Skip to main content

Polynomial Chaos: Modeling, Estimation, and Approximation

  • Living reference work entry
  • First Online:
Handbook of Uncertainty Quantification

Abstract

Polynomial chaos decompositions (PCE) have emerged over the past three decades as a standard among the many tools for uncertainty quantification. They provide a rich mathematical structure that is particularly well suited to enabling probabilistic assessments in situations where interdependencies between physical processes or between spatiotemporal scales of observables constitute credible constraints on system-level predictability. Algorithmic developments exploiting their structural simplicity have permitted the adaptation of PCE to many of the challenges currently facing prediction science. These include requirements for large-scale high-resolution computational simulations implicit in modern applications, non-Gaussian probabilistic models, and non-smooth dependencies and for handling general vector-valued stochastic processes. This chapter presents an overview of polynomial chaos that underscores their relevance to problems of constructing and estimating probabilistic models, propagating them through arbitrarily complex computational representations of underlying physical mechanisms, and updating the models and their predictions as additional constraints become known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Adomian, G.: Stochastic Greenā€™s functions. In: Bellman, R. (ed.) Proceedings of Symposia in Applied Mathematics. VolumeĀ 16: Stochastic Processes in Mathematical Physics and Engineering. American Mathematical Society, Providence (1964)

    Google ScholarĀ 

  2. Adomian, G.: Stochastic Systems. Academic, New York (1983)

    MATHĀ  Google ScholarĀ 

  3. Albeverio, S., Daletsky, Y., Kondratiev, Y., Streit, L.: Non-Gaussian infinite dimensional analysis. J. Funct. Anal. 138, 311ā€“350 (1996)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  4. Arnst, M., Ghanem, R.: Probabilistic equivalence and stochastic model reduction in multiscale analysis. Comput. Methods Appl. Mech. Eng. 197(43ā€“44), 3584ā€“3592 (2008)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  5. Arnst, M., Ghanem, R., Phipps, E., Red-Horse, J.: Dimension reduction in stochastic modeling of coupled problems. Int. J. Numer. Methods Eng. 92, 940ā€“968 (2012)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  6. Arnst, M., Ghanem, R., Phipps, E., Red-Horse, J.: Measure transformation and efficient quadrature in reduced-dimensional stochastic modeling of coupled problems. Int. J. Numer. Methods Eng. 92, 1044ā€“1080 (2012)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  7. Arnst, M., Ghanem, R., Phipps, E., Red-Horse, J.: Reduced chaos expansions with random coefficients in reduced-dimensional stochastic modeling of coupled problems. Int. J. Numer. Methods Eng. 97(5), 352ā€“376 (2014)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  8. Arnst, M., Ghanem, R., Soize, C.: Identification of Bayesian posteriors for coefficients of chaos expansions. J. Comput. Phys. 229(9), 3134ā€“3154 (2010)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  9. BabuÅ”ka, I., Tempone, R., Zouraris, G.E.: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42(2), 800ā€“825 (2005)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  10. BabuÅ”ka, I., Tempone, R., Zouraris, G.E.: Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation. Comput. Methods Appl. Mech. Eng. 194(12ā€“16), 1251ā€“1294 (2005)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  11. Benaroya, H., Rehak, M.: Finite element methods in probabilistic structural analysis: a selective review. Appl. Mech. Rev. 41(5), 201ā€“213 (1988)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  12. Berezansky, Y.M.: Infinite-dimensional non-Gaussian analysis and generalized translation operators. Funct. Anal. Appl. 30(4), 269ā€“272 (1996)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  13. Bharucha-Reid, A.T.: On random operator equations in Banach space. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. 7, 561ā€“564 (1959)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  14. Billingsley, P.: Probability and Measure. Wiley Interscience, New York (1995)

    MATHĀ  Google ScholarĀ 

  15. Bose, A.G.: A theory of nonlinear systems. Technical report 309, Research Laboratory of Electronics, MIT (1956)

    Google ScholarĀ 

  16. Boyce, E.W., Goodwin, B.E.: Random transverse vibration of elastic beams. SIAM J. 12(3), 613ā€“629 (1964)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  17. Brilliant, M.B.: Theory of the analysis of nonlinear systems. Technical report 345, Research Laboratory of Electronics, MIT (1958)

