Skip to main content

Polysaccharides from Bioagro-Waste for New Biomolecules

  • Reference work entry
  • First Online:
Polysaccharides

Abstract

Polysaccharides are the main chemical components of several kinds of agro-wastes including food processing residues and agricultural wastes. These types of biomass are produced in huge amounts every year and therefore represent a global environmental issue. The exploitation of agro-wastes as rich sources of valuable polysaccharides, according to the biorefinery approach, could afford both a strategy for waste minimizing and a more sustainable production of energy and chemicals. As a matter of fact, indeed polysaccharides are traditionally used in a wide range of production chains, for example, in food, pharmaceutical, material, or packaging industries.

In this chapter, besides a brief overview of more abundant agro-wastes produced in the world and of their annual production, some remarkable examples of already implemented or possible biotechnological uses of waste polysaccharides are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGs:

Arabinogalactans

AGXs:

Arabinoglucuronoxylans

Araf :

Arabinofuranose

AXs:

Arabinoxylans

Fruf :

Fructofuranose

GalAp :

Galactopyruronic acid

Galp :

Galactopyranose

GaMs:

Galactomannans

GAXs:

Glucuronoarabinoxylans

GGMs:

Galactoglucomannans

Glcp :

Glucopyranose

GMs:

Glucomannans

GXs:

Glucuronoxylans

HG:

Homogalacturonan

Manp :

Mannopyranose

MeGlcA:

4-O-methyl-α-D-glucopyranosyl uronic acid

RG:

Rhamnogalacturonan

Rhap :

Rhamnopyranose

Suc:

Sucrose

XGs:

Xyloglucans

Xylp :

Xylopyranose

References

  • Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK, Pandey A (2010) Bioethanol production from rice straw: an overview. Bioresour Technol 101:4767–4774

    Article  CAS  Google Scholar 

  • Brinchi L, Cotana F, Fortunati E, Kenny J (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169

    Article  CAS  Google Scholar 

  • Canilha L, Carvalho W, Almeida e Silva JB (2005) Influence of medium composition on xylitol bioproduction from wheat straw hemicellulosic hydrolysate. World J Microb Biotechnol 21:1087–1093

    Article  CAS  Google Scholar 

  • Cardona CA, Quintero JA, Paz IC (2010) Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour Technol 101:4754–4766

    Article  CAS  Google Scholar 

  • Cheng H, Wang L (2013) Lignocelluloses feedstock biorefinery as petrorefinery substitutes, biomass now – sustainable growth and use, Miodrag Darko Matovic (ed), ISBN: 978-953-51-1105-4, InTech, doi: 10.5772/51491

    Google Scholar 

  • Cruz J, Domínguez J, Domínguez H, Parajó J (2000) Preparation of fermentation media from agricultural wastes and their bioconversion into xylitol. Food Biotechnol 14:79–97

    Article  CAS  Google Scholar 

  • Das H, Sing SK (2004) Useful byproducts from cellulosic wastes of agriculture and food industry: a critical appraisal. CRC CR Rev Food Sci 44:77–89

    Article  Google Scholar 

  • de Morais TE, Da Roz A, de Carvalho A, da Silva CA (2005) Preparation and characterisation of thermoplastic starches from cassava starch, cassava root and cassava bagasse. Macromol Symp 229:266–275

    Article  Google Scholar 

  • de Morais TE, Pasquini D, Curvelo A, Corradini E, Belgacem M, Dufresne (2009) Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr Polym 78(3):422–431

    Article  Google Scholar 

  • de Souza A, Dias A, Sousa H, Tadini C (2014) Impregnation of cinnamaldehyde into cassava starch biocomposite films using supercritical fluid technology for the development of food active packaging. Carbohydr Polym 102:830–837

    Article  Google Scholar 

  • De Stefano D, Tommonaro G, Simeon V, Poli A, Nicolaus B, Carnuccio R (2007) A polysaccharide from tomato (lycopersicon esculentum) peels affects NF-KB activation in LPS-stimulated J774 macrophages. J Nat Prod 70:1636–1639

    Article  Google Scholar 

  • Domínguez J, Cao N, Gong C, Tsao G (1997) Dilute acid hemicellulose hydrolysates from corn cobs for xylitol production by yeast. Bioresour Technol 61:85–90

    Article  Google Scholar 

  • Dufresne A, Cavaille J, Helbert W (1997) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II. Effect of processing and modelling. Polym Composites 18:198–210

    Article  CAS  Google Scholar 

  • Ebringerova A, Hromadkova Z, Heinze T (1999) Xylans of industrial and biomedical importance. Biotechnol Genet Eng 16(1):325–346

    Article  CAS  Google Scholar 

  • Ebringerova A, Hromadkova Z, Heinze T (2005) Hemicellulose. Adv Polym Sci 186:1–67

    Article  CAS  Google Scholar 

  • Elleuch M, Bedigian D, Roiseux O, Besbes S, Blecker C, Attia H (2011) Dietary fibre and fibre-rich by-products of food processing: characterisation, technological functionality and commercial applications: a review. Food Chem 124:411–421

    Article  CAS  Google Scholar 

  • Finore I, Di Donato P, Mastascusa V, Nicolaus B, Poli A (2014) Fermentation technologies for the optimization of marine microbial exopolysaccharide production. Review. Mar Drugs 12, 1-x manuscripts; doi:10.3390/md120x000x (in press)

    Google Scholar 

  • Foston M (2014) Advances in solid-state NMR of cellulose. Review. Curr Opin Biotechnol 27:176–184

    Article  CAS  Google Scholar 

  • Ghaderi M, Mousavi M, Yousefi H, Labbafi M (2014) All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohydr Polym 104:59–65

    Article  CAS  Google Scholar 

  • Habibi Y, El-Zawawy W, Ibrahim M, Dufresne A (2008) Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues. Compos Sci Technol 68:1877–1885

    Article  CAS  Google Scholar 

  • Halabalaki M, Vougogiannopoulou K, Mikros E, Skaltsounis AL (2014) Recent advances and new strategies in the NMR-based identification of natural products. Curr Opin Biotechnol 25:1–7

    Article  CAS  Google Scholar 

  • Happi Emaga TH, Robert C, Ronkart SN, Wathelet B, Paquot M (2008) Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties. Bioresour Technol 99(10):4346–4354

    Article  CAS  Google Scholar 

  • Jayani RS, Saxena S, Gupta R (2005) Microbial pectinolytic enzymes: a review. Process Biochem 40:2931–2944

    Article  CAS  Google Scholar 

  • Kalia S, Dufresne A, Cherian BM, Kaith BS, Averous L, Njuguna J, Nassiopoulos E (2011) cellulose-based bio- and nanocomposites: a review. Int J Polym Sci, vol. 2011, Article ID 837875, 35 pages

    Google Scholar 

  • Klemm D, Heublein B, Fink H, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Kratchanova M, Pavlova E, Panchev I (2004) The effect of microwave heating of fresh orange peels on the fruit tissue and quality of extracted pectin. Carbohydr Polym 56:181–185

    Article  CAS  Google Scholar 

  • Kuan YH, Liong MT (2008) Chemical and physicochemical characterization of agrowaste fibrous Materials and Residues. J Agr Food Chem 56:9252–9257

    Article  CAS  Google Scholar 

  • Pacific Northwest National Laboratory, National Renewable Energy Laboratory (2004) Top value added chemicals from biomass: results of screening for potential candidates from sugars and synthesis gas. Department of Energy, Oak Ridge

    Google Scholar 

  • Le Digabel F, Boquillon N, Dole P, Monties B, Avernous L (2004) Properties of thermoplastic composites based on wheat-straw lignocellulosic fillers. J Appl Polym Sci 93(1):428–436

    Article  Google Scholar 

  • Li Z, Zhai H, Zhang Y, Yu L (2012) Cell morphology and chemical characteristics of corn stover fractions. Ind Crop Prod 37(1):130–136

    Article  Google Scholar 

  • Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86:1291–1299

    Article  CAS  Google Scholar 

  • Manzi AE, van Halbeek H (2009) Chapter 38: principles of structural analysis and sequencing of glycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Marinkovic NS, Chance MR (2006) Synchrotron infrared microspectroscopy. In: Meyers R (ed) Encyclopedia of molecular cell biology and molecular medicine, 2nd edn., vol.13. Winley, pp 671–708

    Google Scholar 

  • Matsui K, Larotonda F, Paes S, Luiz D, Pires A, Laurindo J (2004) Cassava bagasse-Kraft paper composites: analysis of influence of impregnation with starch acetate on tensile strength and water absorption properties. Carbohydr Polym 55:237–243

    Article  CAS  Google Scholar 

  • Maxwell E, Belshaw N, Waldron K, Morris V (2012) Pectin: an emerging new bioactive polysaccharide. Trends Food Sci Tech 24:64–73

    Article  CAS  Google Scholar 

  • Mikkonen K, Tenkanen M (2012) Sustainable food packaging materials based on future biorefinery products: xylans and mannans. Trends Food Sci Tech 28:90–102

    Article  CAS  Google Scholar 

  • Min B, Lim J, Ko S, Lee KG, Lee SH, Lee S (2011) Environmentally friendly preparation of pectins from agricultural byproducts and their structural/rheological characterization. Bioresource Technol 102(4):3855–3860, ISSN 1873–2976

    Article  CAS  Google Scholar 

  • Mudaliyar P, Pandit P, Suryavanshi M, Kulkarni C (2011) Screening of different agro-wastes as substrates for xylitol production by Aspergillus niger. Asian J Exp Biol Sci 2(4):739–745

    CAS  Google Scholar 

  • Nawirska A, Kwasniewska M (2005) Dietary fibre fractions from fruit and vegetable processing waste. Food Chem 91:221–225

    Article  CAS  Google Scholar 

  • Ochoa-Villarreal M, Aispuro-Hernández E, Vargas-Arispuro I, Martínez-Téllez M (2012) Plant cell wall polymers: function, structure and biological activity of their derivatives. In: De Souza Gomes A (ed) Polymerization, InTech, doi: 10.5772/46094

    Google Scholar 

  • Pandey A, Singh-Nee Nigam P (2009) Biotechnological potential of agro-industrial residues. Springer, Heidelberg

    Google Scholar 

  • Passos CP, Moreira A, Domingues M, Evtuguin D, Coimbra M (2014) Sequential microwave superheated water extraction of mannans from spent coffee grounds. Carbohydr Polym 103:333–338

    Article  CAS  Google Scholar 

  • Paulsen B, Barsett H (2005) Bioactive pectic polysaccharides. Adv Polym Sci 186:69–101

    Article  CAS  Google Scholar 

  • Pazur JH (1994) Neutral polysaccharides. In: Chaplin MF, Kennedy JF (eds) Carbohydrate analysis, 2nd edn. IRL Press, Oxford, pp 73–124

    Google Scholar 

  • Peroval C, Debeaufort F, Despré D, Voilley A (2002) Edible arabinoxylan-based films. 1. Effects of lipid type on water vapor permeability, film Structure, and other physical characteristics. J Agr Food Chem 50:3977–3983

    Article  CAS  Google Scholar 

  • Ping L, Hsieh Y (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87:564–573

    Article  Google Scholar 

  • Poli A, Anzelmo G, Fiorentino G, Nicolaus B, Tommonaro G, Di Donato P (2011) Polysaccharides from wastes of vegetable industrial processing: new opportunities for their eco-friendly re-use. In: Elnashar M (ed) Biotechnology of biopolymers, InTech, doi: 10.5772/16387

    Google Scholar 

  • Pothan L, George C, Jacob M, Thomas S (2007) Effect of chemical modification on the mechanical and electrical properties of banana fiber polyester composites. J Compos Mater 41:2371–2386

    Article  CAS  Google Scholar 

  • Pourbafrani M, Forgacs G, Sarvari Horvath I, Niklasson C, Mohammad J (2010) Production of biofuels, limonene and pectin from citrus wastes. Bioresour Technol 101:4246–4250

    Article  CAS  Google Scholar 

  • Ramachandran C, Wilk B, Hotchkiss A, Chau H, Eliaz I, Melnick S (2011) Activation of human T-helper/inducer cell, T-cytotoxic cell, B-cell, and natural killer (NK)-cells and induction of natural killer cell activity against K562 chronic myeloid leukemia cells with modified citrus pectin. BMC Complement Altern Med 11:59–65

    Article  CAS  Google Scholar 

  • Raybaudi-Massilia R, Mosqueda-Melgar J (2012) Polysaccharides as carriers and protectors of additives and bioactive compounds in foods. In: Karunaratne D (ed) The complex world of polysaccharides, InTech, doi: 10.5772/50206

    Google Scholar 

  • Reddy N, Yang Y (2005) Structure and properties of high quality natural cellulose fibers from cornstalks. Polymer 46:5494–5500

    Article  CAS  Google Scholar 

  • Robyt JF (2008) Starch: structure, properties, chemistry, and enzymology. In: Fraser-Reid B, Tatsuta K, Thiem J (eds) Glycoscience. Springer, Berlin. doi:10.1007/978-3-540-30429-6_35

    Google Scholar 

  • Rose DJ, Inglett GE, Liu SX (2010) Utilisation of corn (Zea mays) bran and corn fiber in the production of food components. J Sci Food Agric 90:915–924

    CAS  Google Scholar 

  • Sanchez-Vazquez SA, Hailes HC, Evans JRG (2013) Hydrophobic polymers from food waste: resources and synthesis. Polymer Rev 53:627–694

    Article  CAS  Google Scholar 

  • Serra O, Chatterjee S, Huang W, Stark RE (2012) Review: what nuclear magnetic resonance can tell us about protective tissues. Plant Sci 195:120–124

    Article  CAS  Google Scholar 

  • Slavutsky A, Bertuzzi M (2014) Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydrate Polym (in press), Accepted Manuscript, Available online 28 March 2014, http://dx.doi.org/10.1016/j.carbpol.2014.03.049

  • Srivastava P, Malviya R (2011) Sources of pectin, extraction and its applications in pharmaceutical industry: an overview. Ind J Nat Prod Resour 2(1):10–18

    CAS  Google Scholar 

  • Thakur B, Singh R, Handa A, Rao M (1997) Chemistry and uses of pectin: a review. CRC CR Rev Food Sci 37:47–73

    Article  CAS  Google Scholar 

  • Tommonaro G, Poli A, De Rosa S, Nicolaus B (2008) Tomato derived polysaccharides for biotechnological applications: chemical and biological approaches. Molecules 13(6):384–1398

    Article  Google Scholar 

  • Walia M, Sharma U, Bhushan S, Kumar N, Singh B (2013) Arabinan-type polysaccharides from industrial apple pomace waste. Chem Nat Compd 49(5):794–798

    Article  CAS  Google Scholar 

  • Wong D (2008) Enzymatic deconstruction of backbone structures of the ramified regions in pectins. Protein J 27:30–42

    Article  CAS  Google Scholar 

  • Yang H, Kim D, Lee Y, Kim H, Jeon J, Kang C (2004a) Possibility of using waste tire composites reinforced with rice straw as construction materials. Bioresour Technol 95:61–65

    Article  CAS  Google Scholar 

  • Yang H, Kim H, Son J, Park H, Lee B, Hwang T (2004b) Rice-husk flour filled polypropylene composites; mechanical and morphological study. Compos Struct 63:305–312

    Article  Google Scholar 

  • Yapo BM (2011) Pectic substances: from simple pectic polysaccharides to complex pectins: a new hypothetical model. Carbohydr Polym 86:373–385

    Article  CAS  Google Scholar 

  • Yu P (2011) Chapter 11: SR-IMS molecular spectroscopic image of functional groups in biopolymers in feed systems. In: Elnashar M (ed), Biotechnology of biopolymers, pp 219–240, InTech, Rijeka, Croatia

    Google Scholar 

  • Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602

    Article  CAS  Google Scholar 

  • Zhang P, Whistler R (2004) Mechanical properties and water vapor permeability of thin film from corn hull arabinoxylan. J Appl Polym Sci 93(6):2896–2902

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been implemented in the frame of the project PON01_01966 “Integrated agro-industrial chains with high energy efficiency for the development of eco-compatible processes of energy and biochemicals production from renewable sources and for the land valorisation” funded by MIUR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Nicolaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Di Donato, P., Poli, A., Taurisano, V., Nicolaus, B. (2015). Polysaccharides from Bioagro-Waste for New Biomolecules. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-16298-0_16

Download citation

Publish with us

Policies and ethics