Skip to main content

Internal Structure/Mantle Motions of the Moon

  • Living reference work entry
  • First Online:
Encyclopedia of Lunar Science
  • 525 Accesses

Over the years since the Apollo era, the current lunar interior structure has been investigated using seismic, gravity, and magnetic field data. The Apollo seismic network recorded about 1,800 meteoroid impacts, 28 energetic shallow moonquakes (with body wave magnitudes up to five and hypocenters about 100 km below the surface), and about 7,000 extremely weak deep moonquakes that were located about halfway to the center of the Moon (e.g., Wieczorek 2009). The deep moonquakes are very enigmatic in that their occurrences are correlated with the tides raised by the Earth, they involve very low stress drops (less than 1 bar), they appear to originate from about 300 “nests” that are repeatedly activated, and almost all of these nests are located on the Moon’s nearside hemisphere (Nakamura 2003; Bulow et al. 2007; Qin et al. 2012). The nearside distribution of the deep moonquakes could perhaps indicate that the farside hemisphere is seismically inactive. Such a hypothesis is possible,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Andrews-Hanna J et al (2013) Ancient igneous intrusions and early expansion of the Moon revealed by GRAIL gravity gradiometry. Science 339:675–678

    Article  ADS  Google Scholar 

  • Binder AB (1982) Post-Imbrain global lunar tectonism: evidence for an initially totally molten Moon. Earth Moon Planet 26:117

    Article  ADS  Google Scholar 

  • Bulow RC, Johnson CL, Bills BG, Shearer PM (2007) Temporal and spatial properties of some deep moonquake clusters. J Geophys Res 112:E09003. doi:10.1029/2006JE002847

    Google Scholar 

  • Byrne CJ (2007) A large basin on the nearside of the Moon. Earth Moon Planet 101:153–188. doi:10.1007/s11038-007-9225-8

    Article  ADS  Google Scholar 

  • Canup R (2012) Forming a moon with an Earth-like composition via a giant impact. Science 338:1052–1055

    Article  ADS  Google Scholar 

  • Dwyer CA, Stevenson DJ, Nimmo F (2011) A long-lived lunar dynamo driven by continuous mechanical stirring. Nature 479:212–214

    Article  ADS  Google Scholar 

  • Elkins-Tanton LT, Van Orman JA, Hager BH, Grove TL (2002) Re-examination of the lunar magma ocean cumulate overturn hypothesis: melting or mixing is required. Earth Planet Sci Lett 196:239–249. doi:10.1016/S0012-821X(01)00613-6

    Article  ADS  Google Scholar 

  • Evans AJ, Zuber MT, Weiss BP, Tikoo SM (2014) A wet, heterogeneous lunar interior: lower mantle and core dynamo evolution. J Geophys Res. doi:10.1002/2013JE004494

    Google Scholar 

  • Garcia RF, Gagnepain-Beyneix J, Chevrot S, Lognonne P (2011) Very preliminary reference Moon model. Phys Earth Planet Inter 188:96–113

    Article  ADS  Google Scholar 

  • Garrick-Bethell I, Weiss BP, Shuster DL, Buz J (2009) Early lunar magnetism. Science 323:356–359

    Article  ADS  Google Scholar 

  • Ghods A, Arkani-Hamed J (2007) Impact-induced convection as the main mechanism for formation of lunar mare basalts. J Geophys Res 112, E03005. doi:10.1029/2006JE002709

    ADS  Google Scholar 

  • Grimm RE (2013) Geophysical constraints on the lunar Procellarum KREEP Terrane. J Geophys Res Planet 118:768–778. doi:10.1029/2012JE004114

    Article  ADS  Google Scholar 

  • Hartmann WK (2003) Megaregolith evolution and cratering cataclysm models-Lunar cataclysm as a misconception (28 years later). Meteorit Planet Sci 38:579–593

    Article  ADS  Google Scholar 

  • Hess PC, Parmentier EM (1995) A model for the thermal and chemical evolution of the Moon’s interior: implications for the onset of mare volcanism. Earth Planet Sci Lett 134:501–514

