Skip to main content

Cationic and Anionic Substitutions in Hydroxyapatite

  • Living reference work entry
  • First Online:
Handbook of Bioceramics and Biocomposites

Abstract

Hydroxyapatite (HAp, Ca10(PO4)6(OH)2, Ca/P = 1.67) is widely employed in biomedical sector, particularly in dentistry and orthopedics, due to its chemical similarity to the mineral component of hard tissue.

However, the biological apatite, whose bone and tooth mineral phases are composed, remarkably differs from stoichiometric HAp, being Ca deficient (Ca/P < 1.67), composed of small crystals and characterized by poor crystallinity and relatively high solubility. Furthermore, it consists in carbonated apatite characterized by the presence of various amounts of vicarious ions, either incorporated within the apatite lattice or just adsorbed on the crystal surface, including anionic (e.g., F, Cl, SiO4 4−, and CO3 2−) and/or cationic substitutions (e.g., Na+, Mg2+, K+, Sr2+, Zn2+, Ba2+, Al3+).

Thus, the synthesis of hydroxyapatites partially substituted by these elements has attracted a lot of interest, in order to mimic and resemble the chemical composition of the bone mineral component. In fact, the ability to exchange ions in apatite structure allows to design, develop, and characterize new and better calcium phosphates for certain specific applications.

This manuscript provides an overview about the majority of the investigated substitutions within the hydroxyapatite lattice, evidencing the influence of the different vicarious ions on the physical, microstructural, mechanical, and biological properties of the obtained HAps. In detail, after an introduction about the biological apatites and the stoichiometric hydroxyapatite structure, this chapter reports the synthesis and features of anionic and cationic substituted hydroxyapatites with an outline of the most important findings. Finally, the last session presents some considerations, concluding remarks, and future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kay MI, Young RA, Posner AS (1964) Crystal structure of hydroxyapatite. Nature 204:1050–1052

    Article  Google Scholar 

  2. Dorozhkin SV (2009) Calcium orthophosphates in nature, biology and medicine. Materials 2:399–498

    Article  Google Scholar 

  3. Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam

    Google Scholar 

  4. Weiner S, Wagner HD (1988) The material bone: structure–mechanical function relations. Annu Rev Mater Sci 28:271–298

    Article  Google Scholar 

  5. Driessens F, Verbeeck R (1990) Biomaterials. CRC Press, Boca Raton

    Google Scholar 

  6. Cazalbou S, Combes C, Eichert D, Rey C (2004) Adaptative physico-chemistry of bio-related calcium phosphates. J Mater Chem 14:2148–2153

    Article  Google Scholar 

  7. Wang L, Nancollas GH (2008) Calcium orthophosphates: crystallization and dissolution. Chem Rev 108:4628–4669

    Article  Google Scholar 

  8. LeGeros RZ (2008) Calcium phosphate-based osteoinductive materials. Chem Rev 108:4742–4753

    Article  Google Scholar 

  9. LeGeros RZ (1991) Calcium phosphates in oral biology and medicine. Karger, Basel

    Book  Google Scholar 

  10. Daculsi G, Bouler JM, LeGeros RZ (1997) Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials. Int Rev Cytol 172:129–191

    Article  Google Scholar 

  11. McConnell D (1973) Apatite. Its crystal chemistry, mineralogy, utilization, and geologic and biologic occurrences. Springer, Wien

    Google Scholar 

  12. Li X, Sogo Y, Ito A, Mutsuzaki H, Ochiai N, Kobayashi T, Nakamura S, Yamashita K, LeGeros RZ (2009) The optimum zinc content in set calcium phosphate cement for promoting bone formation in vivo. Mater Sci Eng C 29:969–975

    Article  Google Scholar 

  13. Garcia F, Ortega A, Domingo JL, Corbella J (2001) Accumulation of metals in autopsy tissues of subjects living in Tarragona County, Spain. J Environ Sci Health 36:1767–1786

    Article  Google Scholar 

  14. Carlisle EM (1970) Silicon: a possible factor in bone calcification. Science 167:279–280

    Article  Google Scholar 

  15. Liu Q, Huang S, Matinlinna JP, Chen Z, Pan H (2013) Insight into biological apatite: physiochemical properties and preparation approaches. BioMed Res Int 2013:929748 (13 pages)

    Google Scholar 

  16. Wenk HR, Heidelbach F (1999) Crystal alignment of carbonated apatite in bone and calcified tendon: results from quantitative texture analysis. Bone 24(4):361–369

    Article  Google Scholar 

  17. Skinner HCW (2005) Biominerals. Mineral Mag 69:621–641

    Article  Google Scholar 

  18. Dorozhkin SV, Epple M (2002) Biological and medical significance of calcium phosphates. Angew Chem Int Ed 41:3130–3146

    Article  Google Scholar 

  19. Handschin RG, Stern WB (1995) X-ray diffraction studies on the lattice perfection of human bone apatite (Crista Iliaca). Bone 16:355S–363S

    Article  Google Scholar 

  20. Salinas AJ, Esbrit P, Vallet-Regí M (2013) A tissue engineering approach based on the use of bioceramics for bone repair. Biomater Sci 1:40–51

    Article  Google Scholar 

  21. Cannizzaro G, Felice P, Leone M, Viola P, Esposito M (2009) Early loading of implants in the atrophic posterior maxilla: lateral sinus lift with autogenous bone and Bio-Oss versus crestal mini sinus lift and 8-mm hydroxyapatite-coated implants. A randomised controlled clinical trial. Eur J Oral Implantol 2(1):25–38

    Google Scholar 

  22. Stavropoulos A, Karring T (2010) Guided tissue regeneration combined with a deproteinized bovine bone mineral (Bio-Oss) in the treatment of intrabony periodontal defects: 6-year results from a randomized-controlled clinical trial. J Clin Periodontol 37(2):200–210

    Article  Google Scholar 

  23. Horvath AL (2006) Solubility of structurally complicated materials: II. Bone J Phys Chem Ref Data 35(4):1653–1668

    Article  Google Scholar 

  24. Posner AS, Perloff A, Diorio AF (1958) Refinement of the hydroxyapatite structure. Acta Crystallogr 11(4):308–309

    Article  Google Scholar 

  25. Elliott JC, Mackie PE, Young RA (1973) Monoclinic hydroxyapatite. Science 180(4090):1055–1057

    Article  Google Scholar 

  26. Ma GB, Liu XY (2009) Hydroxyapatite: hexagonal or monoclinic? Cryst Growth Des 9(7):2991–2994

    Article  Google Scholar 

  27. Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mater Sci Eng C 25:131–143

    Article  Google Scholar 

  28. Pasteris JD, Wopenka B, Valsami-Jones E (2008) Bone and tooth mineralization: why apatite? Elements 4:97–104

    Article  Google Scholar 

  29. Uddin MH, Matsumoto T, Okazaki M, Nakahira A, Sohmura T (2010) Biomimetic fabrication of apatite related biomaterials. In: Mukherjee A (ed) Biomimetics learning from nature. InTech, Rijeka, pp 289–303

    Google Scholar 

  30. Rivera-Muñoz EM (2011) Hydroxyapatite-based materials: synthesis and characterization. In: Fazel R (ed) Biomedical engineering-frontiers and challenges. InTech, Rijeka, pp 75–98

    Google Scholar 

  31. Matsunaga K, Murata H, Shitara K (2010) Theoretical calculations of the thermodynamic stability of ionic substitutions in hydroxyapatite under an aqueous solution environment. J Phys Condens Matter 22(38):384210

    Article  Google Scholar 

  32. Vallet-RegI M (2008) Biomimetic nanoceramics in clinical use from materials to applications. Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  33. Hughes JM, Rakovan J (2002) The crystal structure of apatite, Ca5(PO4)3(F, OH, Cl). In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological and material importance, reviews in mineralogy and geochemistry, vol 48. Mineralogical Society of America, Washington, pp 1–12

    Google Scholar 

  34. El Feki H, Ben Salah A, Daoud A, Lamure A, Lacabanne C (2000) Studies by thermally stimulated current (TSC) of hydroxyl and fluoro-carbonated apatites containing sodium ions. J Phys Condens Matter 12:8331–8343

    Article  Google Scholar 

  35. de Maeyer EAP, Verbeeck RMH (1993) Possible substitution mechanisms for sodium and carbonate in calciumhydroxyapatite. Bull Soc Chim Belg 102:601–609

    Article  Google Scholar 

  36. de Maeyer EAP, Verbeeck RMH, Naessens DE (1993) Effect of heating on the constitution of Na+ and CO3 2− containing apatites obtained by hydrolysis of monetite. Inorg Chem 33:5999–6006

    Article  Google Scholar 

  37. Nounah A, Lacout J, Savariault JM (1992) Localization of cadmium in cadmium-containing hydroxy- and fluorapatite. J Alloys Compd 188:141–146

    Article  Google Scholar 

  38. El Feki H, Savariault JM, Ben Salah A (1999) Structure refinements by the Rietveld method of partially substituted hydroxyapatite: Ca9Na0.5(PO4)4.5(CO3)1.5(OH)2. J Alloys Compd 287:114–120

    Article  Google Scholar 

  39. Bianco A, Cacciotti I, Lombardi M, Montanaro L, Gusmano G (2007) Thermal stability and sintering behaviour of hydroxyapatite nanopowders. J Therm Anal Calorim 88:237–243

    Article  Google Scholar 

  40. Bigi A, Foresti B, Gregoriani R, Ripamonti A, Roveri N, Shah JS (1992) The role of magnesium on the structure of biological apatites. Calcif Tissue Int 50:439–444

    Article  Google Scholar 

  41. Lilley K, Gbureck U, Knowles J, Farrar D, Barralet J (2005) Cement from magnesium substituted hydroxyapatite. J Mater Sci Mater Med 16(5):455–460

    Article  Google Scholar 

  42. Suchanek WL, Byrappa K, Shuk P, Riman RE, Janas VF, TenHuisen KS (2004) Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method. Biomaterials 25:4647–4657

    Article  Google Scholar 

  43. Percival M (1999) Bone health & osteoporosis. Appl Nutr Sci Rep 5(4):1–5

    Google Scholar 

  44. Rude RK, Gruber HE (2004) Magnesium deficiency and osteoporosis: animal and human observations. J Nutr Biochem 15(12):710–716

    Article  Google Scholar 

  45. Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S (2008) Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour. J Mater Sci Mater Med 19:239–247

    Article  Google Scholar 

  46. Stipniece L, Salma-Ancane K, Borodajenko N, Sokolova M, Jakovlevs D, Berzina-Cimdina L (2014) Characterization of Mg-substituted hydroxyapatite synthesized by wet chemical method. Ceram Int 40(2):3261–3267

    Article  Google Scholar 

  47. Sader MS, Moreira EL, Moraes VCA, Araújo JC, LeGeros RZ, Soares GA (2009) Rietveld refinement of sintered magnesium substituted calcium apatite. Key Eng Mater 396–398:277–280

    Article  Google Scholar 

  48. Bertoni E, Bigi A, Cojazzi G, Gandolfi M, Panzavolta S, Roveri N (1998) Nanocrystals of magnesium and fluoride substituted hydroxyapatite. J Inorg Biochem 72:29–35

    Article  Google Scholar 

  49. Cox SC, Jamshidi P, Grover LM, Mallick KK (2014) Preparation and characterisation of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation. Mater Sci Eng C Mater Biol Appl 35:106–114

    Article  Google Scholar 

  50. Tampieri A, Celotti G, Landi E, Sandri M (2004) Magnesium doped hydroxyapatite: synthesis and characterization. Key Eng Mater 264–268:2051–2054

    Article  Google Scholar 

  51. Laurencin D, Almora-Barrios N, de Leeuw NH, Gervais C, Bonhomme C, Mauri F, Chrzanowski W, Knowle JC, Newport RJ, Wong A, Gan Z, Smith ME (2011) Magnesium incorporation into hydroxyapatite. Biomaterials 32(7):1826–1837

    Article  Google Scholar 

  52. Kannan S, Lemos IAF, Rocha JHG, Ferreira JMF (2005) Synthesis and characterization of magnesium substituted biphasic mixtures of controlled hydroxyapatite/β-tricalcium phosphate ratios. J Solid State Chem 178:3190–3196

    Article  Google Scholar 

  53. Ren F, Leng Y, Xin R, Ge X (2010) Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomater 6(7):2787–2796

    Article  Google Scholar 

  54. Cacciotti I, Bianco A, Lombardi M, Montanaro L (2009) Mg-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sintering behavior. J Eur Ceram Soc 29:2969–2978

    Article  Google Scholar 

  55. Farzadi A, Bakhshi F, Solati-Hashjin M, Asadi-Eydivand M, Azuanabu Osman N (2014) Magnesium incorporated hydroxyapatite: synthesis and structural properties characterization. Ceram Int 40:6021–6029

    Article  Google Scholar 

  56. Yasukawa A, Ouchi S, Kandori K, Ishikawa T (1996) Preparation and characterization of magnesium-calcium hydroxyapatites. J Mater Chem 6:1401–1405

    Article  Google Scholar 

  57. Bertinetti L, Tampieri A, Landi E, Martra G, Coluccia S (2006) Punctual investigation of surface sites of HA and magnesium-HA. J Eur Ceram Soc 26:987–991

    Article  Google Scholar 

  58. Bertinetti L, Drouet C, Combes C, Rey C, Tampieri A, Coluccia S, Martra G (2009) Surface characteristics of nanocrystalline apatites: effect of Mg surface enrichment on morphology, surface hydration species, and cationic environments. Langmuir 25:5647–5654

    Article  Google Scholar 

  59. Bigi A, Falini G, Foresti E, Gazzano M, Ripamonti A, Roveri N (1996) Rietveld structure refinements of calcium hydroxylapatite containing magnesium. Acta Crystallogr B 52:87–92

    Article  Google Scholar 

  60. Lijuan X, Liuyun J, Lixin J, Chengdong X (2013) Synthesis of Mg-substituted hydroxyapatite nanopowders: effect of two different magnesium sources. Mater Lett 106:246–249

    Article  Google Scholar 

  61. Fadeev IV, Shvorneva LI, Barinov SM, Orlovskii VP (2003) Synthesis and structure of magnesium-substituted hydroxyapatite. Inorg Mater 39:947–950

    Article  Google Scholar 

  62. Gozalian A, Behnamghader A, Daliri M, Moshkforoush A (2011) Synthesis and thermal behavior of Mg-doped calcium phosphate nanopowders via the sol–gel method. Sci Iran F 18:1614–1622

    Article  Google Scholar 

  63. Kalita SJ, Bhatt HA (2007) Nanocrystalline hydroxyapatite doped with magnesium and zinc: synthesis and characterization. Mater Sci Eng C 27:837–848

    Article  Google Scholar 

  64. Qaisar SA, Bilton M, Wallace R, Brydson R, Brown AP, Ward M, Milne SJ (2010) Sol–gel synthesis and TEM-EDX characterisation of hydroxyapatite nanoscale powders modified by Mg, Sr or Ti. J Geophys Res 241:012042