    Google ScholarĀ 

  18. Cameron, R.H., Martin, W.T.: The orthogonal development of nonlinear funtions in a series of Fourier-Hermite functionals. Ann. Math. 48, 385ā€“392 (1947)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  19. Chorin, A.: Hermite expansions in Monte-Carlo computation. J. Comput. Phys. 8, 472ā€“482 (1971)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  20. Cornish, E., Fisher, R.: Moments and cumulants in the specification of distributions. Rev. Int. Stat. Inst. 5(4), 307ā€“320 (1938)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  21. Das, S., Ghanem, R.: A bounded random matrix approach for stochastic upscaling. SIAM J. Multiscale Model. Simul. 8(1), 296ā€“325 (2009)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  22. Das, S., Ghanem, R., Finette, S.: Polynomial chaos representation of spatio-temporal random fields from experimental measurements. J. Comput. Phys. 228(23), 8726ā€“8751 (2009)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  23. Das, S., Ghanem, R., Spall, J.: Sampling distribution for polynomial chaos representation of data: a maximum-entropy and fisher information approach. SIAM J. Sci. Comput. 30(5), 2207ā€“2234 (2008)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  24. Debusschere, B., Najm, H., Matta, A., Knio, O., Ghanem, R., Le Maitre, O.: Protein labeling reactions in electrochemical microchannel flow: numerical simulation and uncertainty propagation. Phys. Fluids 15(8), 2238ā€“2250 (2003)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  25. Descelliers, C., Ghanem, R., Soize, C.: Maximum likelihood estimation of stochastic chaos representation from experimental data. Int. J. Numer. Methods Eng. 66(6), 978ā€“1001 (2006)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  26. Diggle, P., Gratton, R.: Monte Carlo methods of inference for implicit statistical models. J. R. Stat. Soc. Ser. B 46, 193ā€“227 (1984)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  27. Doostan, A., Ghanem, R., Red-Horse, J.: Stochastic model reduction for chaos representations. Comput. Methods Appl. Mech. Eng. 196, 3951ā€“3966 (2007)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  28. Ernst, O.G., Ullmann, E.: Stochastic Galerkin matrices. SIAM J. Matrix Anal. Appl. 31(4), 1848ā€“1872 (2010)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  29. Fisher, R., Cornish, E.: The percentile points of distributions having known cumulants. Technometrics 2(2), 209ā€“225 (1960)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  30. Ganapathysubramanian, B., Zabaras, N.: Sparse grid collocation methods for stochastic natural convection problems. J. Comput. Phys. 225, 652ā€“685 (2007)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  31. George, D.A.: Continuous nonlinear systems. Technical report 355, Research Laboratory of Electronics, MIT (1959)

    Google ScholarĀ 

  32. Ghanem, R.: Hybrid stochastic finite elements: coupling of spectral expansions with Monte Carlo simulations. ASME J. Appl. Mech. 65, 1004ā€“1009 (1998)

    ArticleĀ  Google ScholarĀ 

  33. Ghanem, R.: Scales of fluctuation and the propagation of uncertainty in random porous media. Water Resour. Res. 34(9), 2123ā€“2136 (1998)

    ArticleĀ  Google ScholarĀ 

  34. Ghanem, R., Abras, J.: A general purpose library for stochastic finite element computations. In: Bathe, J. (ed.) Second MIT Conference on Computational Mechanics, Cambridge (2003)

    Google ScholarĀ 

  35. Ghanem, R., Brzkala, V.: Stochastic finite element analysis for randomly layered media. ASCE J. Eng. Mech. 122(4), 361ā€“369 (1996)

    ArticleĀ  Google ScholarĀ 

  36. Ghanem, R., Dham, S.: Stochastic finite element analysis for multiphase flow in heterogeneous porous media. Transp. Porous Media 32, 239ā€“262 (1998)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  37. Ghanem, R., Doostan, A., Red-Horse, J.: A probabilistic construction of model validation. Comput. Methods Appl. Mech. Eng. 197, 2585ā€“2595 (2008)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  38. Ghanem, R., Red-Horse, J., Benjamin, A., Doostan, A., Yu, A.: Stochastic process model for material properties under incomplete information (AIAA 2007ā€“1968). In: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, 23ā€“26 Apr 2007. AIAA (2007)

    Google ScholarĀ 

  39. Ghanem, R., Sarkar, A.: Reduced models for the medium-frequency dynamics of stochastic systems. JASA 113(2), 834ā€“846 (2003)

    ArticleĀ  Google ScholarĀ 

  40. Ghanem, R., Spanos, P.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991). Revised edition by Dover Publications, (2003)

    Google ScholarĀ 

  41. Ghiocel, D., Ghanem, R.: Stochastic finite element analysis of seismic soil-structure interaction. J. Eng. Mech. 128(1), 66ā€“77 (2002)

    ArticleĀ  Google ScholarĀ 

  42. Gikhman, I., Skorohod, A.: The Theory of Stochastic Processes I. Springer, Berlin (1974)

    BookĀ  Google ScholarĀ 

  43. Guilleminot, J., Soize, C., Ghanem, R.: Stochastic representation for anisotropic permeability tensor random fields. Int. J. Numer. Anal. Methods Geomech. 36, 1592ā€“1608 (2012)

    ArticleĀ  Google ScholarĀ 

  44. Hart, G.C., Collins, J.D.: The treatment of randomness in finite element modelling. In: SAE Shock and Vibrations Symposium, Los Angeles, pp.Ā 2509ā€“2519 (1970)

    Google ScholarĀ 

  45. Hasselman, T.K., Hart, G.C.: Modal analysis of random structural systems. ASCE J. Eng. Mech. 98(EM3), 561ā€“579 (1972)

    Google ScholarĀ 

  46. Hida, T.: White noise analysis and nonlinear filtering problems. Appl. Math. Optim. 2, 82ā€“89 (1975)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  47. Hida, T., Kuo, H.-H., Potthoff, J., Streit, L.: White Noise: An Infinite Dimensional Calculus. Kluwer Academic Publishers, Dordrecht/Boston (1993)

    BookĀ  MATHĀ  Google ScholarĀ 

  48. Imamura, T., Meecham, W.: Wiener-Hermite expansion in model turbulence in the late decay stage. J. Math. Phys. 6(5), 707ā€“721 (1965)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  49. ItĆ“, K.: Multiple Wiener integrals. J. Math. Soc. Jpn. 3(1), 157ā€“169 (1951)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  50. ItĆ“, K.: Spectral type of shift transformations of differential process with stationary increments. Trans. Am. Math. Soc. 81, 253ā€“263 (1956)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  51. Jahedi, A., Ahmadi, G.: Application of Wiener-Hermite expansion to nonstationary random vibration of a Duffing oscillator. ASME J. Appl. Mech. 50, 436ā€“442 (1983)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  52. Kallianpur, G.: Stochastic Filtering Theory. Springer, New York (1980)

    BookĀ  MATHĀ  Google ScholarĀ 

  53. Klein, S., Yasui, S.: Nonlinear systems analysis with non-Gaussian white stimuli: General basis functionals and kernels. IEEE Tran. Inf. Theory IT-25(4), 495ā€“500 (1979)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  54. Kondratiev, Y., Da Silva, J., Streit, L., Us, G.: Analysis on Poisson and Gamma spaces. Infinite Dimens. Anal. Quantum Probab. Relat. Top. 1(1), 91ā€“117 (1998)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  55. LĆ©vy, P.: LeƧons dā€™Analyses Fonctionelles. Gauthier-Villars, Paris (1922)

    Google ScholarĀ 

  56. Li, R., Ghanem, R.: Adaptive polynomial chaos simulation applied to statistics of extremes in nonlinear random vibration. Probab. Eng. Mech. 13(2), 125ā€“136 (1998)

    ArticleĀ  Google ScholarĀ 

  57. Liu, W.K., Besterfield, G., Mani, A.: Probabilistic finite element methods in nonlinear structural dynamics. Comput. Methods Appl. Mech. Eng. 57, 61ā€“81 (1986)

    ArticleĀ  Google ScholarĀ 

  58. Lytvynov, E.: Multiple Wiener integrals and non-Gaussian white noise: a Jacobi field approach. Methods Funct. Anal. Topol. 1(1), 61ā€“85 (1995)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  59. Le Maitre, O., Najm, H., Ghanem, R., Knio, O.: Multi-resolution analysis of Wiener-type uncertainty propagation schemes. J. Comput. Phys. 197(2), 502ā€“531 (2004)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  60. Le Maitre, O., Reagan, M., Najm, H., Ghanem, R., Knio, O.: A stochastic projection method for fluid flow. II: random process. J. Comput. Phys. 181, 9ā€“44 (2002)

    MATHĀ  Google ScholarĀ 

  61. Matthies, H.G., Keese, A.: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 194(12ā€“16), 1295ā€“1331 (2005). Special Issue on Computational Methods in Stochastic Mechanics and Reliability Analysis

    Google ScholarĀ 

  62. Meidani, H., Ghanem, R.: Uncertainty quantification for Markov chain models. Chaos 22(4) (2012)

    Google ScholarĀ 

  63. Nakagiri, S., Hisada, T.: Stochastic finite element method applied to structural analysis with uncertain parameters. In: Proceeding of the International Conference on FEM, pp.Ā 206ā€“211 (1982)

    Google ScholarĀ 

  64. Nakayama, A., Kuwahara, F., Umemoto, T., Hayashi, T.: Heat and fluid flow within an anisotropic porous medium. Trans. ASME 124, 746ā€“753 (2012)

    ArticleĀ  Google ScholarĀ 

  65. Ogura, H.: Orthogonal functionals of the Poisson process. IEEE Trans. Inf. Theory IT-18(4), 473ā€“481 (1972)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  66. Pawlowski, R., Phipps, R., Salinger, A., Owen, S., Ciefert, C., Stalen, A.: Automating embedded analysis capabilities and managing software complexity in multiphysics simulation, Part II: application to partial differential equations. Sci. Program. 20(3), 327ā€“345 (2012)

    Google ScholarĀ 

  67. Pellissetti, M.F., Ghanem, R.G.: Iterative solution of systems of linear equations arising in the context of stochastic finite elements. Adv. Eng. Softw. 31(8ā€“9), 607ā€“616 (2000)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  68. Powell, C.E., Elman, H.C.: Block-diagonal preconditioning for spectral stochastic finite-element systems. IMA J. Numer. Anal. 29(2), 350ā€“375 (2009)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  69. Pugachev, V., Sinitsyn, I.: Stochastic Systems: Theory and Applications. World Scientific, River Edge (2001)

    MATHĀ  Google ScholarĀ 

  70. Red-Horse, J., Ghanem, R.: Elements of a functional analytic approach to probability. Int. J. Numer. Methods Eng. 80(6ā€“7), 689ā€“716 (2009)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  71. Reichel, L., Trefethen, L.: Eigenvalues and pseudo-eigenvalues of toeplitz matrices. Linear Algebra Appl. 162, 153ā€“185 (1992)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  72. Rosenblatt, M.: Remarks on a multivariate transformation. Ann. Math. Stat. 23, 470ā€“472 (1952)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  73. Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 27, 832ā€“837 (1956)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  74. Rosseel, E., Vandewalle, S.: Iterative solvers for the stochastic finite element method. SIAM J. Sci. Comput. 32(1), 372ā€“397 (2010)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  75. Rugh, W.J.: Nonlinear System Theory: The Volterra-Wiener Approach. Johns Hopkins University Press, Baltimore (1981)

    MATHĀ  Google ScholarĀ 

  76. Sakamoto, S., Ghanem, R.: Simulation of multi-dimensional non-Gaussian non-stationary random fields. Probab. Eng. Mech. 17(2), 167ā€“176 (2002)

    ArticleĀ  Google ScholarĀ 

  77. Sargsyan, K., Najm, H., Ghanem, R.: On the statistical calibration of physical models. Int. J. Chem. Kinet. 47(4), 246ā€“276 (2015)

    ArticleĀ  Google ScholarĀ 

  78. Schoutens, W.: Stochastic Processes and Orthogonal Polynomials. Springer, New York (2000)

    BookĀ  MATHĀ  Google ScholarĀ 

  79. Segall, A., Kailath, T.: Orthogonal functionals of independent-increment processes. IEEE Trans. Inf. Theory IT-22(3), 287ā€“298 (1976)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  80. Shinozuka, M., Astill, J.: Random eigenvalue problem in structural mechanics. AIAA J. 10(4), 456ā€“462 (1972)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  81. Skorohod, A.V.: Random linear operators. Reidel publishing company, Dordrecht (1984)

    BookĀ  Google ScholarĀ 

  82. Sobczyk, K.: Wave Propagation in Random Media. Elsevier, Amsterdam (1985)

    MATHĀ  Google ScholarĀ 

  83. Soize, C.: A nonparametric model of random uncertainties for reduced matrix models in structural dynamics. Probab. Eng. Mech. 15(3), 277ā€“294 (2000)

    ArticleĀ  Google ScholarĀ 

  84. Soize, C., Ghanem, R.: Physical systems with random uncertainties: chaos representations with arbitrary probability measure. SIAM J. Sci. Comput. 26(2), 395ā€“410 (2004)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  85. Soize, C., Ghanem, R.: Reduced chaos decomposition with random coefficients of vector-valued random variables and random fields. Comput. Methods Appl. Mech. Eng. 198(21ā€“26), 1926ā€“1934 (2009)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  86. Soize, C., Ghanem, R.: Data-driven probability concentration and sampling on manifold. J. Comput. Phys. 321, 242ā€“258 (2016)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  87. Soong, T.T., Bogdanoff, J.L.: On the natural frequencies of a disordered linear chain of n degrees of freedom. Int. J. Mech. Sci. 5, 237ā€“265 (1963)

    ArticleĀ  Google ScholarĀ 

  88. Sousedik, B., Elman, H.: Stochastic Galerkin methods for the steady-state Navier-Stokes equations. J. Comput. Phys. 316, 435ā€“452 (2016)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  89. Sousedik, B., Ghanem, R.: Truncated hierarchical preconditioning for the stochastic Galerkin FEM. Int. J. Uncertain. Quantif. 4(4), 333ā€“348 (2014)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  90. Sousedik, B., Ghanem, R., Phipps, E.: Hierarchical schur complement preconditioner for the stochastic Galerkin finite element methods. Numer. Linear Algebra Appl. 21(1), 136ā€“151 (2014)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  91. Steinwart, I., Scovel, C.: Mercerā€™s theorem on general domains: on the interaction between measures, kernels, and RKHSs. Constr. Approx. 35, 363ā€“417 (2012)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  92. Stone, M.: The genralized Weierstrass approximation theorem. Math. Mag. 21(4), 167ā€“184 (1948)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  93. Takemura, A., Takeuchi, K.: Some results on univariate and multivariate Cornish-Fisher expansion: algebraic properties and validity. Sankhy\(\breve{a}\) 50, 111ā€“136 (1988)

    Google ScholarĀ 

  94. Tan, W., Guttman, I.: On the construction of multi-dimensional orthogonal polynomials. Metron 34, 37ā€“54 (1976)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  95. Tavare, S., Balding, D., Griffiths, R., Donnelly, P.: Inferring coalescence times from dna sequence data. Genetics 145, 505ā€“518 (1997)

    Google ScholarĀ 

  96. Thimmisetty, C., Khodabakhshnejad, A., Jabbari, N., Aminzadeh, F., Ghanem, R., Rose, K., Disenhof, C., Bauer, J.: Multiscale stochastic representation in high-dimensional data using Gaussian processes with implicit diffusion metrics. In: Ravela, S., Sandu, A. (eds.) Dynamic Data-Driven Environmental Systems Science. Lecture Notes in Computer Science, vol.Ā 8964. Springer (2015). doi:10.1007/978ā€“3ā€“319ā€“25138ā€“7_15

    Google ScholarĀ 

  97. Tipireddy, R.: Stochastic Galerkin projections: solvers, basis adaptation and multiscale modeling and reduction. PhD thesis, University of Southern California (2013)

    Google ScholarĀ 

  98. Tipireddy, R., Ghanem, R.: Basis adaptation in homogeneous chaos spaces. J. Comput. Phys. 259, 304ā€“317 (2014)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  99. Tsilifis, P., Ghanem, R.: Reduced Wiener chaos representation of random fields via basis adaptation and projection. J. Comput. Phys. (2016, submitted)

    Google ScholarĀ 

  100. Volterra, V.: Theory of Functionals and of Integral and Integro-Differential Equations. Blackie & Son, Ltd., Glasgow (1930)

    MATHĀ  Google ScholarĀ 

  101. Wan, X., Karniadakis, G.: Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J. Sci. Comput. 28(3), 901ā€“928 (2006)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  102. Wiener, N.: Differential space. J. Math. Phys. 2, 131ā€“174 (1923)

    ArticleĀ  Google ScholarĀ 

  103. Wiener, N.: The homogeneous chaos. Am. J. Math. 60(4), 897ā€“936 (1938)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  104. Wintner, A., Wiener, N.: The discrete chaos. Am. J. Math. 65, 279ā€“298 (1943)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  105. Xiu, D., Karniadakis, G.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619ā€“644 (2002)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  106. Xiu, D., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118ā€“1139 (2005)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  107. Yamazaki, F., Shinozuka, M., Dasgupta, G.: Neumann expansion for stochastic finite-element analysis. ASCE J. Eng. Mech. 114(8), 1335ā€“1354 (1988)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Ghanem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2016 Springer International Publishing AG

About this entry

Cite this entry

Ghanem, R., Red-Horse, J. (2016). Polynomial Chaos: Modeling, Estimation, and Approximation. In: Ghanem, R., Higdon, D., Owhadi, H. (eds) Handbook of Uncertainty Quantification. Springer, Cham. https://doi.org/10.1007/978-3-319-11259-6_13-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11259-6_13-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11259-6

  • Online ISBN: 978-3-319-11259-6

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics