Skip to main content

Redundancy of Structures and Fatigue of Bridges and Ships Under Uncertainty

Handbook of Uncertainty Quantification

Abstract

Bridges and ships are key components of civil and marine infrastructure systems, respectively. Due to the nature of their in-service role, failure of such structures may lead to very high consequences. Preventing such failures requires rigorous design and life-cycle management techniques. In order to maintain satisfactory performance for these structures throughout their service life, various uncertainties associated with the design and management processes should be properly accounted for. Among the important design considerations for bridges and ships that highly depend on the proper identification of these uncertainties are the structural redundancy quantification and fatigue life assessment. In this chapter, quantification of redundancy and its integration into the design process of structural components are discussed. Additionally, the probabilistic fatigue assessment problem and the sources of uncertainties associated with the fatigue life prediction models are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. American Association of State Highway and Transportation Officials (AASHTO): AASHTO LRFD Bridge Design Specifications, 7th edn. American Association of State Highway and Transportation Officials, Washington, DC (2014)

    Google Scholar 

  2. Ang, A.H-S., Tang, W.H.: Probability Concepts in Engineering Planning and Design, vol. 2. Wiley, New York (1984)

    Google Scholar 

  3. Ayyub, B.M., Assakkaf, I.A., Kihl, D.P., Siev, M.W.: Reliability-based design guidelines for fatigue of ship structures. Naval Eng. J. 114(2), 113–138 (2002)

    Article  Google Scholar 

  4. Barsom, J.M., Rolfe, S.T.: Fracture and Fatigue Control in Structures: Applications of Fracture Mechanics. ASTM, West Conshohocken (1999)

    Book  Google Scholar 

  5. British Standards Institute (BSI): Steel, Concrete, and Composite Bridges: Code of Practice for Fatigue. 5400-Part 10. British Standards Institute, London (1980)

    Google Scholar 

  6. British Standards Institute (BSI): Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures. BS7910, British Standards Institute, London (2005)

    Google Scholar 

  7. Chan, T.H.T., Li, Z.X., Ko, J.M.: Fatigue analysis and life prediction of bridges with structural health monitoring data – Part II: application. Int. J. Fatigue 23(1), 55–64 (2001)

    Article  Google Scholar 

  8. Chung, H., Manuel, L., Frank, K.: Optimal inspection scheduling of steel bridges using nondestructive testing techniques. J. Br. Eng. 113, 305–319 (2006)

    Article  Google Scholar 

  9. Collette, M., Incecik, A.: An approach for reliability-based fatigue design of welded joints in aluminum high-speed vessels. J. Ship Res. 50(3), 85–98 (2006)

    Google Scholar 

  10. Collette, M.: Strength and Reliability of Aluminum Stiffened Panels, pp. 139–198, A Thesis submitted for the Degree of Doctor of Philosophy, School of Marine Science and Technology, Faculty of Science, Agriculture and Engineering, University of Newcastle (2005)

    Google Scholar 

  11. Connor, R.J., Fisher, J.W.: Identifying effective and ineffective retrofits for distortion fatigue cracking in steel bridges using field instrumentation. J. Br. Eng. 11(6), 745–52 (2006)

    Article  Google Scholar 

  12. Downing, S.D., Socie, D.F.: Simple rainflow counting algorithms. Int. J. Fatigue 4(1), 31–40 (1982)

    Article  Google Scholar 

  13. Estes, A.C, Frangopol, D.M.: RELSYS: A computer program for structural system reliability analysis. Struct. Eng. Mech. Techno – Press 6(8), 901–919 (1998)

    Google Scholar 

  14. Eurocode 3: Design of Steel Structures Part 1–9, Fatigue Strength. CEN – European Committee for Standardisation, Brussels (2010)

    Google Scholar 

  15. Eurocode 9: Design of Aluminium Structures Part 1–3, Additional Rules for Structures Susceptible to Fatigue. CEN – European committee for Standardisation, Brussels (2009)

    Google Scholar 

  16. Fisher, J.W.: Fatigue and Fracture in Steel Bridges, Case Studies. Wiley, New York (1984)

    Google Scholar 

  17. Fisher, J.W., Kulak, G.L., Smith, I.F.: A fatigue primer for structural engineers, National Steel Bridge Alliance, Chicago (1998)

    Google Scholar 

  18. Frangopol, D.M.: Life-cycle performance, management, and optimization of structural systems under uncertainty: Accomplishments and challenges. Struct. Infrastruct. Eng. 7(6), 389–413 (2011)

    Article  Google Scholar 

  19. Frangopol, D.M., Curley, J.P.: Effects of damage and redundancy on structural reliability. J. Struct. Eng. 113(7), 1533–1549 (1987)

    Article  Google Scholar 

  20. Frangopol, D.M., Klisinski, M.: Material behavior and optimum design of structural systems. J. Struct. Eng. 115(5), 1054–1075 (1989)

    Article  Google Scholar 

  21. Frangopol, D.M., Nakib, R.: Redundancy in highway bridges. Eng. J. 28(1), 45–50 (1991). American Institute of Steel Construction, Chicago

    Google Scholar 

  22. Ghosn, M., Moses, F.: Redundancy in Highway Bridge Superstructures. NCHRP Report 406. Transportation Research Board, Washington, DC (1998)

    Google Scholar 

  23. Guedes Soares, C., Garbatov, Y.: Fatigue reliability of the ship hull girder. Mar. Struct. 9(3–4), 495–516 (1996)

    Article  Google Scholar 

  24. Heredia-Zavoni, E., Montes-Iturrizaga, R.: A Bayesian model for the probability distribution of fatigue damage in tubular joints. J. Offshore Mech. Arctic Eng. 126(3) 243–249 (2004)

    Article  Google Scholar 

  25. Jensen, J.J.: In: Bhattacharyya, R., McCormick, M.E. (eds.) Load and Global Response of Ships. Ocean Engineering Series, vol. 4. Elsevier, Oxford, UK (2001)

    Google Scholar 

  26. Hendawi, S., Frangopol, D.M.: System reliability and redundancy in structural design and evaluation. Struct. Saf. 16(1+2), 47–71 (1994)

    Google Scholar 

  27. Kim, J.: Finite Element Modeling of Twin Steel Box-Girder Bridges for Redundancy Evaluation. Dissertation, The University of Texas at Austin, Austin (2010)

    Google Scholar 

  28. Kim, S., Frangopol, D.M.: Optimum inspection planning for minimizing fatigue damage detection delay of ship hull structures. Int. J. Fatigue 33(3), 448–459 (2011)

    Article  Google Scholar 

  29. Kim, S., Frangopol, D.M.: Probabilistic bicriterion optimum inspection/monitoring planning: application to naval ships and bridges under fatigue. Struct. Infrastruct. Eng. 8(10), 912–927 (2012)

    Google Scholar 

  30. Kim, S., Frangopol, D.M, Soliman, M.: Generalized probabilistic framework for optimum inspection and maintenance planning. J. Struct. Eng. 139(3), 435–447 (2013)

    Article  Google Scholar 

  31. Kwon, K., Frangopol, D.M., Soliman, M.: Probabilistic fatigue life estimation of steel bridges by using a bilinear S-N approach. J. Bridge Eng. 17(1), 58–70 (2012)

    Article  Google Scholar 

  32. Leemis, L.M.: Reliability, Probabilistic Models and Statistical Methods. Prentice Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  33. Li, Z.X., Chan, T.H.T., Ko, J.M.: Fatigue analysis and life prediction of bridges with structural health monitoring data – Part I: methodology and strategy. Int. J. Fatigue 23(1), 45–53 (2001)

    Google Scholar 

  34. Li, Z., Zhang, Y., Wang, C.: A sensor-driven structural health prognosis procedure considering sensor performance degradation. Struct. Infrastruct. Eng. 9(8), 764–776 (2013)

    Article  Google Scholar 

  35. Mansour, A.E., Wirsching, P.H., White, G.J., Ayyub, B.M.: Probability-Based Ship Design: Implementation of Design Guidelines. SSC 392. Ship Structures Committee, Washington (1996)

    Google Scholar 

  36. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  37. Miner, M.A.: Cumulative damage in fatigue. J. Appl. Mech. 12(3), 159–164 (1945)

    Google Scholar 

  38. Moan, T., Song, R.: Implications of inspection updating on system fatigue reliability of offshore structures. J. Offshore Mech. Arctic Eng. 122(3), 173–180 (2000)

    Article  Google Scholar 

  39. Neal, R.M.: Slice sampling. Ann. Stat. Inst. Math. Stat. 31(3), 705–767 (2003)

    MathSciNet  MATH  Google Scholar 

  40. Okasha, N.M., Frangopol, D.M.: Advanced modeling for efficient computation of life-cycle performance prediction and service-life estimation of bridges. J. Comput. Civil Eng. 24(6), 548–556 (2010)

    Article  Google Scholar 

  41. Paik, J., Wang, G.: Time-dependent risk assessment of ageing ships accounting for general/pit corrosion, fatigue cracking and local dent damage. World Maritime Technology Conference, San Francisco (2003)

    Google Scholar 

  42. Paris, P.C., Erdogan, F.A.: Critical analysis of crack propagation laws. J. Basic Eng. 85(Series D), 528–534 (1963)

    Google Scholar 

  43. Perrin, F., Sudret, B., Pendola, M.: Bayesian updating of mechanical models-application in fracture mechanics. 18 eme Congrès Françes de Mèçaniquè, Grenoble, 27–31 (2007)

    Google Scholar 

  44. Rabi, S., Karamchandani, A., Cornell, C.A.: Study of redundancy of near-ideal parallel structural systems. In: Proceeding of the 5th International Conference on Structural Safety and Reliability, pp. 975–982. ASCE, New York (1989)

    Google Scholar 

  45. Sharp, M.L., Nordmark, G.E., Menzemer, C.C.: Fatigue Design of Aluminum Components and Structures. McGraw-Hill, New York (1996)

    Google Scholar 

  46. Shigley, J., Mischke, C.: Mechanical Engineering Design, 5th edn. McGraw-Hill, New York (1989)

    Google Scholar 

  47. Soliman, M., Frangopol D.M.: Life-cycle management of fatigue sensitive structures integrating inspection information. J. Infrastruct. Syst. 20(2), 04014001 (2014)

    Article  Google Scholar 

  48. Soliman, M., Barone, G., Frangopol, D.M.: Fatigue reliability and service life prediction of aluminum high-speed naval vessels based on structural health monitoring. Struct. Health Monit. 14(1), 3–19 (2015)

    Article  Google Scholar 

  49. Soliman, M., Frangopol, D.M., Kim, S.: Probabilistic optimum inspection planning of steel bridges based on multiple fatigue sensitive details. Eng. Struct. 49, 996–1006 (2013)

    Article  Google Scholar 

  50. Tada, H., Paris, P.C., Irwin, G.R.: The Stress Analysis of Cracks Handbook. The American Society of Mechanical Engineers, 3rd edn. Three Park Avenue, New York (2000)

    Google Scholar 

  51. Tobias, D.H.: Perspectives on AASHTO load and resistance factor design. J. Br. Eng. 16(6), 684–692 (2011)

    Article  MathSciNet  Google Scholar 

  52. Tsopelas, P., Husain, M.: Measures of structural redundancy in reinforced concrete buildings. II: redundancy response modification factor R R . J. Struct. Eng. 130(11), 1659–1666 (2004)

    Google Scholar 

  53. Wen, Y.K., Song, S.-H.: Structural reliability/redundancy under earthquakes. J. Struct. Eng. 129, 56–67 (2003)

    Article  Google Scholar 

  54. Wirsching, P.H.: Fatigue reliability for offshore structures. J. Struct. Eng. 110(10), 2340–2356 (1984)

    Article  Google Scholar 

  55. Yazdani, N., Albrecht, P.: Risk analysis of fatigue failure of highway steel bridges. J. Struct. Eng. 113(3), 483–500 (1987)

    Article  Google Scholar 

  56. Zhu, B., Frangopol, D.M.: Effects of post-failure material behavior on redundancy factor for design of structural components in nondeterministic systems. Struct. Infrastruct. Eng. 11(4), 466–485 (2014)

    Article  Google Scholar 

  57. Zhu, B., Frangopol, D.M.: Redundancy-based design of nondeterministic systems, chapter 23. In: Frangopol, D.M., Tsompanakis, Y. (eds.) Maintenance and Safety of Aging Infrastructure. Structures and Infrastructures, vol. 10, pp. 707–738. CRC Press/Balkema, Taylor & Francis Group, London (2014)

    Google Scholar 

  58. Zhu, B., Frangopol, D.M.: Effects of post-failure material behavior on the reliability of systems. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A: Civil Eng. 1(1), 04014002, 1–13 (2015)

    Google Scholar 

  59. Zhu, B., Frangopol, D.M., Kozy, B.M.: System reliability and the redundancy factor by simplified modeling. In: Furuta, H., Frangopol, D.M., Akiyama, M. (eds.) Assessment, Maintenance and Management, p. 148. CRC Press/Balkema, Taylor & Francis Group, London (2015) and Full Paper on DVD, Taylor & Francis Group PLC, London, pp. 614–618 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan M. Frangopol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Frangopol, D., Zhu, B., Soliman, M. (2015). Redundancy of Structures and Fatigue of Bridges and Ships Under Uncertainty. In: Ghanem, R., Higdon, D., Owhadi, H. (eds) Handbook of Uncertainty Quantification. Springer, Cham. https://doi.org/10.1007/978-3-319-11259-6_47-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11259-6_47-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-11259-6

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Redundancy of Structures and Fatigue of Bridges and Ships Under Uncertainty
    Published:
    11 May 2016

    DOI: https://doi.org/10.1007/978-3-319-11259-6_47-2

  2. Original

    Redundancy of Structures and Fatigue of Bridges and Ships Under Uncertainty
    Published:
    30 March 2016

    DOI: https://doi.org/10.1007/978-3-319-11259-6_47-1