    Google Scholar 

  65. Khanra AK, Jung HC, Yu SH, Hong KS, Shin KS (2010) Microstructure and mechanical properties of Mg–HAP composites. Bull Mater Sci 33:43–47

    Article  Google Scholar 

  66. Mishra VK, Bhattacharjee BN, Parkash O, Kumar D, Rai SB (2014) Mg-doped hydroxyapatite nanoplates for biomedical applications: a surfactant assisted microwave synthesis and spectroscopic investigations. J Alloys Compd 614:283–288

    Article  Google Scholar 

  67. Zyman Z, Tkachenko M, Epple M, Polyakow M, Naboka M (2006) Magnesium-substituted hydroxyapatite ceramics. Mater Werkst 37:474–477

    Article  Google Scholar 

  68. Bigi A, Falini G, Foresti E, Gazzano M, Ripamonti A, Roveri N (1993) Magnesium influence on hydroxyapatite crystallization. J Inorg Biochem 49(1):69–78

    Article  Google Scholar 

  69. Mayer L, Schlam R, Featberstone JDB (1997) Magnesium-containing carbonate apatites. J Inorg Biochem 66:1–6

    Article  Google Scholar 

  70. Cacciotti I, Bianco A (2011) High thermally stable Mg-substituted tricalcium phosphate by precipitation. Ceram Int 37:127–137

    Article  Google Scholar 

  71. Kim SR, Lee JH, Kim YT, Riu DH, Jung SJ, Lee YJ, Chung SC, Kim YH (2003) Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviours. Biomaterials 24:1389–1398

    Article  Google Scholar 

  72. Webster TJ, Ergun C, Doremus RH, Bizios R (2002) Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. II. Mechanisms of osteoblast adhesion. J Biomed Mater Res 59(2):312–317

    Article  Google Scholar 

  73. de Lima IR, Alves GG, Soriano CA, Campaneli AP, Gasparoto TH, Ramos ES, de Sena LA, Rossi AM, Granjeiro JM (2011) Understanding the impact of divalent cation substitution on hydroxyapatite: an in vitro multiparametric study on biocompatibility. J Biomed Mater Res A 98A(3):351–358

    Article  Google Scholar 

  74. Jiao MJ, Wang XX (2009) Electrolytic deposition of magnesium-substituted hydroxyapatite crystals on titanium substrate. Mater Lett 63:2286–2289

    Article  Google Scholar 

  75. Blake GM, Zivanovic MA, McEwan AJ, Ackery DM (1986) SR-89 therapy – strontium kinetics in disseminated carcinoma of the prostate. Eur J Nucl Med 12(9):447–454

    Article  Google Scholar 

  76. Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C (2001) Incorporation and distribution of strontium in bone. Bone 28(4):446–453

    Article  Google Scholar 

  77. Naddari T, Hamdi B, Savariault JM, El Feki H, Ben Salah A (2003) Substitution mechanism of alkali metals for strontium in strontium hydroxyapatite. Mater Res Bull 38(2):221–230

    Article  Google Scholar 

  78. Robinson RG, Spicer JA, Preston DF, Wegst AV, Martin NL (1987) Treatment of metastatic bone pain with strontium-89. Int J Rad Appl Instrum 14(3):219–222

    Article  Google Scholar 

  79. Canalis E, Hott M, Deloffre P, Tsouderos Y, Marie PJ (1996) The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone 18:517–523

    Article  Google Scholar 

  80. Bonnelye E, Chabadel A, Saltel F, Jurdic P (2008) Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 42:129–138

    Article  Google Scholar 

  81. Caverzasio J (2008) Strontium ranelate promotes osteoblastic cell replication through at least two different mechanisms. Bone 42(6):1131–1136

    Article  Google Scholar 

  82. Reginster JY (2002) Strontium ranelate in osteoporosis. Curr Pharm Des 8(21):1907–1916

    Article  Google Scholar 

  83. Peng SL, Zhou GQ, Luk KDK, Cheung KMC, Li ZY, Lam WM, Zhou ZJ, Lu WW (2009) Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Cell Physiol Biochem 23(1–3):165–174

    Article  Google Scholar 

  84. Hurtel-Lemaire AS, Mentaverri R, Caudrillier A, Cournarie F, Wattel A, Kamel S, Terwilliger EF, Brown EM, Brazier M (2009) The calcium-sensing receptor is involved in strontium ranelate-induced osteoclast apoptosis: new insights into the associated signaling pathways. J Biol Chem 284(1):575–584

    Article  Google Scholar 

  85. Buehler J, Chappuis P, Saffar JL, Tsouderos Y, Vignery A (2001) Strontium ranelate inhibits bone resorption while maintaining bone formation in alveolar bone in monkeys (Macaca fascicularis). Bone 29(2):176–179

    Article  Google Scholar 

  86. Guida A, Towler MR, Wall JG, Hill RG, Eramo S (2003) Preliminary work on the antibacterial effect of strontium in glass ionomer cements. J Mater Sci Lett 22(20):1401–1403

    Article  Google Scholar 

  87. Brauer DS, Karpukhina N, Kedia G, Bhat A, Law RV, Radecka I, Hill RG (2012) Bactericidal strontium-releasing injectable bone cements based on bioactive glasses. J R Soc Interface 10(78):1–8

    Article  Google Scholar 

  88. Bigi A, Boanini E, Capuccini C, Gazzano M (2007) Strontium-substituted hydroxyapatite nanocrystals. Inorg Chim Acta 360(3):1009–1116

    Article  Google Scholar 

  89. Okayama S, Akao M, Nakamura S, Shin Y, Higashikata M, Aoki H (1991) The mechanical properties and solubility of strontium-substituted hydroxyapatite. Biomed Mater Eng 1(1):11–17

    Google Scholar 

  90. Li ZH, Wu JM, Huang SJ, Guan J, Zhang XZ (2010) Strontium hydroxyapatite synthesis, characterization, and cell cytotoxicity. Adv Mater Res 160–162:117–122

    Google Scholar 

  91. Liu W, Wang T, Shen Y, Pan H, Peng S, Lu WW (2013) Strontium incorporated coralline hydroxyapatite for engineering bone. ISRN Biomater 2013:649163 (11 pages)

    Article  Google Scholar 

  92. Mardziah CM, Sopyan I, Ramesh S (2009) Strontium-doped hydroxyapatite nanopowder via sol–gel method: effect of strontium concentration and calcination temperature on phase behavior. Trends Biomater Artif Organs 23:105–113

    Google Scholar 

  93. Renaudin G, Jallot E, Nedelec JM (2009) Effect of strontium substitution on the composition and microstructure of sol–gel derived calcium phosphates. J Sol-Gel Sci Technol 51:287–294

    Article  Google Scholar 

  94. Kim HW, Koh YH, Kong YM, Kang JG, Kim HE (2004) Strontium substituted calcium phosphate biphasic ceramics obtained by a powder precipitation method. J Mater Sci Mater Med 15:1129–1134

    Article  Google Scholar 

  95. O׳Donnell MD, Fredholm Y, de Rouffignac A, Hill RG (2008) Structural analysis of a series of strontium-substituted apatites. Acta Biomater 4:1455–1464

    Article  Google Scholar 

  96. Li ZY, Lam WM, Yang C, Xu B, Ni GX, Abbah SA, Cheung KMC, Luk KDK, Lu WW (2007) Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite. Biomaterials 28:1452–1460

    Article  Google Scholar 

  97. Landi E, Tampieri A, Celotti G, Sprio S, Sandri M, Logroscino G (2007) Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomater 3:961–969

    Article  Google Scholar 

  98. Lin K, Liu P, Wei L, Zou Z, Zhang W, Qian Y, Shen Y, Chang J (2013) Strontium substituted hydroxyapatite porous microspheres: surfactant-free hydrothermal synthesis, enhanced biological response and sustained drug release. Chem Eng J 222:49–59

    Article  Google Scholar 

  99. Chung CJ, Long HY (2011) Systematic strontium substitution in hydroxyapatite coatings on titanium via micro-arc treatment and their osteoblast/osteoclast responses. Acta Biomater 7:4081–4087

    Article  Google Scholar 

  100. Capuccini C, Torricelli P, Sima F, Boanini E, Ristoscu C, Bracci B, Socol G, Fini M, Mihailescu IN, Bigi A (2008) Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: in vitro osteoblast and osteoclast response. Acta Biomater 4:1885–1893

    Article  Google Scholar 

  101. Pereiro I, Rodriguez-Valencia C, Serra C, Solla EL, Serra J, González P (2012) Pulsed laser deposition of strontium-substituted hydroxyapatite coatings. Appl Surf Sci 258(23):9192–9197

    Article  Google Scholar 

  102. Oliveira AL, Reis RL, Li P (2007) Strontium-substituted apatite coating grown on Ti6Al4V substrate through biomimetic synthesis. J Biomed Mater Res 83B:258–265

    Article  Google Scholar 

  103. Bracci B, Torricelli P, Panzavolta S, Boanini E, Giardino R, Bigi A (2009) Effect of Mg2+, Sr2+ and Mn2+ on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings. J Inorg Biochem 103:1666–1674

    Article  Google Scholar 

  104. Pan HB, Li ZY, Wang T, Lam WM, Wong CT, Darvell BW, Luk KDK, Hu Y, Lu WW (2009) Nucleation of strontium-substituted apatite. Cryst Growth Des 9(8):3342–3345

    Article  Google Scholar 

  105. Zhu K, Yanagisawa K, Shimanouchi R, Onda A, Kajiyoshi K (2006) Preferential occupancy of metal ions in the hydroxyapatite solid solutions synthesized by hydrothermal method. J Eur Ceram Soc 26(4–5):509–513

    Article  Google Scholar 

  106. Bigi A, Falini G, Gazzano M, Roveri N, Tedesco E (1998) Structural refinements of strontium substituted hydroxylapatites. Mater Sci Forum 278–281:814–819

    Article  Google Scholar 

  107. Terra J, Dourado ER, Eon JG, Ellis DE, Gonzalez G, Rossi AM (2009) The structure of strontium-doped hydroxyapatite: an experimental and theoretical study. Phys Chem Chem Phys 11:568–577

    Article  Google Scholar 

  108. Kavitha M, Subramanian R, Narayanan R, Udhayabanu V (2014) Solution combustion synthesis and characterization of strontium substituted hydroxyapatite nanocrystals. Powder Technol 253:129–137

    Article  Google Scholar 

  109. Capuccini C, Torricelli P, Boanini E, Gazzano M, Giardino R, Bigi A (2009) Interaction of Sr-doped hydroxyapatite nanocrystals with osteoclast and osteoblast-like cells. J Biomed Mater Res 89A:594–600

    Article  Google Scholar 

  110. Christoffersen J, Christoffersen MR, Kolthoff N, Barenholdt O (1997) Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection. Bone 20(1):47–57

    Article  Google Scholar 

  111. Boanini E, Torricelli P, Fini M, Bigi A (2011) Osteopenic bone cell response to strontium-substituted hydroxyapatite. J Mater Sci Mater Med 22(9):2079–2088

    Article  Google Scholar 

  112. Pan HB, Li ZY, Lam WM, Wong JC, Darvell BW, Luk KDK, Lu WW (2009) Solubility of strontium-substituted apatite by solid titration. Acta Biomater 5(5):1678–1685

    Article  Google Scholar 

  113. Zhang W, Shen Y, Pan H, Lin K, Liu X, Darvell BW, Lu WW, Chang J, Deng L, Wang D, Huang W (2011) Effects of strontium in modified biomaterials. Acta Biomater 7(2):800–808

    Article  Google Scholar 

  114. Verberckmoes SC, Behets GJ, Oste L, Bervoets AR, Lamberts LV, Drakopoulos M, Somogyi A, Cool P, Dorrine W, De Broe ME, D’Haese PC (2004) Effects of strontium on the physicochemical characteristics of hydroxyapatite. Calcif Tissue Int 75(5):405–415

    Article  Google Scholar 

  115. Ni GX, Chiu KY, Lu WW, Wang Y, Zhang YG, Hao LB, Li ZY, Lam WM, Lu SB, Luk KDK (2006) Strontium-containing hydroxyapatite bioactive bone cement in revision hip arthroplasty. Biomaterials 27(24):4348–4355

    Article  Google Scholar 

  116. dos Santos Tavares D, Resende CX, Quitan MP, De Oliveira Castro L, Granjeiro JM, De Almeida Soares G (2011) Incorporation of strontium up to 5 mol% to hydroxyapatite did not affect its cytocompatibility. Mater Res 14(4):456–460

    Article  Google Scholar 

  117. Lin Y, Yang Z, Cheng J, Wang L (2008) Synthesis, characterization and antibacterial property of strontium half and totally substituted hydroxyapatite nanoparticles. J Wuhan Univ Technol Mater Sci Educ 23(4):475–479

    Article  Google Scholar 

  118. Ravi ND, Balu R, Sampath Kumar TS (2012) Strontium-substituted calcium deficient hydroxyapatite nanoparticles: synthesis, characterization and antibacterial properties. J Amer Ceram Soc 95(9):2700–2708

    Article  Google Scholar 

  119. Yamaguchi M, Yamaguchi R (1986) Action of zinc on bone metabolism in rats – increases in alkaline-phosphatase activity and DNA content. Biochem Pharmacol 35(5):773–777

    Article  Google Scholar 

  120. Barrea RA, Pérez CA, Ramos AY, Sánchez HJ, Grenón M (2003) Distribution and incorporation of zinc in biological calcium phosphates. X-Ray Spectrom 32:387–395

    Article  Google Scholar 

  121. Yamaguchi M (1998) Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med 11:119–135

    Article  Google Scholar 

  122. Moonga BS, Dempster DW (1995) Zinc is a potent inhibitor of osteoclastic bone-resorption in vitro. J Bone Miner Res 10:453–457

    Article  Google Scholar 

  123. Yamaguchi M, Oishi H, Suketa Y (1987) Stimulatory effect of zinc on bone-formation in tissue-culture. Biochem Pharmacol 36(22):4007–4012

    Article  Google Scholar 

  124. Kishi S, Yamaguchi M (1994) Inhibitory effect of zinc-compounds on osteoclast-like cell-formation in mouse marrow cultures. Biochem Pharmacol 48(6):1225–1230

    Article  Google Scholar 

  125. Yamaguchi M, Uchiyama S (2004) Receptor activator of NF-kB ligand-stimulated osteoclastogenesis in mouse marrow culture is suppressed by zinc in vitro. Int J Mol Med 14(1):81–85

    Google Scholar 

  126. Yamaguchi M, Goto M, Uchiyama S, Nakagawa T (2008) Effect of zinc on gene expression in osteoblastic MC3T3-E1 cells: enhancement of Runx2, OPG, and regucalcin mRNA expressions. Mol Cell Biochem 312(1–2):157–166

    Article  Google Scholar 

  127. Khadeer MA, Sahu SN, Bai G, Abdulla S, Gupta A (2005) Expression of the zinc transporter ZIP1 in osteoclasts. Bone 37(3):296–304

    Article  Google Scholar 

  128. Sogo Y, Sakurai T, Onuma K, Ito A (2002) The most appropriate (Ca + Zn)/P molar ratio to minimize the zinc content of ZnTCP/HAP ceramic used in the promotion of bone formation. J Biomed Mater Res 62(3):457–463

    Article  Google Scholar 

  129. Ito A, Ojima K, Naito H, Ichinose N, Tateishi T (2000) Preparation, solubility, and cytocompatibility of zinc-releasing calcium phosphate ceramics. J Biomed Mater Res 50:178–183

    Article  Google Scholar 

  130. Ito A, Kawamura H, Otsuka M, Ikeuchi M, Ohgushi H, Ishikawa K, Onuma K, Kanzaki N, Sogo Y, Ichinose N (2002) Zinc-releasing calcium phosphate for stimulating bone formation. Mater Sci Eng C 22:21–25

    Article  Google Scholar 

  131. Tang YZ, Chappell HF, Dove MT, Reeder RJ, Lee YJ (2009) Zinc incorporation into hydroxylapatite. Biomaterials 30:2864–2872

    Article  Google Scholar 

  132. Fujii E, Ohkubo M, Tsuru K, Hayakawa S, Osaka A, Kawabata K, Bonhomme C, Babonneau F (2006) Selective protein adsorption property and characterization of nano-crystalline zinc-containing hydroxyapatite. Acta Biomater 2:69–74

    Article  Google Scholar 

  133. Miyaji F, Kono Y, Suyama Y (2005) Formation and structure of zinc-substituted calcium hydroxyapatite. Mater Res Bull 40:209–220

    Article  Google Scholar 

  134. Bigi A, Foresti E, Gandolfi M, Gazzano M, Roveri N (1995) Inhibiting effect of zinc on hydroxylapatite crystallization. J Inorg Biochem 58:49–58

    Article  Google Scholar 

  135. Ergun C, Webster TJ, Bizios R, Doremus RH (2002) Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. I. Structure and microstructure. J Biomed Mater Res 59(2):305–311

    Article  Google Scholar 

  136. Webster TJ, Massa-Schlueter EA, Smith JL, Slamovich EB (2004) Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials 25:2111–2121

    Article  Google Scholar 

  137. Sogo Y, Ito A, Fukasawa K, Sakurai T, Ichinose N (2004) Zinc containing hydroxyapatite ceramics to promote osteoblastic cell activity. Mater Sci Technol 20(9):1079–1083

    Article  Google Scholar 

  138. Kumar GS, Thamizhavel A, Yokogawa Y, Kalkura SN, Girija EK (2012) Synthesis, characterization and in vitro studies of zinc and carbonate co-substituted nano-hydroxyapatite for biomedical applications. Mater Chem Phys 134:1127–1135

    Article  Google Scholar 

  139. Hayakawa S, Ando K, Tsuru K, Osaka A, Fujii E, Kawabata K, Bonhomme C, Babonneau F (2007) Structural characterization and protein adsorption property of hydroxyapatite particles modified with zinc ions. J Am Ceram Soc 90(2):565–569

    Article  Google Scholar 

  140. Li M, Xiao X, Liu R, Chen C, Huang L (2008) Structural characterization of zinc-substituted hydroxyapatite prepared by hydrothermal method. J Mater Sci Mater Med 19:797–803

    Article  Google Scholar 

  141. Chung RJ, Hsieh MF, Huang CW, Perng LH, Wen HW, Chin TS (2006) Antimicrobial effects and human gingival biocompatibility of hydroxyapatite sol–gel coatings. J Biomed Mater Res B 76B:169–178

    Article  Google Scholar 

  142. Velard F, Laurent-Maquin D, Braux J, Guillaume C, Bouthors S, Jallot E, Nedelec JM, Belaaouaj A, Laquerriere P (2010) The effect of zinc on hydroxyapatite-mediated activation of human polymorphonuclear neutrophils and bone implant-associated acute inflammation. Biomaterials 31(8):2001–2009

    Article  Google Scholar 

  143. Grandjean-Laquerrier A, Laquerriere P, Jallot E, Nedelec JM, Guenounou M, Laurent-Maquin D, Phillips TM (2006) Influence of the zinc concentration of sol–gel derived zinc substituted hydroxyapatite on cytokine production by human monocytes in vitro. Biomaterials 27(17):3195–3200

    Article  Google Scholar 

  144. Ren F, Xin R, Ge X, Leng Y (2009) Characterization and structural analysis of zinc substituted hydroxyapatites. Acta Biomater 5:3141–3149

    Article  Google Scholar 

  145. Terra J, Jiang M, Ellis DE (2002) Characterization of electronic structure and bonding in hydroxyapatite: Zn substitution for Ca. Philos Mag A 82:2357–2377

    Article  Google Scholar 

  146. Matsunaga K (2008) First-principles study of substitutional magnesium and zinc in hydroxyapatite and octacalcium phosphate. J Chem Phys 128(24):245101

    Article  Google Scholar 

  147. Chappell H, Shepherd D, Best S (2009) Zinc substituted hydroxyapatite-a comparison of modeling and experimental data. Key Eng Mater 396–398:729–732

    Article  Google Scholar 

  148. Tamm T, Peld M (2006) Computational study of cation substitutions in apatites. J Solid State Chem 179:1581–1587

    Article  Google Scholar 

  149. Ma X, Ellis DE (2008) Initial stages of hydration and Zn substitution/occupation on hydroxyapatite (0001) surfaces. Biomaterials 29(3):257–265

    Article  Google Scholar 

  150. Matos M, Terra J, Ellis DE (2010) Mechanism of Zn stabilization in hydroxyapatite and hydrated (001) surfaces of hydroxyapatite. J Phys Condes Matter 22(14):145502 (7 pages)

    Article  Google Scholar 

  151. Yin X, Calderin L, Stott MJ, Sayer M (2002) Density functional study of structural, electronic and vibrational properties of Mg- and Zn-doped tricalcium phosphate biomaterials. Biomaterials 23(20):4155–4163

    Article  Google Scholar 

  152. Kanzaki N, Onuma K, Treboux G, Tsutsumi S, Ito A (2000) Inhibitory effect of magnesium and zinc on crystallization kinetics of hydroxyapatite (0 0 0 1) face. J Phys Chem B 104:4189–4194

    Article  Google Scholar 

  153. Stanic V, Dimitrijevic S, Antic-Stankovic J, Mitric M, Jokic B, Plecas IB, Raicevic S (2010) Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl Surf Sci 256(20):6083–6089

    Article  Google Scholar 

  154. Ohsumi Y, Kitamoto K, Anraku Y (1988) Changes induced in the permeability barrier of the yeast plasma membrane by cupric ion. J Bacteriol 170(6):2676–2682

    Google Scholar 

  155. Wang X, Ito A, Sogo Y, Li X, Oyane A (2010) Zinc-containing apatite layers on external fixation rods promoting cell activity. Acta Biomater 6(3):962–968

    Article  Google Scholar 

  156. Yamada Y, Ito A, Kojima H, Sakane M, Miyakawa S, Uemura T, LeGeros RZ (2008) Inhibitory effect of Zn2+ in zinc-containing \( \beta \)-tricalcium phosphate on resorbing activity of mature osteoclasts. J Biomed Mater Res A 84(2):344–352

    Article  Google Scholar 

  157. Kawamura H, Ito A, Miyakawa S, Layrolle P, Ojima K, Ichinose N, Tateishi T (2000) Stimulatory effect of zinc-releasing calcium phosphate implant on bone formation in rabbit femora. J Biomed Mater Res 50(2):184–190

    Article  Google Scholar 

  158. Thian ES, Konishi T, Kawanobe Y, Lim PN, Choong C, Ho B, Aizawa M (2013) Zinc-substituted hydroxyapatite: a biomaterial with enhanced, bioactivity and antibacterial properties. J Mater Sci Mater Med 24(2):437–445

    Article  Google Scholar 

  159. Chen X, Tang QL, Zhu YJ, Zhu CL, Feng XP (2012) Synthesis and antibacterial property of zinc loaded hydroxyapatite nanorods. Mater Lett 89:233–235

    Article  Google Scholar 

  160. Venkatasubbu GD, Ramasamy S, Ramakrishnan V, Kumar J (2011) Nanocrystalline hydroxyapatite and zinc doped hydroxyapatite as carrier material for controlled delivery of ciprofloxacin. 3Biotech 1(3):173–186

    Google Scholar 

  161. Rameshbabu N, Kumar TSS, Prabhakar TG, Sastry VS, Murty K, Rao KP (2007) Antibacterial nanosized silver substituted hydroxyapatite: synthesis and characterization. J Biomed Mater Res A 80A:581–591

    Article  Google Scholar 

  162. Sygnatowicz M, Keyshar K, Tiwari A (2010) Antimicrobial properties of silver-doped hydroxyapatite nano-powders and thin films. JOM 62(7):65–70

    Article  Google Scholar 

  163. George N, Faoagali J, Muller M (1997) Silvazine (TM) (silver sulfadiazine and chlorhexidine) activity against 200 clinical isolates. Burns 23(6):493–495

    Article  Google Scholar 

  164. Klasen HJ (2000) A historical review of the use of silver in the treatment of burns. I. Early uses. Burns 26(2):117–130

    Article  Google Scholar 

  165. Lara HH, Garza-Trevino EN, Ixtepan-Turrent L, Singh DK (2011) Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnol 9:30–38

    Article  Google Scholar 

  166. Wright JB, Lam K, Hansen D, Burrell RE (1999) Efficacy of topical silver against fungal burn wound pathogens. Am J Infect Control 27(4):344–350

    Article  Google Scholar 

  167. Simchi A, Tamjid E, Pishbin F, Boccaccini AR (2011) Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomed Nanotechnol Biol Med 7(1):22–39

    Article  Google Scholar 

  168. Darouiche RO, Raad II, Heard SO et al (1999) A comparison of two antimicrobial-impregnated central venous catheters. N Engl J Med 340(1):1–8

    Article  Google Scholar 

  169. Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139

    Article  Google Scholar 

  170. Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90(1):59–63

    Article  Google Scholar 

  171. Hardes J, Ahrens H, Gebert C, Streitbuerger A, Buerger H, Erren M, Gunsel A, Wedemeyer C, Saxler G, Winkelmann W, Gosheger G (2007) Lack of toxicological side-effects in silver-coated megaprostheses in humans. Biomaterials 28(18):2869–2875

    Article  Google Scholar 

  172. Gosheger G, Hardes J, Ahrens H, Streitburger A, Buerger H, Erren M, Gunsel A, Kemper FH, Winkelmann W, Von Eiff C (2004) Silver-coated megaendoprostheses in a rabbit model – an analysis of the infection rate and toxicological side effects. Biomaterials 25(24):5547–5556

    Article  Google Scholar 

  173. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668

    Article  Google Scholar 

  174. Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25(4):279–283

    Article  Google Scholar 

  175. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74(7):2171–2178

    Article  Google Scholar 

  176. Hajipour MJ, Fromm KM, Ashkarran AA, Jimenez de Aberasturi D, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2013) Erratum: antibacterial properties of nanoparticles. Trends Biotechnol 31(1):61–62

    Article  Google Scholar 

  177. Gordon O, Slenters TV, Brunetto PS, Villaruz AE, Sturdevant DE, Otto M, Landmann R, Fromm KM (2010) Silver coordination polymers for prevention of implant infection: thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrob Agents Chemother 54(10):4208–4218

    Article  Google Scholar 

  178. Kora AJ, Arunachalam J (2011) Assessment of antibacterial activity of silver nanoparticles on Pseudomonas aeruginosa and its mechanism of action. World J Microbiol Biotechnol 27(5):1209–1216

    Article  Google Scholar 

  179. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3(1):95–101

    Article  Google Scholar 

  180. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182

    Article  Google Scholar 

  181. Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GQ, Cui FZ (1998) Antimicrobial effects of metal ions (Ag(+), Cu(2+), Zn(2+)) in hydroxyapatite. J Mater Sci Mater Med 9:129–134

    Article  Google Scholar 

  182. Chen Y, Zheng X, Xie Y, Ji H, Ding C, Li H, Dai K (2010) Silver release from silver-containing hydroxyapatite coatings. Surf Coat Technol 205:1892–1896

    Article  Google Scholar 

  183. Oh KS, Kim KJ, Jeong YK, Choa YH (2003) Effect of fabrication processes on the antimicrobial properties of silver doped nano-sized HAp. Key Eng Mater 240–242:583–586

    Article  Google Scholar 

  184. Su BH, Xiong ZX (2007) Preparation of antibacterial ceramics with silver-carrying nano-hydroxyapatite. Key Eng Mater 336–338:1563–1566

    Article  Google Scholar 

  185. Shi CL, Ren I, Xiong ZX (2005) Preparation and effectiveness of antibacterial hydroxyapatite powder containing silver. Key Eng Mater 280–283:1529–1532

    Article  Google Scholar 

  186. Ciobanu CS, Massuyeau F, Constantin LV, Predoi D (2011) Structural and physical properties of antibacterial Ag-doped nano-hydroxyapatite synthesized at 100 °C. Nanoscale Res Lett 6:613–620

    Article  Google Scholar 

  187. Ciobanu CS, Iconaru SL, Le Coustumer P, Constantin LV, Predoi D (2012) Antibacterial activity of silver-doped hydroxyapatite nanoparticles against gram-positive and gram-negative bacteria. Nanoscale Res Lett 7:324–332

    Article  Google Scholar 

  188. Ciobanu CS, Iconaru SL, Chifiriuc MC, Costescu A, le Coustumer P, Predoi D (2013) Synthesis and antimicrobial activity of silver-doped hydroxyapatite nanoparticles. Biomed Res Intern 2013:916218 (10 pages)

    Article  Google Scholar 

  189. Ciobanu CS, Iconaru SL, Pasuk I, Vasile BS, Lupu AR, Hermenean A, Dinischiotu A, Predoi D (2013) Structural properties of silver doped hydroxyapatite and their biocompatibility. Mater Sci Eng C 33:1395–1402

    Article  Google Scholar 

  190. Thian ES, Lim PN, Shi Z, Tay BY, Neoh KJ (2012) Silver-doped apatite as a bioactive and an antimicrobial bone material. Key Eng Mater 493–494:27–30

    Google Scholar 

  191. Peetsch A, Greulich C, Braun D, Stroetges C, Rehage H, Siebers B, Koller M, Epple M (2013) Silver-doped calcium phosphate nanoparticles: synthesis, characterization, and toxic effects toward mammalian and prokaryotic cells. Colloid Surf B Biointerfaces 102:724–729

    Article  Google Scholar 

  192. Stanic V, Janackovic D, Dimitrijevic S, Tanaskovic SB, Mitric M, Pavlovic MS, Krstic A, Jovanovic D, Raicevic S (2011) Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering. Appl Surf Sci 257:4510–4518

    Article  Google Scholar 

  193. Chen W, Oh S, Ong AP, Oh N, Liu Y, Courtney HS, Appleford M, Ong JL (2007) Antibacterial and osteogenic properties hydroxyapatite coatings produced using of silver-containing a sol gel process. J Biomed Mater Res A 82A(4):899–906

    Article  Google Scholar 

  194. Chung RJ, Hsieh MF, Huang KC, Perng LH, Chou FI, Chin TS (2005) Anti-microbial hydroxyapatite particles synthesized by a sol-gel route. J Sol-Gel Sci Technol 33(2):229–239

    Article  Google Scholar 

  195. Iconaru SL, Chapon P, le Coustumer P, Predoi D (2014) Antimicrobial activity of thin solid films of silver doped hydroxyapatite prepared by sol–gel method. Scientific World Journal 2014:165351 (8 pages)

    Article  Google Scholar 

  196. Díaz M, Barba F, Miranda M, Guitián F, Torrecillas R, Moya JS (2009) Synthesis and antimicrobial activity of a silver-hydroxyapatite nanocomposite. J Nanomater 2009:1–6

    Article  Google Scholar 

  197. Feng QL, Kim TN, Wu J, Park ES, Kim JO, Lim DY, Cui FZ (1998) Antibacterial effects of Ag-HAp thin films on alumina substrates. Thin Solid Films 335(1–2):214–219

    Article  Google Scholar 

  198. Honda M, Kawanobe Y, Ishii K, Konishi T, Mizumoto M, Kanzawa N, Matsumoto M, Aizawa M (2013) In vitro and in vivo antimicrobial properties of silver-containing hydroxyapatite prepared via ultrasonic spray pyrolysis route. Mater Sci Eng C 33(8):5008–5018

    Article  Google Scholar 

  199. Yang L, Ning X, Xiao Q, Chen K, Zhou H (2007) Development and characterization of porous silver-incorporated hydroxyapatite ceramic for separation and elimination of microorganisms. J Biomed Mater Res 81B:50–56

    Article  Google Scholar 

  200. Oh KS, Kim KJ, Jeong YK, Park EK, Kim SY, Kwon JH, Ryoo HM, Shin HI (2004) Cytotoxicity and antimicrobial effect of Ag doped hydroxyapatite. Key Eng Mater 264–268:2107–2110

    Article  Google Scholar 

  201. Costescu A, Ciobanu CS, Iconaru SL, Ghita RV, Chifiriuc CM, Marutescu LG, Predoi D (2013) Fabrication, characterization and antimicrobial activity, evaluation of low silver concentrations in silver-doped hydroxyapatite nanoparticles. J Nanomater 2013:194854 (9 pages)

    Article  Google Scholar 

  202. Narayanan R, Singh V, Kwon TY, Kim KH (2009) Combustion synthesis of hydroxyapatite and hydroxyapatite (silver) powders. Key Eng Mater 396–398:411–419

    Article  Google Scholar 

  203. Chen W, Liu Y, Courtney HS, Bettenga M, Agrawal CM, Bumgardner JD, Ong JL (2006) In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 27:5512–5517

    Article  Google Scholar 

  204. Ewald A, Hösel D, Patel S, Grover LM, Barralet JE, Gbureck U (2011) Silver-doped calcium phosphate cements with antimicrobial activity. Acta Biomat 7:4064–4070

    Article  Google Scholar 

  205. Ciobanu CS, Andronescu E, Vasile BS, Valsangiacom CM, Ghita RV, Predoi D (2010) Synthesis and antimicrobial activity of silver-doped hydroxyapatite nanoparticles. Optoelectron Adv Mater 4:1515–1519

    Google Scholar 

  206. Badrour L, Sadel A, Zahir M, Kimakh L, El Hajbi A (1998) Synthesis and physical and chemical characterization of Ca10-xAgx(PO4)(6)(OH)(2-x)square(x) apatites. Ann Chim Sci Mater 23:61–64

    Article  Google Scholar 

  207. Choi JW, Cho HM, Kwak EK, Kwon TG, Ryoo HM, Jeong YK, Oh KS, Shin HI (2004) Effect of Ag-doped hydroxyapatite as a bone filler for inflamed bone defects. Key Eng Mater 254–256:47–50

    Google Scholar 

  208. Roy M, Fielding GA, Beyenal H, Bandyopadhyay A, Bose S (2012) Mechanical, in vitro antimicrobial, and biological properties of plasma-sprayed silver-doped hydroxyapatite coating. Appl Mater Interfaces 4(3):1341–1349

    Article  Google Scholar 

  209. Samani S, Hossainalipour SM, Tamizifar M, Rezaie HR (2013) In vitro antibacterial evaluation of sol–gel-derived Zn-, Ag-, and (Zn + Ag)-doped hydroxyapatite coatings against methicillin-resistant Staphylococcus aureus. J Biomed Mater Res A 101(1):222–230

    Article  Google Scholar 

  210. Guo C, Li X, Dong Y (2011) Preparation and characterization of silver/hydroxyapatite nanoparticles. Adv Mater Res 311–313:1746–1750

    Article  Google Scholar 

  211. Fielding GA, Roy M, Bandyopadhyay A, Bose S (2012) Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. Acta Biomater 8(8):3144–3152

    Article  Google Scholar 

  212. Brajendra S, Dubey AK, Kumar S, Saha N, Basu B, Gupta R (2011) In vitro biocompatibility and antimicrobial activity of wet chemically prepared Ca10-xAgx(PO4)6(OH)2 (0.0 ≤ x ≤ 0.5) hydroxyapatites. Mater Sci Eng C 31(7):1320–1329

    Article  Google Scholar 

  213. Lee IS, Whang CN, Oh KS, Park JC, Lee KY, Lee GH, Chung SM, Sung XD (2006) Formation of silver incorporated calcium phosphate film for medical applications. Nucl Inst Methods Phys Res B 242(1–2):45–47

    Article  Google Scholar 

  214. Wiesmann HP, Plate U, Zierold K, Hohling HJ (1998) Potassium is involved in apatite biomineralization. J Dent Res 77:1654–1657

    Article  Google Scholar 

  215. Hohling HJ, Mishima H, Kozawa Y, Daimon T, Barckhaus RH, Richte KD (1991) Microprobe analyses of the potassium calcium distribution relationship in predentin. Scan Microsc Int 5:247–253

    Google Scholar 

  216. Itoh R, Suyama Y (1996) Sodium excretion in relation to calcium and hydroxyproline excretion in a healthy Japanese population. Am J Clin Nutr 63:735–740

    Google Scholar 

  217. Ginty F, Flynm A, Cashman KD (1998) The effect of dietary sodium intake on biochemical markers of bone metabolism in young women. Br J Nutr 79:343–350

    Article  Google Scholar 

  218. Nordsröm EG, Karlsson KH (1992) Chemical characterization of a potassium hydroxyapatite prepared by soaking in potassium chloride and carbonate solutions. Biomed Mater Eng 2:185–189

    Google Scholar 

  219. Weissmueller NT, Schiffter HA, Pollard AJ, Tas AC (2014) Molten salt synthesis of potassium-containing hydroxyapatite microparticles used as protein substrate. Mater Lett 128:421–424

    Article  Google Scholar 

  220. El Feki H, Savariault JM, Salah AB, Jemal M (2000) Sodium and carbonate distribution in substituted calcium hydroxyapatite. Solid State Sci 2:577–586

    Article  Google Scholar 

  221. Kannan S, Ventura JMG, Lemos AF, Barba A, Ferreira JMF (2008) Effect of sodium addition on the preparation of hydroxyapatites and biphasic ceramics. Ceram Int 34:7–13

    Article  Google Scholar 

  222. El Feki H, Naddari T, Savariault JM, Ben Salah A (2000) Localization of potassium in substituted lead hydroxyapatite: Pb9.30K0.60(PO4)6(OH)1.20 by X-ray diffraction. Solid State Sci 2:725–733

    Article  Google Scholar 

  223. Kannan S, Ventura JMG, Ferreira JMF (2007) Synthesis and thermal stability of potassium substituted hydroxyapatites and hydroxyapatite/β-tricalciumphosphate mixtures. Ceram Int 33:1489–1494

    Article  Google Scholar 

  224. Wilson RM, Elliott JC, Dowker SEP, Smith RI (2004) Rietveld structure refinement of precipitated carbonate apatite using neutron diffraction data. Biomaterials 25:2205–2213

    Article  Google Scholar 

  225. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32(1–2):33–177

    Article  Google Scholar 

  226. Nakata K, Fujishima A (2013) TiO2 photocatalysis: design and applications. J Photochem Photobiol C 13(3):169–189

    Article  Google Scholar 

  227. Huang J, Best SM, Bonfield W, Buckland TOM (2010) Development and characterization of titanium-containing hydroxyapatite for medical applications. Acta Biomater 6:241–249

    Article  Google Scholar 

  228. Wakamura M, Hashimoto K, Watanabe T (2003) Photocatalysis by calcium hydroxyapatite modified with Ti(IV): albumin decomposition and bactericidal effect. Langmuir 19:3428–3431

    Article  Google Scholar 

  229. Wakamura M (2005) Photocatalysis by calcium hydroxyapatite modified by Ti (IV). Fujitsu Sci Tech J 41(2):181–190

    Google Scholar 

  230. Hu A, Li M, Chang C, Mao D (2007) Preparation and characterization of a titanium-substituted hydroxyapatite photocatalyst. J Mol Catal A Chem 267(1–2):79–85

    Article  Google Scholar 

  231. Kandori K, Oketani M, Wakamura M (2013) Effects of Ti(IV) substitution on protein adsorption behaviors of calcium hydroxyapatite particles. Colloid Surf B Biointerfaces 101:68–73

    Article  Google Scholar 

  232. Medvecký L, Štulajterova R, Parilak L, Trpčevska J, Dˇurišin J, Barinov SM (2006) Influence of manganese on stability and particle growth of hydroxyapatite in simulated body fluid. Colloids Surf A 281:221–229

    Article  Google Scholar 

  233. Armulik A, Svineng G, Wennerberg K, Fässler R, Johansson S (2000) Expression of integrin subunit beta1B in integrin beta1-deficient GD25 cells does not interfere with alphaVbeta3 functions. Exp Cell Res 254(1):55–63

    Article  Google Scholar 

  234. Mayer I, Jacobsohn O, Niazov T, Werckmann J, Iliescu M, Richard-Plouet M, Burghaus O, Reinen D (2003) Manganese in precipitated hydroxyapatites. Eur J Inorg Chem 7:1445–1451

    Article  Google Scholar 

  235. Mayer I, Cuisinier FJG, Gdalya S, Popov I (2008) TEM study of the morphology of Mn2+-doped calcium hydroxyapatite and β-tricalcium phosphate. J Inorg Biochem 102(2):311–317

    Article  Google Scholar 

  236. Li Y, Nam CT, Ooi CP (2009) Iron(III) and manganese(II) substituted hydroxyapatite nanoparticles: characterization and cytotoxicity analysis. J Phys Conf Ser 187(1):012024

    Article  Google Scholar 

  237. Mayer I, Cuisinier FJG, Popov I, Schleich Y, Gdalya S, Burghaus O, Reinen D (2006) Phase relations between β-tricalcium phosphate and hydroxyapatite with manganese(II): structural and spectroscopic properties. Eur J Inorg Chem 7:1460–1465

    Article  Google Scholar 

  238. Bigi A, Bracci B, Cuisinier F, Elkaim R, Fini M, Mayer I, Mihailescu IN, Socol G, Sturba L, Torricelli P (2005) Human osteoblast response to pulsed laser deposited calcium phosphate coatings. Biomaterials 26:2381–2389

    Article  Google Scholar 

  239. Torell P (1988) Iron and dental caries. Swed Dent J 12:113–124

    Google Scholar 

  240. Wu HC, Wang TW, Sun JS, Wang WH, Lin FH (2007) A novel biomagnetic nanoparticle based on hydroxyapatite. Nanotechnology 18:165601

    Article  Google Scholar 

  241. Zuo KH, Zeng YP, Jiang D (2012) Synthesis and magnetic property of irons-doped hydroxyapatite. J Nanosci Nanotechnol 12:7096–7100

    Article  Google Scholar 

  242. Rau JV, Cacciotti I, De Bonis A, Fosca M, Komlev VS, Latini A, Santagata A, Teghil R (2014) Fe-doped hydroxyapatite coatings for orthopaedic and dental implant applications. Appl Surf Sci 307:301–305

    Article  Google Scholar 

  243. Pon-On W, Meejoo S, Tang M (2007) Incorporation of iron into nano hydroxyapatite particles synthesized by the microwave process. Int J Nanosci 6:9–16

    Article  Google Scholar 

  244. Kandori K, Toshima S, Wakamura M, Fukusumi M, Morisada Y (2010) Effects of modification of calcium hydroxyapatites by trivalent metal ions on the protein adsorption behavior. J Phys Chem B 114:2399–2404

    Article  Google Scholar 

  245. Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11

    Article  Google Scholar 

  246. Hou CH, Hou SM, Hsueh YS, Lin J, Wu HC, Lin FH (2009) The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy. Biomaterials 30:3956–3960

    Article  Google Scholar 

  247. Coelho J, Hussain NS, Gomes PS, Garcia MP, Lopes MA, Fernandes MH, Santos JD (2013) Development and characterization of lanthanides doped hydroxyapatite composites for bone tissue application. In: Nandyala SH, Santos JD (eds) Current trends on glass and ceramic materials. Bentham Science Publishers, Sharjah, pp 87–115

    Chapter  Google Scholar 

  248. Ciobanu CS, Popa CL, Predoi D (2014) Sm:HAp nanopowders present antibacterial activity against Enterococcus faecalis. J Nanomater 2014:780686 (9 pages)

    Google Scholar 

  249. (2009) Toxicological review of cerium oxide and cerium compounds. US Environmental Protection Agency, Washington, DC. http://www.epa.gov/iris/

  250. Yingguang L, Zhuoru Y, Jiang C (2007) Preparation, characterization and antibacterial property of cerium substituted hydroxyapatite nanoparticles. J Rare Earths 25:452–456

    Article  Google Scholar 

  251. Das S, Singh S, Dowding JM, Oommen S, Kumar A, Sayle TX, Saraf S, Patra CR, Vlahakis NE, Sayle DC, Self WT, Seal S (2012) The induction of angiogenesis by cerium dioxide nanoparticles through the modulation of oxygen in intracellular environments. Biomaterials 33(31):7746–7755

    Article  Google Scholar 

  252. Lord MS, Tsoi B, Gunawan C, Teoh WY, Amal R, Whitelock JM (2013) Anti-angiogenic activity of heparin functionalized cerium oxide nanoparticles. Biomaterials 34(34):8808–8818

    Article  Google Scholar 

  253. Kuang Y, He X, Zhang Z, Li Y, Zhang H, Ma Y, Wu Z, Chai Z (2010) Comparison study on the antibacterial activity of nano-or bulk-cerium oxide. J Nanosci Nanotechnol 11(5):4103–4108

    Article  Google Scholar 

  254. Pelletier DA, Suresh AK, Holton GA, McKeown CK, Wang W, Gu B, Mortensen NP, Allison DP, Joy DC, Allison MR, Brown SD, Phelps TJ, Doktycz MJ (2010) Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl Environ Microbiol 76(24):7981–7989

    Article  Google Scholar 

  255. Han YJ, Loo SCJ, Phung NT, Boey F, Ma J (2008) Controlled size and morphology of EDTMP-doped hydroxyapatite nanoparticles as model for153Samarium-EDTMP doping. J Mater Sci Mater Med 19(9):2993–3003

    Article  Google Scholar 

  256. Turner JH, Claringbold PG, Hetherington EL, Sorby P, Martindale AA (1989) A phase I study of samarium-153 ethylenediaminetetramethylene phosphonate therapy for disseminated skeletal metastases. JClin Oncol 7(12):1926–1931

    Google Scholar 

  257. Turner JH, Claringbold PG (1991) A phase II study of treatment of painful multifocal skeletal metastases with single and repeated dose samarium-153 ethylenediaminetetramethylene phosphonate. Eur J Cancer 27(9):1084–1086

    Article  Google Scholar 

  258. Chinol M, Vallabhajosula S, Goldsmith SJ, Klein MJ, Deutsch KF, Chinen LK, Brodack JW, Deutsch EA, Watson BA, Tofe AJ (1993) Chemistry and biological behavior of samarium-153 and rhenium-186-labeled hydroxyapatite particles: potential radiopharmaceuticals for radiation synovectomy. J Nucl Med 34(9):1536–1542

    Google Scholar 

  259. Yasukawa A, Gotoh K, Tanaka H, Kandori K (2012) Preparation and structure of calcium hydroxyapatite substituted with light rare earth ions. Colloids Surf A 393:53–59

    Article  Google Scholar 

  260. Cawthray JF, Louise Creagh A, Haynes CA, Orvig C (2015) Ion exchange in hydroxyapatite with lanthanides. Inorg Chem 54(4):1440–1445

    Article  Google Scholar 

  261. Sun LJ, Guo DG, Zhao WA, Wang LY, Xu KW (2014) Influences of reaction parameters and Ce contents on structure and properties of nano-scale Ce-HA powders. J Mater Sci Technol 30(8):776–781

    Article  Google Scholar 

  262. Feng Z, Liao Y, Ye M (2005) Synthesis and structure of cerium-substituted hydroxyapatite. J Mater Sci Mater Med 16(5):417–421

    Article  Google Scholar 

  263. Lin Y, Yang Z, Cheng J (2007) Preparation, characterization and antibacterial property of cerium-substituted hydroxyapatite nanoparticles. J Rare Earths 25(4):452–456

    Article  Google Scholar 

  264. Kaygili O, Dorozhkin SV, Keser S (2014) Synthesis and characterization of Ce-substituted hydroxyapatite by the sol–gel method. Mater Sci Eng C 42:78–82

    Article  Google Scholar 

  265. Padilla Mondejar S, Kovtun A, Epple M (2007) Lanthanide-doped calcium phosphate nanoparticles with high internal crystallinity and with a shell of DNA as fluorescent probes in cell experiments. J Mater Chem 17:4153–4159

    Article  Google Scholar 

  266. Doat A, Fanjul M, Pelle F, Hollande E, Lebugle A (2003) Europium-doped bioapatite: a new photostable biological probe, internalizable by human cells. Biomaterials 24:3365–3371

    Article  Google Scholar 

  267. Doat A, Pelle F, Gardant N, Lebugle A (2004) Synthesis of luminescent bioapatite nanoparticles for utilization as a biological probe. J Solid State Chem 177:1179–1187

    Article  Google Scholar 

  268. Lebugle A, Pelle F, Charvillat C, Rousselot I, Chane-Ching JY (2006) Colloidal and monocrystalline Ln3+ doped apatite calcium phosphate as biocompatible fluorescent probes. Chem Commun 6:606–608

    Article  Google Scholar 

  269. Oviedo MJ, Contreras O, Vazquez-Duhalt R, Carbajal-Arizaga CG, Hirata GA, McKittrick J (2012) Photoluminescence of europium-activated hydroxyapatite nanoparticles in body fluids. Sci Adv Mater 4:558–562

    Article  Google Scholar 

  270. Wiglusz RJ, Kedziora A, Lukowiak A, Doroszkiewicz W, Strek W (2012) Hydroxyapatites and Europium(III) doped hydroxyapatites as a carrier of silver nanoparticles and their antimicrobial activity. J Biomed Nanotechnol 8(4):605–612

    Article  Google Scholar 

  271. Iconaru SL, Motelica-Heino M, Predoi D (2013) Study on europium-doped hydroxyapatite nanoparticles by fourier transform infrared spectroscopy and their antimicrobial properties. J Spectrosc 2013:284285 (10 pages)

    Google Scholar 

  272. Sato M, Sambito MA, Aslani A, Kalkhoran NM, Slamovich EB, Webster TJ (2006) Increased osteoblast functions on undoped and yttrium-doped nanocrystalline hydroxyapatite coatings on titanium. Biomaterials 27:2358–2369

    Article  Google Scholar 

  273. Liu Y, Zhou RJ, Mo AC, Chen ZQ, Wu HK (2007) Synthesis and characterization of yttrium/hydroxyapatite nanoparticles. Key Eng Mater 330–332:295–298

    Article  Google Scholar 

  274. Mayer I, Layani JD, Givan A, Gaft M, Blan P (1999) La ions in precipitated hydroxyapatites. J Inorg Biochem 73:221–226

    Article  Google Scholar 

  275. Huang Y, Wang Y, Ning C, Nan K, Han Y (2008) Preparation and properties of a cerium-containing hydroxyapatite coating on commercially pure titanium by micro-arc oxidation. Rare Metals 27(3):257–260

    Article  Google Scholar 

  276. Toker SM, Tezcaner A, Evis Z (2011) Microstructure, microhardness, and biocompatibility characteristics of yttrium hydroxyapatite doped with fluoride. J Biomed Mater Res Part B Appl Biomater 96B(2):207–217

    Article  Google Scholar 

  277. dos Santos MF, Furtado RNV, Konai MS, Castiglioni MLV, Marchetti RR, Natour J (2009) Effectiveness of radiation synovectomy with samarium-153 particulate hydroxyapatite in rheumatoid arthritis patients with knee synovitis: a controlled randomized double-blind trial. Clinics 64(12):1187–1193

    Article  Google Scholar 

  278. O’Duffy EK, Oliver FJ, Chatters SJ, Walker H, Lloyd DC, Edwards JC, Ell PJ (1999) Chromosomal analysis of peripheral lymphocytes of patients before and after radiation synovectomy with samarium-153 particulate hydroxyapatite. Rheumatology 38(4):316–320

    Article  Google Scholar 

  279. O’Duffy EK, Clunie GPR, Lui D, Edwards JCW, Ell J (1999) Double blind glucocorticoid controlled trial of samarium-153 particulate hydroxyapatite radiation synovectomy for chronic knee synovitis. Ann Rheum Dis 58(9):554–558

    Article  Google Scholar 

  280. Bernstein LR (1998) Mechanisms of therapeutic activity for gallium. Pharmacol Rev 50(4):665–682

    Google Scholar 

  281. Franchini M, Lusvardi G, Malavasi G, Menabue L (2012) Gallium-containing phospho-silicate glasses: synthesis and in vitro bioactivity. Mater Sci Eng C 32(6):1401–1406

    Article  Google Scholar 

  282. Valappil SP, Ready D, Abou Neel EA, Pickup DM, O’Dell LA, Chrzanowski W, Pratten J, Newport RJ, Smith ME, Wilson M, Knowles JC (2009) Controlled delivery of antimicrobial gallium ions from phosphate-based glasses. Acta Biomater 5(4):1198–1210

    Article  Google Scholar 

  283. Melnikov P, Malzac A, Coelho MB (2008) Gallium and bone pathology. Acta Ortop Bras 16:54–57

    Article  Google Scholar 

  284. Melnikov P, Teixeira AR, Malzac A, Coelho MDB (2009) Gallium-containing hydroxyapatite for potential use in orthopedics. Mater Chem Phys 117(1):86–90

    Article  Google Scholar 

  285. Dollwet H, Sorenso J (1985) Historic uses of copper compounds in medicine. Trace Elem Med 2(2):80–87

    Google Scholar 

  286. Yang H, Zhang L, Xu KW (2009) Effect of storing on the microstructure of Ag/Cu/HA powder. Ceram Intern 35(4):1595–1601

    Article  Google Scholar 

  287. White C, Lee J, Kambe T, Fritsche K, Petris MJ (2009) A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J Biol Chem 284(49):33949–33956

    Article  Google Scholar 

  288. Li Y, Ho J, Ooi CP (2010) Antibacterial efficacy and cytotoxicity studies of copper (II) and titanium (IV) substituted hydroxyapatite nanoparticles. Mater Sci Eng C 30(8):1137–1144

    Article  Google Scholar 

  289. Osman D, Waldron KJ, Denton H, Taylor CM, Grant AJ, Mastroeni P, Robinson NJ, Cavet JS (2010) Copper homeostasis in Salmonella is atypical and copper-CueP is a major periplasmic metal complex. J Biol Chem 285(33):25259–25268

    Article  Google Scholar 

  290. Soutourina O, Dubrac S, Poupel O, Msadek T, Martin-Verstraete I (2010) The pleiotropic CymR regulator of Staphylococcus aureus plays an important role in virulence and stress response. PLoS Pathog 6(5), e1000894

    Article  Google Scholar 

  291. Babu U, Failla ML (1990) Respiratory burst and candidacidal activity of peritoneal macrophages are impaired in copper-deficient rats. J Nutr 120(12):1692–1699

    Google Scholar 

  292. Shanmugam S, Gopal B (2014) Copper substituted hydroxyapatite and fluorapatite: synthesis, characterization and antimicrobial properties. Ceram Intern Part A 40(10):15655–15662

    Google Scholar 

  293. Daou S, El Chemaly A, Christofilopoulos P, Bernard L, Hoffmeyer P, Demaurex N (2011) The potential role of cobalt ions released from metal prosthesis on the inhibition of Hv1 proton channels and the decrease in Staphyloccocus epidermidis killing by human neutrophils. Biomaterials 32(7):1769–1777

    Article  Google Scholar 

  294. Tank KP, Chudasama KS, Thaker VS, Joshi MJ (2013) Cobalt-doped nanohydroxyapatite: synthesis, characterization, antimicrobial and hemolytic studies. J Nanopart Res 15:1644–1655

    Article  Google Scholar 

  295. Singh K, Kumar Y, Puri P, Sharma C, Aneja KR (2012) Thermal, spectral, fluorescence, and antimicrobial studies of cobalt, nickel, copper, and zinc complexes derived from 4-[(5-bromo-thiophen-2-ylmethylene)-amino]-3-mercapto-6-methyl-5-oxo-[1,2,4]triazine. Internat J Inorg Chem 2012:873232 (9 pages)

    Google Scholar 

  296. Ignjatović N, Ajduković Z, Savić V, Najman S, Mihailović D, Vasiljević P, Stojanović Z, Uskoković V, Uskoković D (2013) Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones. J Mater Sci Mater Med 24(2):343–354

    Article  Google Scholar 

  297. Stănila A, Braicu C, Stănila S, Pop RM (2011) Antibacterial activity of copper and cobalt amino acids complexes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39(2):124–129

    Google Scholar 

  298. Mabilleau G, Filmon R, Petrov PK, Baslé MF, Sabokbar A, Chappard D (2010) Cobalt, chromium and nickel affect hydroxyapatite crystal growth in vitro. Acta Biomater 6:1555–1560

    Article  Google Scholar 

  299. Montel G, Bonel G, Heughebaert JC, Trombe JC, Rey C (1981) New concepts in the composition, crystallization and growth of the mineral component of calcified tissues. J Cryst Growth 53(1):74–99

    Article  Google Scholar 

  300. Bigi A, Cojazzi G, Panzavolta S, Ripamonti A, Roveri N, Romanello M, Suarez KN, Moro L (1997) Chemical and structural characterization of the mineral phase from cortical and trabecular bone. J Inorg Biochem 68(1):45–51

    Article  Google Scholar 

  301. Amjad Z (1997) Calcium phosphates in biological and industrial systems. Kluwer, Boston

    Google Scholar 

  302. Lafon JP, Champion E, Bernache-Assollant D (2008) Processing of AB-type carbonated hydroxyapatite Ca10-x(PO4)(6-x)(CO3)(x)(OH)(2-x-2y)(CO3)(y) ceramics with controlled composition. J Eur Ceram Soc 28:139–147

    Article  Google Scholar 

  303. Rey C, Collins B, Goehl T, Dickson IR, Glimcher MJ (1989) The carbonate environment in bone mineral: a resolution-enhanced Fourier Transform Infrared Spectroscopy study. Calcif Tissue Int 45:157–164

    Article  Google Scholar 

  304. Elliott JC (2002) Calcium phosphate biominerals. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological and material importance, reviews in mineralogy and geochemistry, vol 48. Mineralogical Society of America, Washington, pp 427–454

    Google Scholar 

  305. LeGeros RZ (1965) Effect of carbonate on the lattice parameters of apatite. Nature 206:403–404

    Article  Google Scholar 

  306. Landi E, Celotti G, Logroscino G, Tampieri A (2003) Carbonated hydroxyapatite as bone substitute. J Eur Ceram Soc 23(15):2931–2937

    Article  Google Scholar 

  307. Rey C, Renugopalakrishnan V, Collins B, Glimcher M (1991) Fourier transform infrared spectroscopic study of the carbonate ions in bone mineral during aging. Calcif Tissue Int 49:251–258

    Article  Google Scholar 

  308. Merry JC, Gibson IR, Best SM, Bonfield W (1998) Synthesis and characterization of carbonate hydroxyapatite. J Mater Sci Mater Med 9:779–783

    Article  Google Scholar 

  309. Rogers KD, Daniels P (2002) An X-ray diffraction study of the effects of heat treatment on bone mineral microstructure. Biomaterials 23:2577–2585

    Article  Google Scholar 

  310. Barralet J, Best S, Bonfield W (1998) Carbonate substitution in precipitated hydroxyapatite: an investigation into the effects of reaction temperature and bicarbonate ion concentration. J Biomed Mater Res 41:79–86

    Article  Google Scholar 

  311. Murugan R, Ramakrishna S (2006) Production of ultra-fine bioresorbable carbonated hydroxyapatite. Acta Biomater 2:201–206

    Article  Google Scholar 

  312. Ślósarczyk A, Paszkiewicz Z, Zima A (2010) The effect of phosphate source on the sintering of carbonate substituted hydroxyapatite. Ceram Inter 36:577–582

    Article  Google Scholar 

  313. Koumoulidis GC, Katsoulidis AP, Ladavos AK, Pomonis PJ, Trapalis CC, Sdoukos AT, Vaimakis TC (2003) Preparation of hydroxyapatite via microemulsion route. J Colloid Interface Sci 259:254–260

    Article  Google Scholar 

  314. Zhou WY, Wang M, Cheung WL, Guo BC, Jia DM (2008) Synthesis of carbonated hydroxyapatite nanospheres through nanoemulsion. J Mater Sci Mater Med 19(1):103–110

    Article  Google Scholar 

  315. Fathi MH, Hanifi A, Mortazavi V (2008) Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J Mater Process Technol 202:536–542

    Article  Google Scholar 

  316. Lala S, Brahmachari S, Das PK, Das D, Kar T, Pradhan SK (2014) Biocompatible nanocrystalline natural bonelike carbonated hydroxyapatite synthesized by mechanical alloying in a record minimum time. Mater Sci Eng C 42:647–656

    Article  Google Scholar 

  317. Suchanek WL, Shuk P, Byrappa K, Riman RE, TenHuisen KS, Janas VF (2002) Mechanochemical–hydrothermal synthesis of carbonated apatite powders at room temperature. Biomaterials 23:699–710

    Article  Google Scholar 

  318. Zou Z, Lin K, Chen L, Chang J (2012) Ultrafast synthesis and characterization of carbonated hydroxyapatite nanopowders via sonochemistry-assisted microwave process. Ultrason Sonochem 19:1174–1179

    Article  Google Scholar 

  319. Iafisco M, Morales JG, Hernández-Hernández MA, García-Ruiz JM, Roveri N (2010) Biomimetic carbonate–hydroxyapatite nanocrystals prepared by vapor diffusion. Adv Eng Mater 12:B218–B223

    Article  Google Scholar 

  320. Nordstrőm EG, Karlsso KH (1990) Carbonate-doped hydroxyapatite. J Mater Sci Mater Med 1:182–184

    Article  Google Scholar 

  321. Rodriguez-Lorenzo LM, Vallet-Regı M (2000) Controlled crystallization of calcium phosphate apatites. Chem Mater 12(8):2460–2465

    Article  Google Scholar 

  322. Vallet-Regı M, Gonzalez-Calbet JM (2004) Calcium phosphates as substitution of bone tissues. Prog Solid State Chem 32:1–31

    Article  Google Scholar 

  323. Doi Y, Shibutani T, Moriwaki Y, Kajimoto T, Iwayama YJ (1998) Sintered carbonate apatites as bioresorbable bone substitutes. J Biomed Mater Res 39(4):603–610

    Article  Google Scholar 

  324. Elliot JC, Bond G, Tombe JC (1980) Space group and lattice constants of Ca10(PO4)6CO3. J Appl Crystallogr 13:618–621

    Article  Google Scholar 

  325. Fleet ME, Liu X (2004) Location of type B carbonate ion in type A–B carbonate apatite synthesized at high pressure. J Solid State Chem 177:3174–3182

    Article  Google Scholar 

  326. Fleet ME, Liu X (2007) Coupled substitution of type A and B carbonate in sodium-bearing apatite. Biomaterials 28:916–926

    Article  Google Scholar 

  327. Ren F, Luc X, Leng Y (2013) Ab initio simulation on the crystal structure and elastic properties of carbonated apatite. J Mech Behav Biomed Mater 26:59–67

    Article  Google Scholar 

  328. Fleet ME, Liu X, King PL (2004) Accommodation of the carbonate ion in apatite: an FTIR and X-ray structure study of crystals synthesized at 2–4 GPa. Am Mineral 89:1422–1432

    Article  Google Scholar 

  329. Peroos S, Du Z, de Leeuw NH (2006) A computer modeling study of the uptake, structure and distribution of carbonate defects in hydroxyapatite. Biomaterials 27:2150–2161

    Article  Google Scholar 

  330. Ito A, Maekawa K, Tsutsumi S, Ikazaki F, Tateishi T (1997) Solubility product of OH-carbonated hydroxyapatite. J Biomed Mater Res 36(4):522–528

    Article  Google Scholar 

  331. Vignoles M, Bonel G, Holcomb D, Young R (1988) Influence of preparation conditions on the composition of type B carbonated hydroxyapatite and on the localization of the carbonate ions. Calcif Tissue Int 43(1):33–40

    Article  Google Scholar 

  332. Driessens FCM, Verbeeck RMH, Heijligers HJM (1983) Some physical properties of Na- and CO3-containing apatites synthesized at high temperatures. Inorg Chim Acta 80:19–23

    Article  Google Scholar 

  333. Gibson IR, Bonfield W (2002) Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. J Biomed Mater Res 59(4):697–708

    Article  Google Scholar 

  334. LeGeros RZ (1981) Apatites in biological systems. Prog Cryst Growth Charact Mater 4(1–2):1–45

    Article  Google Scholar 

  335. Chiranjeevirao SV, Voegel JC, Frank RM (1983) A method of preparation and characterization of carbonato-apatites. Inorg Chim Acta 78:43–46

    Article  Google Scholar 

  336. Barralet J, Knowles JC, Best S, Bonfield W (2002) Thermal decomposition of synthesised carbonate hydroxyapatite. J Mater Sci Mater Med 13(6):529–533

    Article  Google Scholar 

  337. Landi E, Tampieri A, Celotti G, Sprio S (2000) Densification behavior and mechanisms of synthetic hydroxyapatite. J Eur Ceram Soc 20:2377–2387

    Article  Google Scholar 

  338. Liao S, Watari F, Xu G, Ngiam M, Ramakrishna S, Chan CK (2007) Morphological effects of variant carbonates in biomimetic hydroxyapatite. Mater Lett 61(17):3624–3628

    Article  Google Scholar 

  339. LeGeros RZ, Trautz OR, LeGeros RZ, Klein L, Shirra WP (1967) Apatite crystallites: effect of carbonate on morphology. Science 155(3768):1409–1411

    Article  Google Scholar 

  340. Porter A, Patel N, Brooks R, Best SM, Rushton N, Bonfield W (2005) Effect of carbonate-substitution on the ultrastructural characteristics of hydroxyapatite implants. J Mater Sci Mater Med 16(13):899–907

    Article  Google Scholar 

  341. Spence G, Patel N, Brooks R, Rushton N (2009) Carbonate substituted hydroxyapatite: resorption by osteoclasts modifies the osteoblastic response. J Biomed Mater Res A 90A(1):217–224

    Article  Google Scholar 

  342. Patel N, Best SM, Bonfield W, Gibson IR, Hing KA, Damien E, Revell PA (2002) A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. J Mater Sci Mater Med 13:1199–1206

    Article  Google Scholar 

  343. Doi Y, Shibutani T, Moriwake Y, Kajimoto T, Iwayama Y (1997) Sintered carbonate apatites as bioresorbable bone substitutes. J Biomed Mater Res 39:603–610

    Article  Google Scholar 

  344. Mertz W (1981) The essential trace-elements. Science 213(4514):1332–1338

    Article  Google Scholar 

  345. Harrison J, Melville AJ, Forsythe JS, Muddle BC, Trounson AO, Gross KA (2004) Sintered hydroxyfluorapatites – IV: the effect of fluoride substitutions upon colonisation of hydroxyapatites by mouse embryonic stem cells. Biomaterials 25:4977–4986

    Article  Google Scholar 

  346. Farley JR, Wergedal JE, Baylink DJ (1983) Fluoride directly stimulates proliferation and alkaline-phosphatase activity of bone-forming cells. Science 222(4621):330–332

    Article  Google Scholar 

  347. Chavassieux P, Boivin G, Serre CM, Meunier PJ (1993) Fluoride increases rat osteoblast function and population after in vivo administration but not after in vitro exposure. Bone 14(5):721–725

    Article  Google Scholar 

  348. Pak CY, Sakhaee K, Zerwekh JE, Parcel C, Peterson R, Johnson K (1989) Safe and effective treatment of osteoporosis with intermittent slow release sodium fluoride: augmentation of vertebral bone mass and inhibition of fractures. J Clin Endocrinol Metab 68:150–159

    Article  Google Scholar 

  349. Cass RM, Croft JD, Perkins P, Nye W, Waterhou C, Terry R (1966) New bone formation in osteoporosis following treatment with sodium fluoride. Arch Intern Med 118(2):111–116

    Article  Google Scholar 

  350. Farley SMG, Wergedal JE, Smith LC, Lundy MW, Farley JR, Baylink DJ (1987) Fluoride therapy for osteoporosis: characterization of the skeletal response by serial measurements of serum alkaline-phosphatase activity. Metabolism 36(3):211–218

    Article  Google Scholar 

  351. Briancon D, Meunier PJ (1981) Treatment of osteoporosis with fluoride, calcium, and vitamin-D. Orthop Clin North Am 12(3):629–648

    Google Scholar 

  352. Riggs BL, Hodgson SF, Hoffman DL, Kelly PJ, Johnson KA, Taves D (1980) Treatment of primary osteoporosis with fluoride and calcium: clinical tolerance and fracture occurrence. J Am Med Assoc 243(5):446–449

    Article  Google Scholar 

  353. Boivin G, Chapuy MC, Baud CA, Meunier PJ (1988) Fluoride content in human iliac bone: results in controls, patients with fluorosis and osteoporotic patients treated with fluoride. J Bone Miner Res 3(5):497–502

    Article  Google Scholar 

  354. Guanabens N, Farrerons J, Perez-Edo L, Monegal A, Renau A, Carbonell J, Roca M, Torra M, Pavesi M (2000) Cyclical etidronate versus sodium fluoride in established postmenopausal osteoporosis: a randomized 3 year trial. Bone 27(1):123–128

    Article  Google Scholar 

  355. Roche KJ, Stanton KT (2014) Measurement of fluoride substitution in precipitated fluorhydroxyapatite nanoparticles. J Fluor Chem 161:102–109

    Article  Google Scholar 

  356. Chen Y, Miao X (2005) Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents. Biomaterials 26:1205–1210

    Article  Google Scholar 

  357. Qu H, Wei M (2005) Synthesis and characterization of fluorine-containing hydroxyapatite by a pH-cycling method. J Mater Sci Mater Med 16:129–133

    Article  Google Scholar 

  358. Rodriguez-Lorenzo LM, Hart JN, Gross KA (2003) Influence of fluorine in the synthesis of apatites. Synthesis of solid solutions of hydroxy-fluorapatite. Biomaterials 24:3777–3785

    Article  Google Scholar 

  359. Manjubala I, Sivakumar M, Najma Nikkath S (2001) Synthesis and characterisation of hydroxy/fluoroapatite solid solution. Mater Sci 36:5481–5486

    Article  Google Scholar 

  360. Wei M, Evans JH, Bostrom T, Grondahl L (2003) Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite. J Mater Sci Mater Med 14(4):311–320

    Article  Google Scholar 

  361. Bianco A, Cacciotti I, Lombardi M, Montanaro L, Bemporad E, Sebastiani M (2010) F-substituted hydroxyapatite nanopowders: thermal stability, sintering behaviour and mechanical properties. Ceram Int 36(1):313–322

    Article  Google Scholar 

  362. Jha LJ, Best SM, Knowles JC, Rehman I, Santos JD, Bonfield W (1997) Preparation and characterization of fluoride-substituted apatites. J Mater Sci Mater Med 8(4):185–191

    Article  Google Scholar 

  363. Tredwin CJ, Young AM, Georgiou G, Shin SH, Kim HW, Knowles JC (2013) Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol–gel method. Optimisation, characterisation and rheology. Dent Mater 29:166–173

    Article  Google Scholar 

  364. Cavalli M, Gnappi G, Montenero A, Bersani D, Lottici PP, Kaciulis S, Mattogno G, Fini M (2001) Hydroxy- and fluorapatite films on Ti alloy substrates: sol–gel preparation and characterization. J Mater Sci 36(13):3253–3260

    Article  Google Scholar 

  365. Zhang HG, Zhu Q (2005) Surfactant-assisted preparation of fluoride-substituted hydroxyapatite nanorods. Mater Lett 59:3054–3058

    Article  Google Scholar 

  366. Rodriguez-Lorenzo LM, Gross KA (2003) Encapsulation of apatite particles for improvement in bone regeneration. J Mater Sci Mater Med 14:939–943

    Article  Google Scholar 

  367. Kurmaev EZ, Matsuya S, Shin S, Watanabe M, Eguchi R, Ishiwata Y, Takeuchi T, Iwami M (2002) Observation of fluorapatite formation under hydrolysis of tetracalcium phosphate in the presence of KF by means of soft X-ray emission and adsorption spectroscopy. J Mater Sci Mater Med 13(1):33–36

    Article  Google Scholar 

  368. Zhao J, Dong X, Bian M, Zhao J, Zhang Y, Sun Y, Chen JH, Wang XH (2014) Solution combustion method for synthesis of nanostructured hydroxyapatite, fluorapatite and chlorapatite. Appl Surf Sci 314:1026–1033

    Article  Google Scholar 

  369. Zhang HG, Zhu Q, Xie ZH (2005) Mechanochemical–hydrothermal synthesis and characterization of fluoridated hydroxyapatite. Mater Res Bull 40:1326–1334

    Article  Google Scholar 

  370. Kim SJ, Bang HG, Song JH, Park SY (2009) Effect of fluoride additive on the mechanical properties of hydroxyapatite/alumina composites. Ceram Int 35:1647–1650

    Article  Google Scholar 

  371. Fathi MH, Zahrani EM (2009) Fabrication and characterization of fluoridated hydroxyapatite nanopowders via mechanical alloying. J Alloys Comp 475:408–414

    Article  Google Scholar 

  372. Wu CC, Huang ST, Tseng TW, Rao QL, Lin HC (2010) FT-IR and XRD investigations on sintered fluoridated hydroxyapatite composites. J Mol Struct 979:72–76

    Article  Google Scholar 

  373. Murugan R, Sampath Kumar TS, Panduranga Rao K (2002) Fluorinated bovine hydroxyapatite: preparation and characterization. Mater Lett 57(2):429–433

    Article  Google Scholar 

  374. Okazaki M, Miake Y, Tohda H, Yanagisawa T, Matsumoto T, Takahashi J (1999) Functionally graded fluoridated apatites. Biomaterials 20:1421–1426

    Article  Google Scholar 

  375. Lau KW, Kesson K, Libanati CR, Baylink DJ (1998) Osteogenic actions of fluoride: its therapeutic use for established osteoporosis. In: Whitfield JF, Morley P (eds) Anabolic treatments for osteoporosis. CRC Press, Boca Raton, pp 207–250

    Google Scholar 

  376. Badillo-Almaraz VE, Armando Flores J, Arriola H, López FA, Ruiz-Ramirez L (2007) Elimination of fluoride ions in water for human consumption using hydroxyapatite as an adsorbent. J Radioanal Nucl Chem 271(3):741–744

    Article  Google Scholar 

  377. Kornlev VS, Barinov SM, Girardin E, Oscarsson S, Rosengren A, Rustichelli F, Orlovskii VP (2003) Porous spherical hydroxyapatite and fluorhydroxyapatite granules: processing and characterization. Sci Technol Adv Mater 4(6):503–508

    Article  Google Scholar 

  378. Qu H, Wei M (2006) The effect of fluoride contents in fluoridated hydroxyapatite on osteoblast behaviour. Acta Biomater 2:113–119

    Article  Google Scholar 

  379. Freeman JJ, Wopenka B, Silva MJ, Pasteris JD (2001) Raman spectroscopic detection of changes in bioapatite in mouse femora as a function of age and in vitro fluoride treatment. Calcif Tissue Int 68:156–162

    Article  Google Scholar 

  380. Hughes JM, Cameron M, Crowle KD (1989) Structural variations in natural F, OH, and Cl apatites. Am Mineral 74:870–876

    Google Scholar 

  381. Moreno EC, Kresak M, Zahradni RT (1974) Fluoridated hydroxyapatite solubility and caries formation. Nature 247:64–65

    Article  Google Scholar 

  382. Rodriguez-Lorenzo LM, Hart JN, Gross KA (2003) Structural and chemical analysis of well-crystallized hydroxyfluorapatites. J Phys Chem B 107(33):8316–8320

    Article  Google Scholar 

  383. Kannan S, Rebelo A, Ferreira JMF (2006) Novel synthesis and structural characterization of fluorine and chlorine co-substituted hydroxyapatites. J Inorg Biochem 100(10):1692–1697

    Article  Google Scholar 

  384. Eslami H, Solati-Hashjin M, Tahriri M (2009) The comparison of powder characteristics and physicochemical, mechanical and biological properties between nanostructure ceramics of hydroxyapatite and fluoridated hydroxyapatite. Mater Sci Eng C Biomim Supramol Syst 29:1387–1398

    Article  Google Scholar 

  385. LeGeros RZ, Kijkowska R, Jia W, LeGeros JP (1988) Fluoride-cation interactions in the formation and stability of apatites. J Fluor Chem 41(64):53–64

    Article  Google Scholar 

  386. Bhadang KA, Gross KA (2004) Influence of fluorapatite on the properties of thermally sprayed hydroxyapatite coatings. Biomaterials 25(20):4935–4945

    Article  Google Scholar 

  387. Cheng K, Weng WJ, Wang HM, Zhang S (2005) In vitro behavior of osteoblast-like cells on fluoridated hydroxyapatite coatings. Biomaterials 26(32):6288–6295

    Article  Google Scholar 

  388. Bianco A, Cacciotti I, Lombardi M, Montanaro L, Sebastiani M, Bemporad E (2009) Pure and substituted hydroxyapatite nanopowders by precipitation. In: Acierno D, D’Amore A, Caputo D, Cioffi R (eds) Special topics on materials science and technology-an Italian panorama. BRILL Publisher, Leiden/Boston, pp 65–74

    Google Scholar 

  389. Champion E (2013) Sintering of calcium phosphate bioceramics. Acta Biomater 9:5855–5875

    Article  Google Scholar 

  390. Senamaud N, Bernache-Assollant D, Champion E, Heughebaert M, Rey C (1997) Calcination and sintering of hydroxyfluorapatite powders. Solid State Ion 101–103:1357–1362

    Article  Google Scholar 

  391. Montanaro L, Arciola CR, Campoccia D, Cervellati M (2002) In vitro effects on MG63 osteoblast-like cells following contact with two roughness-differing fluorohydroxyapatite-coated titanium alloys. Biomaterials 23(17):3651–3659

    Article  Google Scholar 

  392. Wang YS, Zhang S, Zeng XT, Ma LL, Khor KA, Qian M (2008) Initial attachment of osteoblastic cells onto sol–gel derived fluoridated hydroxyapatite coatings. J Biomed Mater Res A 84A(3):769–776

    Article  Google Scholar 

  393. Kim HW, Kim HE, Knowles JC (2004) Fluor-hydroxyapatite sol–gel coating on titanium substrate for hard tissue implants. Biomaterials 25(17):3351–3358

    Article  Google Scholar 

  394. Ge X, Leng Y, Bao CY, Xu SL, Wang RK, Ren FZ (2010) Antibacterial coatings of fluoridated hydroxyapatite for percutaneous implants. J Biomed Mater Res A 95A(2):588–599

    Article  Google Scholar 

  395. Fahami A, Nasiri-Tabrizi B, Ebrahimi-Kahrizsangi R (2013) Mechanosynthesis and characterization of chlorapatite nanopowders. Mater Lett 110:117–121

    Article  Google Scholar 

  396. Kannan S, Rocha JHG, Ferreira JMF (2006) Synthesis of hydroxy-chlorapatites solid solutions. Mater Lett 60:864–868

    Article  Google Scholar 

  397. Kannan S, Rebelo A, Lemos AF, Barba A, Ferreira JMF (2007) Synthesis and mechanical behavior of chlorapatite and chlorapatite/TCP composites. J Eur Ceram Soc 27:2287–2294

    Article  Google Scholar 

  398. Cho JS, Yoo DS, Chung YC, Rhee SH (2014) Enhanced bioactivity and osteoconductivity of hydroxyapatite through chloride substitution. J Biomed Mater Res A 102(2):455–469

    Article  Google Scholar 

  399. Markovich D (2001) Physiological roles and regulation of mammalian sulfate transporters. Physiol Rev 81(4):1499–1533

    Google Scholar 

  400. Evans RA, Lawrence PJ, Thanakrishnan G, Hills E, Wong SY, Dunstan CR (1986) Immobilization hypercalcaemia due to low bone formation and responding to intravenous sodium sulphate. Postgrad Med J 62(727):395–398

    Article  Google Scholar 

  401. Alshemary AZ, Goh YF, Akram M, Razali IR, Kadir MRA, Hussain R (2013) Microwave assisted synthesis of nano sized sulfate doped hydroxyapatite. Mater Res Bull 48(6):2106–2110

    Article  Google Scholar 

  402. Tran PL, Hammond AA, Mosley T, Cortez J, Gray T, Colmer-Hamood JA, Shashtri M, Spallholz JE, Hamood AN, Reid TW (2009) Organoselenium coating on cellulose inhibits the formation of biofilms by Pseudomonas aeruginosa and Staphylococcus aureus. Appl Environ Microbiol 75(11):3586–3592

    Article  Google Scholar 

  403. Rodríguez-Valencia C, López-Álvarez M, Cochón-Cores B, Pereiro I, Serra J, González P (2013) Novel selenium doped hydroxyapatite coatings for biomedical applications. J Biomed Mater Res A 101(3):853–861

    Article  Google Scholar 

  404. Holben DH, Smith AM (1999) The diverse role of selenium within selenoproteins: a review. J Am Diet Assoc 99(7):836–843

    Article  Google Scholar 

  405. Rayman MP (2000) The importance of selenium to human health. Lancet 356(9225):233–241

    Article  Google Scholar 

  406. Wang Y, Ma J, Zhou L, Chen J, Liu Y, Qiu Z, Zhang S (2012) Dual functional selenium-substituted hydroxyapatite. Interface Focus 2:378–386

    Article  Google Scholar 

  407. Monteil-Rivera F, Masset S, Dumonceau J, Fedoroff M, Jeanjean J (1999) Sorption of selenite ions on hydroxyapatite. J Mater Sci Mater Med 18:1143–1145

    Google Scholar 

  408. Tran PA, Webster TJ (2011) Selenium nanoparticles inhibit Staphylococcus aureus growth. Int J Nanomedicine 6:1553–1558

    Google Scholar 

  409. Tran PA, Webster TJ (2013) Antimicrobial selenium nanoparticle coatings on polymeric medical devices. Nanotechnology 24(15):155101

    Article  Google Scholar 

  410. Dutta RK, Nenavathu BP, Talukdar S (2014) Anomalous antibacterial activity and dye degradation by selenium doped ZnO nanoparticles. Colloids and Surf B: Biointerfaces 114:218–224

    Article  Google Scholar 

  411. Chen YC, Sosnoski DM, Gandhi UH, Novinger LJ, Prabhu KS, Mastro AM (2009) Selenium modifies the osteoblast inflammatory stress response to bone metastatic breast cancer. Carcinogenesis 30(11):1941–1948

    Article  Google Scholar 

  412. Kolmas J, Oledzka E, Sobczak M, Nałęcz-Jawecki G (2014) Nanocrystalline hydroxyapatite doped with selenium oxyanions: a new material for potential biomedical applications. Mater Sci Eng C 39:134–142

    Article  Google Scholar 

  413. Ma J, Wang Y, Zhou L, Zhang S (2013) Preparation and characterization of selenite substituted hydroxyapatite. Mater Sci Eng C 33(1):440–445

    Article  Google Scholar 

  414. Monteil-Rivera F, Fedoroff M, Jeanjean J, Minel L, Barthes MG, Dumonceau J (2000) Sorption of selenite SeO32−on hydroxyapatite: an exchange process. J Colloid Interface Sci 221:291–300

    Article  Google Scholar 

  415. Duc M, Lefevre G, Fedoroff M, Jeanjean J, Rouchaud JC, Monteil-Rivera F, Dumonceau J, Milonjic S (2003) Sorption of selenium anionic species on apatites and iron oxides from aqueous solutions. J Environ Radioact 70:61–72

    Article  Google Scholar 

  416. Carlisle EM (1981) Silicon: a requirement in bone formation independent of vitamin D1. Calcif Tissue Int 33:27–34

    Article  Google Scholar 

  417. Schwarz K (1978) Significance and function of silicon in warm blooded animals-review and outlook. In: Bendz G, Lindqvist I (eds) Biochemistry of silicon and related problems. Plenum Press, New York, pp 207–230

    Chapter  Google Scholar 

  418. Carlisle EM (1972) Silicon an essential element for the chick. Science 178:619–621

    Article  Google Scholar 

  419. Carlisle EM (1982) The nutritional essentiality of silicon. Nutr Rev 40:193–198

    Article  Google Scholar 

  420. Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HFJ, Evans BAJ, Thompson RPH, Powell JJ, Hampson GN (2003) Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 32(2):127–135

    Article  Google Scholar 

  421. Arumugam MQ, Ireland DC, Brooks RA, Rushton N, Bonfield W (2003) Orthosilicic acid increases collagen type I mRNA expression in human bone-derived osteoblasts in vitro. Key Eng Mater 254–256:869–872

    Google Scholar 

  422. Ruys AJ (1993) Silicon-doped hydroxyapatite. J Aust Ceram Soc 29:71–79

    Google Scholar 

  423. Balamurugan A, Rebelo AHS, Lemos AF, Rocha JHG, Ventura JMG, Ferreira JMF (2008) Suitability evaluation of sol–gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response. Dent Mater 24:1374–1380

    Article  Google Scholar 

  424. Tanizawa Y, Suzuki T (1994) X-ray photoelectron spectroscopy study of silicate-containing apatite. Phosphorous Res Bull 4:83–88

    Article  Google Scholar 

  425. Aminian A, Solati-Hashjin M, Samadikuchaksaraei A, Bakhshi F, Gorjipour F, Farzadi A, Moztarzadeh F, Schmücker M (2011) Synthesis of silicon-substituted hydroxyapatite by a hydrothermal method with two different phosphorous sources. Ceram Int 37(4):1219–1229

    Article  Google Scholar 

  426. Zhang N, Liu W, Zhu H, Chen L, Lin K, Chang J (2014) Tailoring Si-substitution level of Si-hydroxyapatite nanowires via regulating Si-content of calcium silicates as hydrothermal precursors. Ceram Int B 40(7):11239–11243

    Article  Google Scholar 

  427. Tang XL, Xiao XF, Liu RF (2005) Structural characterization of silicon-substituted hydroxyapatite synthesized by a hydrothermal method. Mater Lett 59:3841–3846

    Article  Google Scholar 

  428. Kim YH, Song H, Riu DH, Kim SR, Kim HJ, Moon JH (2005) Preparation of porous Si incorporated hydroxyapatite. Curr Appl Phys 5:538–541

    Article  Google Scholar 

  429. Boyer L, Carpena J, Lacou JL (1997) Synthesis of phosphate-silicate apatites at atmospheric pressure. J Solid State Ionics 95:121–129

    Article  Google Scholar 

  430. Hahn BD, Lee JM, Park DS, Choi JJ, Ryu J, Yoon WH, Lee BK, Shin DS, Kim HE (2010) Aerosol deposition of silicon-substituted hydroxyapatite coatings for biomedical applications. Thin Solid Films 518:2194–2199

    Article  Google Scholar 

  431. Arcos D, Rodríguez-Carvajal J, Vallet-Regí M (2004) The effect of the silicon incorporation on the hydroxylapatite structure. A neutron diffraction study. Solid State Sci 6:987–994

    Article  Google Scholar 

  432. Tian T, Jiang D, Zhang J, Lin Q (2008) Synthesis of Si-substituted hydroxyapatite by a wet mechanochemical method. Mater Sci Eng C 28:57–63

    Article  Google Scholar 

  433. Chaikina M, Bulina N, Ishchenko A, Prosanov I (2014) Mechanochemical synthesis of SiO4 4−-substituted hydroxyapatite, part I – kinetics of interaction between the components. Eur J Inorg Chem 28:4803–4809

    Article  Google Scholar 

  434. Gibson IR, Best SM, Bonfield W (1999) Chemical characterization of silicon substituted hydroxyapatite. J Biomed Mater Res 44(4):422–428

    Article  Google Scholar 

  435. Bianco A, Cacciotti I, Lombardi M, Montanaro L (2009) Si-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sinterability. Mater Res Bull 44:345–354

    Article  Google Scholar 

  436. Marques PAAP, Magalhães MCF, Correia RN, Vallet-Regi M (2001) Synthesis and characterization of silicon-substituted hydroxyapatite. Key Eng Mater 192–195:247–250

    Article  Google Scholar 

  437. Bang LT, Ishikawa K, Othman R (2011) Effect of silicon and heat-treatment temperature on the morphology and mechanical properties of silicon-substituted hydroxyapatite. Ceram Int 37:3637–3642

    Article  Google Scholar 

  438. Leventouri T, Bunaciu CE, Perdikatsis V (2003) Neutron powder diffraction studies of silicon-substituted hydroxyapatite. Biomaterials 24:4205–4211

    Article  Google Scholar 

  439. Arcos D, Rodriguez-Carvajal J, Vallet-Regi M (2004) Silicon incorporation in hydroxylapatite obtained by controlled crystallization. Chem Mater 16(11):2300–2308

    Article  Google Scholar 

  440. Best S, Bonfield W, Gi R, Jha LJ, Da Silva Santos JD (2001) Silicon-substituted apatites and process for the preparation thereof. US Patent 6312468 B1, 6 Nov 2001

    Google Scholar 

  441. Putlayev V, Veresov A, Pulkin M, Soin A, Kuznetsov V (2006) Silicon-substituted hydroxyapatite ceramics (Si-HAp): densification and grain growth through the prism of sintering theories. Mater Sci Eng Technol 37:416–421

    Google Scholar 

  442. Palard M, Champion E, Foucaud S (2008) Synthesis of silicated hydroxyapatite Ca10(PO4)6x(SiO4)x(OH)2x. J Solid State Chem 181:1950–1960

    Article  Google Scholar 

  443. Balas F, Pérez-Pariente J, Vallet-Regí M (2003) In vitro bioactivity of silicon substituted hydroxyapatites. J Biomed Mater Res A 66(2):364–375

    Article  Google Scholar 

  444. Bakunova N, Fomin A, Fadeeva I, Barinov S, Shvorneva L (2007) Silicon-containing hydroxylapatite nanopowders. Russ J Inorg Chem 52:1492–1497

    Article  Google Scholar 

  445. Plokhikh NV, Soin AV, Kuztnetsov AV, Veresov AG, Putlayev VI, Tretyakov YD (2004) Synthesis of silicon-substituted hydroxyapatite. Mendeleev Commun 14:178–179

    Article  Google Scholar 

  446. Gasquères G, Bonhomme C, Maquet J, Babonneau F, Hayakawa S, Kanaya T, Osaka A (2008) Revisiting silicate substituted hydroxyapatite by solid-state NMR. Magn Reson Chem 46:342–346

    Article  Google Scholar 

  447. Hing KA, Revell PA, Smith N, Buckland T (2006) Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds. Biomaterials 27:5014–5026

    Article  Google Scholar 

  448. Gomes S, Renaudin G, Mesbah A, Jallot E, Bonhomme C, Babonneau F, Nedelec JM (2010) Thorough analysis of silicon substitution in biphasic calcium phosphate bioceramics: a multi-technique study. Acta Biomater 6:3264–3274

    Article  Google Scholar 

  449. Tang Q, Brooks R, Rushton N, Best S (2010) Production and characterization of HA and SiHA coatings. J Mater Sci Mater Med 21:173–181

    Article  Google Scholar 

  450. Botelho CM, Lopes MA, Gibson IR, Best SM, Santos JD (2002) Structural analysis of Si-substituted hydroxyapatite: zeta potential and X-ray photoelectron spectroscopy. J Mater Sci Mater Med 13(12):1123–1127

    Article  Google Scholar 

  451. Guth K, Campion C, Buckland T, Hing KA (2010) Effect of silicate-substitution on attachment and early development of human osteoblast-like cells seeded on microporous hydroxyapatite discs. Adv Eng Mater 12(1–2):B26–B36

    Article  Google Scholar 

  452. Guth K, Campion C, Buckland T, Hing KA (2011) Effects of serum protein on ionic exchange between culture medium and microporous hydroxyapatite and silicate-substituted hydroxyapatite. J Mater Sci Mater Med 22:2155–2164

    Article  Google Scholar 

  453. Porter AE, Patel N, Skepper JN, Best SM, Bonfield W (2003) Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials 24:4609–4620

    Article  Google Scholar 

  454. Sprio S, Tampieri A, Landi E, Sandri M, Martorana S, Celotti G, Logroscino G (2008) Physicochemical properties and solubility behaviour of multi-substituted hydroxyapatite powders containing silicon. Mater Sci Eng C 28:179–187

    Article  Google Scholar 

  455. Lehmann G, Palmero P, Cacciotti I, Pecci R, Campagnolo L, Bedini R, Siracusa G, Bianco A, Camaioni A, Montanaro L (2010) Design, production and biocompatibility of nanostructured porous HAp and Si-HAp ceramics as three-dimensional scaffolds for stem cell culture and differentiation. Ceram Silikáty 54:90–96

    Google Scholar 

  456. Vandiver J, Dean D, Patel N, Botelho C, Best SM, Santos JD, Lopes MA, Bonfield W, Ortiz C (2006) Silicon addition to hydroxyapatite increases nanoscale electrostatic, van der Waals, and adhesive interactions. J Biomed Mater Res A 78(2):352–363

    Article  Google Scholar 

  457. Panteix PJ, Béchade E, Julien I, Abélard P, Bernache-Assollant D (2008) Influence of anionic vacancies on the ionic conductivity of silicated rare earth apatites. Mater Res Bull 43:1223–1231

    Article  Google Scholar 

  458. Porter AE, Patel N, Skepper JN, Best SM, Bonfield W (2004) Effect of sintered silicate substituted hydroxyapatite on remodelling processes at the bone-implant interface. Biomaterials 25:3303–3314

    Article  Google Scholar 

  459. Dorozhkin SV (2008) A novel, environmentally friendly process for the fabrication of calcium phosphate bioceramics. Inorg Mater 44:207–210

    Article  Google Scholar 

  460. Lehmann G, Cacciotti I, Palmero P, Montanaro L, Bianco A, Campagnolo L, Camaioni A (2012) Differentiation of osteoblast and osteoclast precursors on pure and silicon-substituted synthesized hydroxyapatites. Biomed Mater 7:055001 (13pp)

    Article  Google Scholar 

  461. Marchat D, Zymelka M, Coelho C, Gremillard L, Joly-Pottuz L, Babonneau F, Esnouf C, Chevalier J, Bernache-Assollant D (2013) Accurate characterization of pure silicon-substituted hydroxyapatite powders synthesized by a new precipitation route. Acta Biomater 9:6992–7004

    Article  Google Scholar 

  462. Rau JV, Fosca M, Cacciotti I, Laureti S, Bianco A, Teghil R (2013) Nanostructured Si-substituted hydroxyapatite coatings for biomedical applications. Thin Solid Films 543:167–170

    Article  Google Scholar 

  463. Rau JV, Cacciotti I, Laureti S, Fosca M, Varvaro G, Latini A (2014) Bioactive, nanostructured Si-substituted hydroxyapatite coatings on titanium prepared by pulsed laser deposition. J Biomed Mater Res B. doi:10.1002/jbm.b.33344

    Google Scholar 

  464. Kim SR, Riu DH, Lee YJ, Kim YH (2002) Synthesis and characterization of silicon substituted hydroxyapatite. Key Eng Mater 218–220:85–88

    Article  Google Scholar 

  465. Xu JL, Khor KA (2007) Chemical analysis of silica doped hydroxyapatite biomaterials consolidated by a spark plasma sintering method. J Inorg Biochem 101:187–195

    Article  Google Scholar 

  466. Xu JL, Khor KA, Lu YW, Chen WN, Kumar R (2008) Osteoblast interactions with various hydroxyapatite based biomaterials consolidated using a spark plasma sintering technique. J Biomed Mater Res B App Biomater 84:224–230

    Article  Google Scholar 

  467. Vallet-Regí M, Arcos D (2005) Silicon substituted hydroxyapatites. A method to upgrade calcium phosphate based implants. J Mater Chem 15:1509–1516

    Article  Google Scholar 

  468. Qiu ZY, Li G, Zhang YQ, Liu J, Hu W, Ma J, Zhang SM (2012) Fine structure analysis and sintering properties of Si-doped hydroxyapatite. Biomed Mater 7:045009 (11pp)

    Article  Google Scholar 

  469. Gibson IR, Huang KA, Best SM, Bonfield W (1999) Enhanced in vitro cell activity and surface apatite layer formation on novel silicon-substituted hydroxyapatites. In: Ohgushi H, Hastings GW, Yoshikawa T (eds) Proceedings of the 12th international symposium on ceramics. World Scientific Publishing, London, pp 191–194

    Google Scholar 

  470. van Raemdonck W, Ducheyne P (1984) Metal and ceramic biomaterials. CRC Press, Boca Raton, pp 143–146

    Google Scholar 

  471. Porter AE, Best SM, Bonfield W (2004) Ultrastructural comparison of hydroxyapatite and silicon-substituted hydroxyapatite for biomedical applications. J Biomed Mater Res 68(1):133–141

    Article  Google Scholar 

  472. Pietak AM, Reid JW, Stott MJ, Sayer M (2007) Silicon substitution in the calcium phosphate bioceramics. Biomaterials 28:4023–4032

    Article  Google Scholar 

  473. Gibson IR, Hing KA, Revell PA, Santos JD, Best SM, Bonfield W (2002) Enhanced in vivo response to silicate-substituted hydroxyapatite. Key Eng Mater 218–220:203–206

    Article  Google Scholar 

  474. Porter AE, Botelho CM, Lopes MA, Santos JD, Best SM, Bonfield W (2004) Ultrastructural comparison of dissolution and apatite precipitation on hydroxyapatite and silicon-substituted hydroxyapatite in vitro and in vivo. J Biomed Mater Res 69A:670–679

    Article  Google Scholar 

  475. Botelho CM, Brooks RA, Spence G, McFarlane I, Lopes MA, Best SM, Santos JD, Rushton N, Bonfield W (2006) Differentiation of mononuclear precursors into osteoclasts on the surface of Si-substituted hydroxyapatite. J Biomed Mater Res 78A:709–720

    Article  Google Scholar 

  476. Botelho CM, Brooks RA, Best SM, Lopes MA, Santos JD, Rushton N, Bonfield W (2006) Human osteoblast response to silicon-substituted hydroxyapatite. J Biomed Mater Res 79A:723–730

    Article  Google Scholar 

  477. Bohner M (2009) Silicon-substituted calcium phosphates-a critical view. Biomaterials 30:6403–6406

    Article  Google Scholar 

  478. Thian ES, Ahmad Z, Huang J, Edirisinghe MJ, Jayasinghe SN, Ireland DC, Brooks RA, Rushton N, Bonfield W, Best SM (2008) The role of electrosprayed apatite nanocrystals in guiding osteoblast behaviour. Biomaterials 29(12):1833–1843

    Article  Google Scholar 

  479. Boanini E, Gazzano M, Bigi A (2010) Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater 6:1882–1894

    Article  Google Scholar 

  480. Camaioni A, Cacciotti I, Campagnolo L, Bianco A (2015) Silicon substituted hydroxyapatite for biomedical applications. In: Mucalo M (ed) Hydroxyapatite for biomedical applications. Woodhead Publishing Elsevier Limited Edition, Oxford, pp 343–373

    Google Scholar 

  481. Mouriño V, Cattalini JB, Boccaccini AR (2012) Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J Royal Soc Interface 9(68):401–419

    Article  Google Scholar 

  482. Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM (2001) Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution. J Biomed Mater Res 55:151–157

    Article  Google Scholar 

  483. Hench LL (2009) Genetic design of bioactive glass. J Eur Ceram Soc 29:1257–1265

    Article  Google Scholar 

  484. Gorustovich AA, Roether JA, Boccaccini AR (2010) Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng B Rev 16:199–207

    Article  Google Scholar 

  485. Gorriti MF, Porto López JM, Boccaccini AR, Audisio C, Gorustovich AA (2009) In vitro study of the antibacterial activity of bioactive glass-ceramic scaffolds. Adv Eng Mater 11:B67–B70

    Article  Google Scholar 

  486. Day RM, Boccaccini AR (2005) Effect of particulate bioactive glasses on human macrophages and monocytes in vitro. J Biomed Mater Res A 73A:73–79

    Article  Google Scholar 

  487. Cacciotti I, Lombardi M, Bianco A, Ravaglioli A, Montanaro L (2012) Sol–gel derived 45S5 bioglass: synthesis, microstructural evolution and thermal behaviour. J Mater Sci Mater Med 23(8):1849–1866

    Article  Google Scholar 

  488. Lombardi M, Cacciotti I, Bianco A, Montanaro L (2015) RKKP bioactive glass-ceramic material via an aqueous sol–gel process. Ceram Int 41(3):3371–3380

    Article  Google Scholar 

  489. Cacciotti I, Lehmann G, Camaioni A, Bianco A (2013) AP40 bioactive glass ceramic by sol–gel synthesis: in vitro dissolution and cell-mediated bioresorption. Key Eng Mater 541:41–50

    Article  Google Scholar 

  490. Ledda M, De Bonis A, Bertani FR, Cacciotti I, Teghil R, Lolli MG, Ravaglioli A, Lisi A, Rau JV (2015) Interdisciplinary approach to cell-biomaterial interactions: biocompatibility and cell friendly characteristics of RKKP glass-ceramic coatings on titanium. Biomed Mater 10(3):035005

    Article  Google Scholar 

  491. Lombardi M, Gremillard L, Chevalier J, Lefebvre L, Cacciotti I, Bianco A, Montanaro L (2013) A comparative study between melt-derived and sol–gel synthesized 45S5 bioactive glasses. Key Eng Mater 541:15–30

    Article  Google Scholar 

  492. Landi E, Sprio S, Sandri M, Celotti G, Tampieri A (2008) Development of Sr and CO3 co-substituted hydroxyapatites for biomedical applications. Acta Biomater 4(3):656–663

    Article  Google Scholar 

  493. Landi E, Tampieri A, Mattioli-Belmonte M, Celotti G, Sandri M, Gigante A, Fava P, Biagini G (2006) Biomimetic Mg- and Mg, CO3-substituted hydroxyapatites: synthesis characterization and in vitro behaviour. J Eur Ceram Soc 26(13):2593–2601

    Article  Google Scholar 

  494. Zyman ZZ, Tkachenko MV (2013) Sodium-carbonate co-substituted hydroxyapatite ceramics. Process Appl Ceram 7(4):153–157

    Article  Google Scholar 

  495. Landi E, Uggeri J, Sprio S, Tampieri A, Guizzardi S (2010) Human osteoblast behavior on as-synthesized SiO(4) and B-CO(3) co-substituted apatite. J Biomed Mater Res A 94A(1):59–70

    Article  Google Scholar 

  496. Stephen JA, Skakle JMS, Gibson IR (2007) Synthesis of novel high silicate-substituted hydroxyapatite by co-substitution mechanisms. Key Eng Mater 330–332:87–90

    Article  Google Scholar 

  497. Friederichs RJ, Chappell HF, Shepherd DV, Best SM (2015) Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite. J R Soc Interface 12:20150190

    Article  Google Scholar 

  498. Huang Y, Zhang X, Mao H, Li T, Zhao R, Yan Y, Pang Z (2015) Osteoblastic cell responses and antibacterial efficacy of Cu/Zn co-substituted hydroxyapatite coatings on pure titanium using electrodeposition method. RSC Adv 5:17076–17086

    Article  Google Scholar 

  499. Gopi D, Ramya S, Rajeswari D, Karthikeyan P, Kavitha L (2014) Strontium, cerium co-substituted hydroxyapatite nanoparticles: synthesis, characterization, antibacterial activity towards prokaryotic strains and in vitro studies. Colloids Surf A 451:172–180

    Article  Google Scholar 

  500. Aina V, Lusvardi G, Annaz B, Gibson IR, Imrie FE, Malavasi G, Menabue L, Cerrato G, Martra G (2012) Magnesium- and strontium-co-substituted hydroxyapatite: the effects of doped-ions on the structure and chemico-physical properties. J Mater Sci Mater Med 23(12):2867–2879

    Article  Google Scholar 

  501. Gopi D, Shinyjoy E, Kavitha L (2014) Synthesis and spectral characterization of silver/magnesium co-substituted hydroxyapatite for biomedical applications. Spectrochim Acta A Mol Biomol Spectrosc 127:286–291

    Article  Google Scholar 

  502. Shepherd JH, Shepherd DV, Best SM (2012) Substituted hydroxyapatites for bone repair. J Mater Sci Mater Med 23:2335–2347

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaria Cacciotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Cacciotti, I. (2015). Cationic and Anionic Substitutions in Hydroxyapatite. In: Antoniac, I. (eds) Handbook of Bioceramics and Biocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-09230-0_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09230-0_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-09230-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics