LT (2007) Electrically enhanced erosion of porous Si material in electrolyte by pH modulation and its application in chronotherapy. Physica Status Solidi A-Appl Mater Sci 204(5):1486–1490. doi:10.1002/pssa.200674400

    Article  Google Scholar 

  • Limnell T, Riikonen J, Salonen J, Kaukonen AM, Laitinen L, Hirvonen J, Lehto VP (2006) The effect of different surface treatment and pore size on the dissolution of ibuprofen from mesoporous silicon particles. Eur J Pharm Sci 28:S34–S34

    Article  Google Scholar 

  • Loni A, Barwick D, Batchelor L, Tunbridge J, Han Y, Li ZY, Canham LT (2011) Extremely high surface area metallurgical-grade porous silicon powder prepared by metal-assisted etching. Electrochem Solid-State Lett 14(5):K25–K27. doi:10.1149/1.3548513

    Article  Google Scholar 

  • Low SP, Voelcker NH, Canham LT, Williams KA (2009) The biocompatibility of porous silicon in tissues of the eye. Biomaterials 30(15):2873–2880. doi:10.1016/j.biomaterials.2009.02.008

    Article  Google Scholar 

  • Mann AP, Tanaka T, Somasunderam A, Liu XW, Gorenstein DG, Ferrari M (2011) E-selectin-targeted porous silicon particle for nanoparticle delivery to the bone marrow. Adv Mater 23(36):H278–H282. doi:10.1002/adma.201101541

    Article  Google Scholar 

  • McInnes SJP, Szili EJ, Al-Bataineh SA, Xu JJ, Alf ME, Gleason KK, Short RD, Voelcker NH (2012) Combination of iCVD and porous silicon for the development of a controlled drug delivery system. ACS Appl Mater Interfaces 4(7):3566–3574. doi:10.1021/am300621k

    Article  Google Scholar 

  • McInnes SJP, Turner CT, Al-Bataineh SA, Leccardi M, Irani Y, Williams KA, Cowin AJ, Voelcker NH (2015) Surface engineering of porous silicon to optimise therapeutic antibody loading and release. J Mat Chem B 3(20):4123–4133. doi:10.1039/c5tb00397k

    Article  Google Scholar 

  • McInnes SJP, Michl TD, Delalat B, Al-Bataineh SA, Coad BR, Vasilev K, Griesser HJ, Voelcker NH (2016) “Thunderstruck”: plasma-polymer-coated porous silicon microparticles as a controlled drug delivery system. ACS Appl Mater Interfaces 8(7):4467–4476. doi:10.1021/acsami.5b12433

    Article  Google Scholar 

  • Mukherjee P, Whitehead MA, Senter RA, Fan DM, Coffer JL, Canham LT (2006) Biorelevant mesoporous silicon/polymer composites: directed assembly, disassembly, and controlled release. Biomed Microdevices 8(1):9–15. doi:10.1007/s10544-006-6377-7

    Article  Google Scholar 

  • Muller S, Cavallaro A, Vasilev K, Voelcker NH (2016) Temperature controlled antimicrobial release from poly(diethylene glycol methyl ether methacrylate) functionalized bottleneck structured porous silicon for the inhibition of bacterial growth. Macromol ChemPhys 217(20):2243–2251

    Article  Google Scholar 

  • Nieto A, Hou H, Moon SW, Sailor MJ, Freeman WR, Cheng LY (2015) Surface engineering of porous silicon microparticles for intravitreal sustained delivery of rapamycin. Invest Ophthalmol Vis Sci 56(2):1070–1080. doi:10.1167/iovs.14-15997

    Article  Google Scholar 

  • Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8(4):331–336. doi:10.1038/nmat2398

    Article  Google Scholar 

  • Parodi A, Quattrocchi N, van de Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, Brown BS, Khaled SZ, Yazdi IK, Vittoria Enzo M, Isenhart L, Ferrari M, Tasciotti E (2013) Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 8(1):61–68. doi:10.1038/nnano.2012.212

    Article  Google Scholar 

  • Perelman LA, Pacholski C, Li YY, VanNieuwenhz MS, Sailor MJ (2008) pH-triggered release of vancomycin protein-capped porous silicon films from. Nanomedicine 3(1):31–43. doi:10.2217/17435889.3.1.31

    Article  Google Scholar 

  • Prestidge CA, Barnes TJ, Mierczynska-Vasilev A, Skinner W, Peddie F, Barnett C (2007) Loading and release of a model protein from porous silicon powders. Physica Status Solidi A-Appl Mater Sci 204(10):3361–3366

    Article  Google Scholar 

  • Prestidge CA, Barnes TJ, Mierczynska-Vasilevl A, Kempson I, Peddiel F, Barnett C (2008) Peptide and protein loading into porous silicon wafers. Physica Status Solidi A-Appl Mater Sci 205(2):311–315. doi:10.1002/pssa.200723113

    Article  Google Scholar 

  • Ranade VV, Cannon JB (2011) Drug delivery systems, 3rd edn. CRC Press, Grayslake

    Google Scholar 

  • Riikonen J, Correia A, Kovalainen M, Nakki S, Lehtonen M, Leppanen J, Rantanen J, Xu W, Araujo F, Hirvonen J, Jarvinen K, Santos HA, Lehto VP (2015) Systematic in vitro and in vivo study on porous silicon to improve the oral bioavailability of celecoxib. Biomaterials 52:44–55. doi:10.1016/j.biomaterials.2015.02.014

    Article  Google Scholar 

  • Rytkönen J, Miettinen R, Kaasalainen M, Lehto V-P, Salonen J, Närvänen A (2012) Functionalization of mesoporous silicon nanoparticles for targeting and bioimaging purposes. J Nanomater:Article ID 896562. doi:10.1155/2012/896562

    Google Scholar 

  • Salonen J, Laitinen L, Kaukonen AM, Tuura J, Bjorkqvist M, Heikkila T, Vaha-Heikkila K, Hirvonen J, Lehto VP (2005) Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. J Control Release 108(2–3):362–374

    Article  Google Scholar 

  • Sarparanta M, Bimbo LM, Rytkonen J, Makila E, Laaksonen TJ, Laaksonen P, Nyman M, Salonen J, Linder MB, Hirvonen J, Santos HA, Airaksinen AJ (2012) Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability, plasma protein adsorption and biodistribution. Mol Pharm 9(3):654–663. doi:10.1021/mp200611d

    Article  Google Scholar 

  • Secret E, Smith K, Dubljevic V, Moore E, Macardle P, Delalat B, Rogers ML, Johns TG, Durand JO, Cunin F, Voelcker NH (2013) Antibody-functionalized porous silicon nanoparticles for vectorization of hydrophobic drugs. Adv Healthc Mater 2(5):718–727. doi:10.1002/adhm.201200335

    Article  Google Scholar 

  • Shen HF, Rodriguez-Aguayo C, Xu R, Gonzalez-Villasana V, Mai JH, Huang Y, Zhang GD, Guo XJ, Bai LT, Qin GT, Deng XY, Li QP, Erm DR, Aslan B, Liu XW, Sakamoto J, Chavez-Reyes A, Han HD, Sood AK, Ferrari M, Lopez-Berestein G (2013) Enhancing chemotherapy response with sustained EphA2 silencing using multistage vector delivery. Clin Cancer Res 19(7):1806–1815. doi:10.1158/1078-0432.ccr-12-2764

    Article  Google Scholar 

  • Tanaka T, Godin B, Bhavane R, Nieves-Alicea R, Gu J, Liu X, Chiappini C, Fakhoury JR, Amra S, Ewing A, Li Q, Fidler IJ, Ferrari M (2010a) In vivo evaluation of safety of nanoporous silicon carriers following single and multiple dose intravenous administrations in mice. Int J Pharm 402(1–2):190–197. doi:10.1016/j.ijpharm.2010.09.015

    Article  Google Scholar 

  • Tanaka T, Mangala LS, Vivas-Mejia PE, Nieves-Alicea R, Mann AP, Mora E, Han HD, Shahzad MMK, Liu XW, Bhavane R, Gu JH, Fakhoury JR, Chiappini C, Lu CH, Matsuo K, Godin B, Stone RL, Nick AM, Lopez-Berestein G, Sood AK, Ferrari M (2010b) Sustained small interfering RNA delivery by mesoporous silicon particles. Cancer Res 70(9):3687–3696. doi:10.1158/0008-5472.can-09-3931

    Article  Google Scholar 

  • Tang L, Saharay A, Fleischer W, Hartman PS, Loni A, Canham LT, Coffer JL (2013) Sustained antifungal activity from a ketoconazole-loaded nanostructured mesoporous silicon platform. SILICON 5(3):213–217. doi:10.1007/s12633-013-9143-5

    Article  Google Scholar 

  • Tasciotti E, Liu XW, Bhavane R, Plant K, Leonard AD, Price BK, Cheng MMC, Decuzzi P, Tour JM, Robertson F, Ferrari M (2008) Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nanotechnol 3(3):151–157. doi:10.1038/nnano.2008.34

    Article  Google Scholar 

  • Tong WY, Sweetman MJ, Marzouk ER, Fraser C, Kuchel T, Voelcker NH (2016) Towards a subcutaneous optical biosensor based on thermally hydrocarbonised porous silicon. Biomaterials 74:217–230. doi:10.1016/j.biomaterials.2015.09.045

    Article  Google Scholar 

  • Tzur-Balter A, Gilert A, Massad-Ivanir N, Segal E (2013) Engineering porous silicon nanostructures as tunable carriers for mitoxantrone dihydrochloride. Acta Biomater 9(4):6208–6217. doi:10.1016/j.actbio.2012.12.010

    Article  Google Scholar 

  • Vaccari L, Canton D, Zaffaroni N, Villa R, Tormen M, di Fabrizio E (2006) Porous silicon as drug carrier for controlled delivery of doxorubicin anticancer agent. Microelectron Eng 83(4–9):1598–1601. doi:10.1016/j.mee.2006.01.113

    Article  Google Scholar 

  • Vale N, Makila E, Salonen J, Gomes P, Hirvonen J, Santos HA (2012) New times, new trends for ethionamide: in vitro evaluation of drug-loaded thermally carbonized porous silicon microparticles. Eur J Pharm Biopharm 81(2):314–323. doi:10.1016/j.ejpb.2012.02.017

    Article  Google Scholar 

  • Vasani RB, McInnes SJP, Cole MA, Jani AMM, Ellis AV, Voelcker NH (2011) Stimulus-responsiveness and drug release from porous silicon films ATRP-grafted with poly(N-isopropylacrylamide). Langmuir 27(12):7843–7853. doi:10.1021/la200551g

    Article  Google Scholar 

  • Wang F, Hui H, Barnes TJ, Barnett C, Prestidge CA (2010a) Oxidized mesoporous silicon microparticles for improved oral delivery of poorly soluble drugs. Mol Pharm 7(1):227–236. doi:10.1021/mp900221e

    Article  Google Scholar 

  • Wang MJ, Coffer JL, Dorraj K, Hartman PS, Loni A, Canham LT (2010b) Sustained antibacterial activity from triclosan-loaded nanostructured mesoporous silicon. Mol Pharm 7(6):2232–2239. doi:10.1021/mp100227m

    Article  Google Scholar 

  • Wang C-F, Sarparanta MP, Makila EM, Hyvonen MLK, Laakkonen PM, Salonen JJ, Hirvonen JT, Airaksinen AJ, Santos HA (2015a) Multifunctional porous silicon nanoparticles for cancer theranostics. Biomaterials 48:108–118. doi:10.1016/j.biomaterials.2015.01.008

    Article  Google Scholar 

  • Wang CF, Makila IM, Kaasalainen MH, Hagstrom MV, Salonen JJ, Hirvonen JT, Santos HA (2015b) Drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release and combination therapy. Acta Biomater 16:206–214

    Article  Google Scholar 

  • Wu EC, Andrew JS, Cheng LY, Freeman WR, Pearson L, Sailor MJ (2011) Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles. Biomaterials 32(7):1957–1966. doi:10.1016/j.biomaterials.2010.11.013

    Article  Google Scholar 

  • Xia B, Wang B, Chen Z, Zhang Q, Shi J (2015) Near infrared light triggered intracellular delivery of anticancer drugs using porous silicon nanoparticles conjugated with IR820 dyes. Adv Mater Interf 3(4):1500715

    Article  Google Scholar 

  • Xu R, Zhang G, Mai J, Deng X, Segura-Ibarra V, Wu S, Shen J, Liu H, Hu Z, Chen L, Huang Y, Koay E, Huang Y, Liu J, Ensor JE, Blanco E, Luu X, Ferrari M, Shen H (2016) An injectable nanoparticle generator enhances delivery of cancer therapeutics. Nat Biotechnol 34:414–418

    Article  Google Scholar 

  • Yazdi IK, Murphy MB, Loo C, Liu X, Ferrari M, Weiner BK, Tasciotti E (2014) Cefazolin-loaded mesoporous silicon microparticles show sustained bactericidal effect against Staphylococcus aureus. J Tissue Eng 5:1–10

    Article  Google Scholar 

  • Yu L (2001) Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev 48(1):27–42. doi:10.1016/s0169-409x(01)00098-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarno Salonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Salonen, J. (2016). Drug Delivery with Porous Silicon. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-04508-5_91-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04508-5_91-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04508-5

  • Online ISBN: 978-3-319-04508-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Drug Delivery with Porous Silicon
    Published:
    27 December 2016

    DOI: https://doi.org/10.1007/978-3-319-04508-5_91-2

  2. Original

    Drug Delivery with Porous Silicon
    Published:
    06 May 2014

    DOI: https://doi.org/10.1007/978-3-319-04508-5_91-1