    Article  ADS  Google Scholar 

  • Hess PC, Parmentier EM (2001) Thermal evolution of a thicker KREEP liquid layer. J Geophys Res 106:28,023–28,032. doi:10.1029/2000JE001416

    Article  ADS  Google Scholar 

  • Hood L, Herbert F, Sonett CP (1982) The deep lunar electrical conductivity profile: structural and thermal inferences. J Geophys Res 87:5311–5326

    Article  ADS  Google Scholar 

  • Jutzi M, Asphaug E (2011) Forming the lunar farside highlands by accretion of a companion moon. Nature 476:69–72. doi:10.1038/nature10289

    Article  ADS  Google Scholar 

  • Khan A, Maclennan J, Taylor SR, Connolly JA (2006) Are the Earth and the Moon compositionally alike? Inferences on lunar composition and implications for lunar origin and evolution from geophysical modeling. J Geophys Res 111. doi:10.1029/2005JE002608

    Google Scholar 

  • Laneuville M, Wieczorek MA, Breuer D, Tosi N (2013) Asymmetric thermal evolution of the Moon. J Geophys Res 111:1435–1452

    Article  Google Scholar 

  • Lawrence K, Tauxe L, Johnson CL, Gee J (2008) Lunar paleointensity measurements: implications for lunar magnetic evolution. Phys Earth Planet Inter 168:71–87

    Article  ADS  Google Scholar 

  • Le Bars M, Wieczorek MA, Karatekin O, Cebron D, Laneuville M (2011) An impact-driven dynamo for the early Moon. Nature 479:215–218

    Article  ADS  Google Scholar 

  • Lognonne P, Johnson C (2007) Planetary seismology. Treatise Geophys 10:69–122

    Article  Google Scholar 

  • Loper DE, Werner CL (2002) On lunar asymmetries 1. Tilted convection and crustal asymmetry. J Geophys Res 107:5046. doi:10.1029/2000JE001441

    Google Scholar 

  • MacDonald GJ (1960) Stress history of the Moon. Planet Space Sci 2:249–255

    Article  ADS  Google Scholar 

  • Nakamura Y (2003) New identification of deep moonquakes in the Apollo lunar seismic data. Phys Earth Planet Inter 139:197–205

    Article  ADS  Google Scholar 

  • Nakamura Y (2005) Farside deep moonquakes and deep interior of the Moon. J Geophys Res 110, E01001. doi:10.1029/2004JE002332

    ADS  Google Scholar 

  • Neumann GA, Zuber MT, Smith DE, Lemoine FG (1996) The lunar crust: global structure and signature of major basins. J Geophys Res 101:16,841–16,864. doi:10.1029/96JE01246

    Article  ADS  Google Scholar 

  • Nimmo F, Faul UH, Garnero EJ (2012) Dissipation at tidal and seismic frequencies in a melt-free Moon. J Geophys Res 117. doi:10.1029/2012JE004160

    Google Scholar 

  • Nyquist LE, Shih C-Y (1992) The isotopic record of lunar volcanism. Geochim Cosmochim Acta 56:2213–2234

    Article  ADS  Google Scholar 

  • Parmentier EM, Zhong S, Zuber MT (2002) Gravitational differentiation due to initial chemical stratification: origin of lunar asymmetry by the creep of dense KREEP. Earth Planet Sci Lett 201:473–480

    Article  ADS  Google Scholar 

  • Qin C, Muirhead A, Zhong S (2012) Correlation of deep moonquakes and mare basalts: implications for lunar mantle structure and evolution. Icarus 220:100–105

    Article  ADS  Google Scholar 

  • Righter K, Drake MJ (1996) Core formation in Earth’s Moon, Mars, and Vesta. Icarus 124:513–529

    Article  ADS  Google Scholar 

  • Shea EK, Weiss BP, Cassata WS, Shuster DL, Tikoo SM, Gattacceca J, Grove TL, Fuller MD (2012) A long-lived lunar core dynamo. Science 335:453–456. http://www.sciencemag.org/content/335/6067/453.full-aff-5#aff-5

  • Shearer C et al (2006) Thermal and magmatic evolution of the Moon. Rev Mineral Geochem 60:365–518

    Article  Google Scholar 

  • Solomon S (1977) The relationship between crustal tectonics and internal evolution in the Moon and Mercury. Phys Earth Planet Int 15:135–145

    Article  ADS  Google Scholar 

  • Sonett CP (1982) Electromagnetic induction in the moon. Rev Geophys Space Phys 20:411–455

    Article  ADS  Google Scholar 

  • Stegman D, Jellinek M, Zatman SA, Baumgardner JR, Richards MA (2003) An early lunar core dynamo driven by thermochemical mantle convection. Nature 421:143–146

    Article  ADS  Google Scholar 

  • Stevenson D, Yoder, CF (1981) A fluid outer core for the Moon and its implications for lunar dissipation, free librations, and magnetism. Lunar Planet Sci XII:1043–1045

    Google Scholar 

  • Stevenson DJ, Spohn T, Schubert G (1983) Magnetism and thermal evolution of the terrestrial planets. Icarus 54:466–489

    Article  ADS  Google Scholar 

  • Tikoo SM, Weiss B, Grove TL, Fuller MD (2012) Decline of the ancient lunar core dynamo. In: Lunar planetary science conference, XLIII, Woodlands

    Google Scholar 

  • Warren PH (1985) The magma ocean concept and lunar evolution. Ann Rev Earth Planet Sci 13:201–240

    Article  ADS  Google Scholar 

  • Warren PH (1988) The origin of pristine KREEP – effects of mixing between UrKREEP and the magmas parental to the Mg-rich cumulates. In: Proceedings of the eighteenth lunar and planetary science conference, pp 233–241

    Google Scholar 

  • Wasson JT, Warren PH (1980) Contribution of the mantle to the lunar asymmetry. Icarus 44:752–771. doi:10.1016/0019-1035(80)90142-6

    Article  ADS  Google Scholar 

  • Watters TR et al (2010) Evidence of recent thrust faulting on the Moon revealed by the Lunar Reconnaissance Orbiter Camera. Science 329:936–940

    Article  ADS  Google Scholar 

  • Weber R, Lin PY, Garnero E, Williams Q, Lognonne P (2011) Seismic detection of the lunar core. Science 331:309–312

    Article  ADS  Google Scholar 

  • Wieczorek M, Phillips R (2000) The Procellarum KREEP terrane: Implications for mare volcanism and lunar evolution, J Geophys Res 105:20,417–420,430

    Article  ADS  Google Scholar 

  • Wieczorek M (2009) The interior structure of the Moon: what does geophysics have to say? Elements 5:35–40

    Article  Google Scholar 

  • Williams JG, Boggs DH, Yoder CF, Ratcliff JT, Dickey J (2001) Lunar rotational dissipation in solid body and molten core. J Geophys Res 106:27,933–27,968

    Article  ADS  Google Scholar 

  • Zhang N, Parmentier EM, Liang Y (2013a) A 3D numerical study of the thermal evolution of the Moon after cumulate mantle overturn: the importance of rheology and core solidification. J Geophys Res. doi:10.1029/jgre.20121

    Google Scholar 

  • Zhang N, Parmentier EM, Liang Y (2013b) Effects of lunar cumulate mantle overturn and megaregolith on the expansion and contraction history of the Moon. Geophys Res Lett. doi:10.1002/grl.50988

    Google Scholar 

  • Zhong S, Parmentier M, Zuber M (2000) A dynamic origin for the global asymmetry of lunar mare basalts. Earth Planet Sci Lett 177:131–140

    Article  ADS  Google Scholar 

  • Zhong S, Qin C, Geruo A, Wahr J (2012) Can tidal tomography be used to unravel the long-wavelength structure of the lunar interior? Geophys Res Lett 39:15

    Google Scholar 

  • Zuber MT, Smith DE, Watkins M, Asmar SW, Konopliv AS, Lemoine FG, Melosh HJ, Neumann GA, Philips RJ, Solomon SC, Wieczorek MA, Williams JG, Goossens SJ, Kruizinga G, Mazarrico E, Park RS, Yuan DN (2012) Gravity Field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission. Sciences 339:668–671

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Zhang, N. (2014). Internal Structure/Mantle Motions of the Moon. In: Cudnik, B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-05546-6_10-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05546-6_10-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-05546-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics