Skip to main content

Chemically Modified Natural Polysaccharides to Form Gels

  • Reference work entry
  • First Online:
Polysaccharides

Abstract

Polysaccharides have been utilized for a wide variety of industrial, cosmetic, food, and medical applications. The presence of functional groups on polysaccharides has been exploited for chemical modification to prepare polymers with unique properties. Various polysaccharides form hydrogels through physical or chemical cross-linking, and many of them possess environmentally responsive properties, known as smart hydrogels. Polysaccharide-based smart hydrogels are ideal for biomedical and pharmaceutical applications due to their inherent biocompatibility, degradability, and environment sensitivity, such as pH, temperature, and specific biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdou ES, Nagy KSA, Elsabee MZ (2008) Extraction and characterization of chitin and chitosan from local sources. Bioresour Technol 99:1359–1367

    Article  CAS  Google Scholar 

  • Abu-Ghoush M, Al-Mahasneh MA, Samhouri M, Al-Holy M, Herald T (2009) Formulation and fuzzy modeling of viscosity of orange beverages fortified with carboxymethylcellulose-whey protein isolate emulsions. Jordan J Biol Sci 2:109–118

    Google Scholar 

  • Acharya G, Shin CS, McDermott M, Mishra H, Park H, Kwon IC, Park K (2010) The hydrogel template method for fabrication of homogeneous nano/microparticles. J Control Release 141:314–319

    Article  CAS  Google Scholar 

  • Aydinli M, Tutas M (2000) Water sorption and water vapour permeability properties of polysaccharide (locust bean gum) based edible films. LWT-Food Sci Technol 33:63–67

    Article  CAS  Google Scholar 

  • Barbucci R, Magnani A, Consumi M (2000) Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density. Macromolecules 33:7475–7480

    Article  CAS  Google Scholar 

  • BeMiller JN (2007) Gums. In: Kirk-Othmer food and feed technology. Wiley, Hoboken

    Google Scholar 

  • Betigeri SS, Neau SH (2002) Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads. Biomaterials 23:3627–3636

    Article  CAS  Google Scholar 

  • Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99

    Article  CAS  Google Scholar 

  • Blackburn RS (2004) Natural polysaccharides and their interactions with dye molecules: applications in effluent treatment. Environ Sci Technol 38:4905–4909

    Article  CAS  Google Scholar 

  • Bromberg LE, Ron ES (1998) Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv Drug Deliv Rev 31:197–221

    Article  CAS  Google Scholar 

  • Carafa M, Marianecci C, Di Marzio L, Rinaldi F, Di Meo C, Matricardi P, Alhaique F, Coviello T (2011) A new vesicle-loaded hydrogel system suitable for topical applications: preparation and characterization. J Pharm Pharm Sci 14:336–346

    Google Scholar 

  • Chandler D (2005) Interfaces and the driving force of hydrophobic assembly. Nature 437:640–647

    Article  CAS  Google Scholar 

  • Chang C, Duan B, Zhang L (2009) Fabrication and characterization of novel macroporous cellulose alginate hydrogels. Polymer 50:5467–5473

    Article  CAS  Google Scholar 

  • Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100

    Article  CAS  Google Scholar 

  • Chen CC, Fang CL, Al-Suwayeh SA, Leu YL, Fang JY (2011) Transdermal delivery of selegiline from alginate-pluronic composite thermogels. Int J Pharm 415:119–128

    Article  CAS  Google Scholar 

  • Cheng Y, Nada AA, Valmikinathan CM, Lee P, Liang D, Yu X, Kumbar SG (2013) In situ gelling polysaccharide based hydrogel for cell and drug delivery in tissue engineering. J Appl Polym Sci 131:39934–39945

    Google Scholar 

  • Christensena BE (2011) Alginates as biomaterials in tissue engineering. Carbohydr Chem: Chem Biol Approaches 37:227–258

    Google Scholar 

  • Collins MN, Birkinshaw C (2008) Investigation of the swelling behavior of crosslinked hyaluronic acid films and hydrogels produced using homogeneous reactions. J Appl Polym Sci 109:923–931

    Article  CAS  Google Scholar 

  • Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Control Release 119:5–24

    Article  CAS  Google Scholar 

  • Davidson DW, Verma MS, Gu FX (2013) Controlled root targeted delivery of fertilizer using an ionically crosslinked carboxymethyl cellulose hydrogel matrix. Springerplus 2:1–9

    Article  Google Scholar 

  • De Smedt S, Lauwers A, Demeester J, Van Steenbergen M, Hennink W, Roefs S (1995) Characterization of the network structure of dextran glycidyl methacrylate hydrogels by studying the rheological and swelling behavior. Macromolecules 28:5082–5088

    Article  Google Scholar 

  • Dhanasingh A, Groll J (2012) Polysaccharide based covalently linked multi-membrane hydrogels. Soft Matter 8:1643–1647

    Article  CAS  Google Scholar 

  • Donnelly MJ, Stanford JL, Still RH (1991) The conversion of polysaccharides into polyurethanes: a review. Carbohydr Polym 14:221–240

    Article  Google Scholar 

  • Fernandes P, Gonçalves M, Doublier J (1991) A rheological characterization of kappa-carrageenan/galactomannan mixed gels: a comparison of locust bean gum samples. Carbohydr Polym 16:253–274

    Article  CAS  Google Scholar 

  • Ferreira L, Gil MH, Dordick JS (2002) Enzymatic synthesis of dextran-containing hydrogels. Biomaterials 23:3957–3967

    Article  CAS  Google Scholar 

  • Ferreira L, Rafael A, Lamghari M, Barbosa MA, Gil MH, Cabrita AMS, Dordick JS (2004) Biocompatibility of chemoenzymatically derived dextran-acrylate hydrogels. J Biomed Mater Res A 68:584–596

    Article  Google Scholar 

  • Francis Suh JK, Matthew HW (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598

    Article  CAS  Google Scholar 

  • Guilherme MR, Reis AV, Takahashi SH, Rubira AF, Feitosa J, Muniz EC (2005) Synthesis of a novel superabsorbent hydrogel by copolymerization of acrylamide and cashew gum modified with glycidyl methacrylate. Carbohydr Polym 61:464–471

    Article  CAS  Google Scholar 

  • Hahn SK, Jelacic S, Maier RV, Stayton PS, Hoffman AS (2004) Anti-inflammatory drug delivery from hyaluronic acid hydrogels. J Biomater Sci Polym Ed 15:1111–1119

    Article  CAS  Google Scholar 

  • Harris JM (1992) Introduction to biotechnical and biomedical applications of poly (ethylene glycol). Springer, US, New York

    Google Scholar 

  • Harsh DC, Gehrke SH (1991) Controlling the swelling characteristics of temperature-sensitive cellulose ether hydrogels. J Control Release 17:175–185

    Article  CAS  Google Scholar 

  • Hayrabolulu H, Sen M, Celik G, Kavaklı PA (2013) Synthesis of carboxylated locust bean gum hydrogels by ionizing radiation. Radiat Phys Chem 94:240–244

    Article  Google Scholar 

  • Heinze T, Petzold-Welcke K, van Dam JE (2012) Polysaccharides: molecular and supramolecular structures. The European Polysaccharide Network of Excellence (EPNOE): Research Initiatives and Results. 23

    Google Scholar 

  • Hennink WE, van Nostrum CF (2012) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 64(Supplement):223–236

    Article  Google Scholar 

  • Hennink W, Talsma H, Borchert J, De Smedt S, Demeester J (1996) Controlled release of proteins from dextran hydrogels. J Control Release 39:47–55

    Article  CAS  Google Scholar 

  • Hennink W, Franssen O, van Dijk-Wolthuis W, Talsma H (1997) Dextran hydrogels for the controlled release of proteins. J Control Release 48:107–114

    Article  CAS  Google Scholar 

  • Hiemstra C, van der Aa LJ, Zhong Z, Dijkstra PJ, Feijen J (2007) Novel in situ forming, degradable dextran hydrogels by Michael addition chemistry: synthesis, rheology, and degradation. Macromolecules 40:1165–1173

    Article  CAS  Google Scholar 

  • Higiro J, Herald T, Alavi S (2006) Rheological study of xanthan and locust bean gum interaction in dilute solution. Food Res Int 39:165–175

    Article  CAS  Google Scholar 

  • Hinkley JA, Morgret LD, Gehrke SH (2004) Tensile properties of two responsive hydrogels. Polymer 45:8837–8843

    Article  CAS  Google Scholar 

  • Hirano S, Takeuji M (1983) Structural analysis of the reaction products of chitosan with o-, m-and p-phthalaldehydes. Int J Biol Macromol 5:373–376

    Article  CAS  Google Scholar 

  • Hovgaard L, Brøndsted H (1995) Dextran hydrogels for colon-specific drug delivery. J Control Release 36:159–166

    Article  CAS  Google Scholar 

  • Jeong B, Kim SW, Bae YH (2002) Thermosensitive sol–gel reversible hydrogels. Advanced drug delivery reviews 54(1):37–51

    Google Scholar 

  • Joshi SC (2011) Sol-gel behavior of hydroxypropyl methylcellulose (hpmc) in ionic media including drug release. Materials 4:1861–1905

    Article  CAS  Google Scholar 

  • Kamide K (2005) Cellulose and cellulose derivatives: molecular characterization and its applications. Elsevier, San Diego, CA

    Google Scholar 

  • Kan CW, Doherty EAS, Buchholz BA, Barron AE (2004) Thermoresponsive N, N-dialkylacrylamide copolymer blends as DNA sieving matrices with a thermally tunable mesh size. Electrophoresis 25:1007–1015

    Article  CAS  Google Scholar 

  • Kim MR, Park TG (2002) Temperature-responsive and degradable hyaluronic acid/pluronic composite hydrogels for controlled release of human growth hormone. J Control Release 80:69–77

    Article  CAS  Google Scholar 

  • Ko J, Park H, Hwang S, Park J, Lee J (2002) Preparation and characterization of chitosan microparticles intended for controlled drug delivery. Int J Pharm 249:165–174

    Article  CAS  Google Scholar 

  • Kono H, Onishi K, Nakamura T (2013) Characterization and bisphenol A adsorption capacity of b-cyclodextrin carboxymethylcellulose-based hydrogels. Carbohydr Polym 98:784–792

    Article  CAS  Google Scholar 

  • Kroll E, Winnik FM, Ziolo RF (1996) In situ preparation of nanocrystalline y-Fe2O3 in iron (II) cross-linked alginate gels. Chem Mater 8:1594–1596

    Article  CAS  Google Scholar 

  • Kuang Q, Cheng G, Zhao J, Li Y (2006) Thermogelation hydrogels of methylcellulose and glycerol methylcellulose systems. J Appl Polym Sci 100:4120–4126

    Article  CAS  Google Scholar 

  • Kuang J, Yuk KY, Huh KM (2011) Polysaccharide-based superporous hydrogels with fast swelling and superabsorbent properties. Carbohydr Polym 83:284–290

    Article  CAS  Google Scholar 

  • Kulkarni AR, Soppimath KS, Aminabhavi TM, Dave AM, Mehta MH (2000) Glutaraldehyde crosslinked sodium alginate beads containing liquid pesticide for soil application. J Control Release 63:97–105

    Article  CAS  Google Scholar 

  • Lawal OS, Yoshimura M, Fukae R, Nishinari K (2011) Microporous hydrogels of cellulose ether cross-linked with di- or polyfunctional glycidyl ether made for the delivery of bioactive substances. Colloid Polym Sci 289:1261–1272

    Article  CAS  Google Scholar 

  • Leach JB, Bivens KA, Collins CN, Schmidt CE (2004) Development of photocrosslinkable hyaluronic acid-polyethylene glycol-peptide composite hydrogels for soft tissue engineering. J Biomed Mater Res A 70:74–82

    Article  Google Scholar 

  • Lee SC, Cho YW, Park K (2005) Control of thermogelation properties of hydrophobically-modified methylcellulose. J Bioact Compat Polym 20:5–13

    Article  CAS  Google Scholar 

  • Li X, Kong X, Wang X, Shi S, Guo G, Luo F, Zhao X, Wei Y, Qian Z (2010) Gel-sol-gel thermo-gelation behavior study of chitosan-inorganic phosphate solutions. Eur J Pharm Biopharm 75:388–392

    Article  CAS  Google Scholar 

  • Li Z, Cho S, Kwon IC, Janát-Amsbury MM, Huh KM (2013) Preparation and characterization of glycol chitin as a new thermogelling polymer for biomedical applications. Carbohydr Polym 92:2267–2275

    Article  CAS  Google Scholar 

  • Lin HR, Chen YC, Lin YJ, Ling MH, Chou CW, Hseu YC, Kuo YH, Senthil Kumar K (2014) pH-sensitive hollow alginate-chitosan hydrogel beads for bitter gourd delivery. Int J Polym Mater Polym Biomater 63:41–47

    Article  CAS  Google Scholar 

  • Livnat M, Beyar R, Seliktar D (2005) Endoluminal hydrogel films made of alginate and polyethylene glycol: physical characteristics and drug eluting properties. J Biomed Mater Res A 75:710–722

    Article  Google Scholar 

  • Lu N, Liu J, Li J, Zhang Z, Weng Y, Yuan B, Yang K, Ma Y (2014) Tunable dual-stimuli response of a microgel composite consisting of reduced graphene oxide nanoparticles and poly (N-isopropylacrylamide) hydrogel microsphere. J Mater Chem B 2(24):3791–3798

    Article  CAS  Google Scholar 

  • Lundin L, Hermansson AM (1995) Supermolecular aspects of xanthan-locust bean gum gels based on rheology and electron microscopy. Carbohydr Polym 26:129–140

    Article  CAS  Google Scholar 

  • Mannion RO, Melia CD, Launay B, Cuvelier G, Hill SE, Harding SE, Mitchell JR (1992) Xanthan/locust bean gum interactions at room temperature. Carbohydr Polym 19:91–97

    Article  CAS  Google Scholar 

  • Matthews CE, Holde KEV, Ahern KG (1999) Biochemistry, 3rd edn. Benjamin Cummings, San Francisco, CA

    Google Scholar 

  • McLennan G, Johnson MS, Stookey KR, Zhang Z, Fife WK (2000) Kinetics of release of heparin from alginate hydrogel. J Vasc Interv Radiol 11:1087–1094

    Article  CAS  Google Scholar 

  • McMurry J (2000) Organic chemistry, 5th edn. Brooks/Cole a division of Thomson Learning, California

    Google Scholar 

  • McNaught AD, Wilkinson A (1997) IUPAC compendium of chemical terminology (the “Gold Book”). Blackwell Scientific Publications, Malden, New Jersey

    Google Scholar 

  • Mi FL, Shyu SS, Lee ST, Wong TB (1999) Kinetic study of chitosan tripolyphosphate complex reaction and acid resistive properties of the chitosan tripolyphosphate gel beads prepared by in liquid curing method. J Polym Sci B 37:1551–1564

    Article  CAS  Google Scholar 

  • Miyamoto T, Long M, Donkai N (1995) Preparation of new types of temperature-responsive cellulose derivatives. In: Macromolecular symposia. Wiley Online Library, pp 141–147

    Google Scholar 

  • Miyata T, Uragami T, Nakamae K (2002) Biomolecule-sensitive hydrogels. Adv Drug Deliv Rev 54:79–98

    Article  CAS  Google Scholar 

  • Monagle JJ (1962) Carbodiimides. III. Conversion of isocyanates to carbodiimides. Catalyst studies. J Org Chem 27:3851–3855

    Article  CAS  Google Scholar 

  • Moon HJ, Park MH, Joo MK, Jeong B (2012) Temperature-responsive compounds as in situ gelling biomedical materials. Chem Soc Rev 41:4860–4883

    Article  CAS  Google Scholar 

  • Mortisen D, Peroglio M, Alini M, Eglin D (2010) Tailoring thermoreversible hyaluronan hydrogels by click chemistry and RAFT polymerization for cell and drug therapy. Biomacromolecules 11:1261–1272

    Article  CAS  Google Scholar 

  • Ninh C, Cramer M, Bettinger CJ (2014) Photoresponsive hydrogel networks using melanin nanoparticle photothermal sensitizers. Biomater Sci 2:766–774

    Article  CAS  Google Scholar 

  • Oesterhelt F, Rief M, Gaub H (1999) Single molecule force spectroscopy by AFM indicates helical structure of poly (ethylene-glycol) in water. New J Phys 1:6

    Article  Google Scholar 

  • Olivas GI, Barbosa-Canovas GV (2008) Alginate calcium films: water vapor permeability and mechanical properties as affected by plasticizer and relative humidity. LWT-Food Sci Technol 41:359–366

    Article  CAS  Google Scholar 

  • Pigman WW, Hudson CS, Cantor SM (1950) Advances in carbohydrate chemistry. Elsevier, New York

    Google Scholar 

  • Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339

    Article  CAS  Google Scholar 

  • Qu X, Wirsen A, Albertsson AC (2000) Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water. Polymer 41:4589–4598

    Article  CAS  Google Scholar 

  • Rane KD, Hoover DG (1993) An evaluation of alkali and acid treatments for chitosan extraction from fungi. Process Biochem 28:115–118

    Article  CAS  Google Scholar 

  • Reichelt S, Becher J, Weisser J, Prager A, Decker U, Maler S, Berg A, Schnabelrauch M (2014) Biocompatible polysaccharide-based cryogels. Mater Sci Eng C 35:164–170

    Article  CAS  Google Scholar 

  • Reis AV, Cavalcanti OA, Rubira AF, Muniz EC (2003) Synthesis and characterization of hydrogels formed from a glycidyl methacrylate derivative of galactomannan. Int J Pharm 267:13–25

    Article  CAS  Google Scholar 

  • Remminghorst U, Rehm BH (2009) Microbial production of alginate: biosynthesis and applications. In: Rehm BH (ed) Microbial production of biopolymers and polymer precursors. Caister Academic Press, Wymondham, pp 13–42

    Google Scholar 

  • Rinaudo M, Pavlov G, Desbrieres J (1999) Influence of acetic acid concentration on the solubilization of chitosan. Polymer 40:7029–7032

    Article  CAS  Google Scholar 

  • Risbud MV, Hardikar AA, Bhat SV, Bhonde RR (2000) pH-sensitive freeze-dried chitosan-polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. J Control Release 68:23–30

    Article  CAS  Google Scholar 

  • Rodkate N, Wichai U, Boontha B, Rutnakornpituk M (2010) Semi-interpenetrating polymer network hydrogels between polydimethylsiloxane/polyethylene glycol and chitosan. Carbohydr Polym 81:617–625

    Article  CAS  Google Scholar 

  • Rokhade AP, Agnihotri SA, Patil SA, Mallikarjuna NN, Kulkarni PV, Aminabhavi TM (2006) Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohydr Polym 65:243–252

    Article  CAS  Google Scholar 

  • Ruel-Garipy E, Leroux JC (2004) In situ-forming hydrogels review of temperature-sensitive systems. Eur J Pharm Biopharm 58:409–426

    Article  Google Scholar 

  • Sannino A, Madaghiele M, Conversano F, Mele G, Maffezzoli A, Netti P, Ambrosio L, Nicolais L (2004) Cellulose derivative-hyaluronic acid-based microporous hydrogels cross-linked through divinyl sulfone (DVS) to modulate equilibrium sorption capacity and network stability. Biomacromolecules 5:92–96

    Article  CAS  Google Scholar 

  • Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373

    Article  CAS  Google Scholar 

  • Sanz T, Fernández M, Salvador A, Munoz J, Fiszman S (2005) Thermogelation properties of methylcellulose (MC) and their effect on a batter formula. Food Hydrocoll 19:141–147

    Article  CAS  Google Scholar 

  • Shu X, Zhu K (2000) A novel approach to prepare tripolyphosphate/chitosan complex beads for controlled release drug delivery. Int J Pharm 201:51–58

    Article  CAS  Google Scholar 

  • Singh B, Sharma V (2014) Influence of polymer network parameters of tragacanth gum-based pH responsive hydrogels on drug delivery. Carbohydr Polym 101:928–940

    Article  CAS  Google Scholar 

  • Tan H, Chu CR, Payne KA, Marra KG (2009) Injectable in situ forming biodegradable chitosan hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30:2499–2506

    Article  CAS  Google Scholar 

  • Tran TH, Garner J, Fu Y, Park K, Huh KM (2011) Biodegradable Elastic Hydrogels for Tissue Expander Application, in Handbook of Biodegradable Polymers: Isolation, Synthesis, Characterization and Applications (eds A. Lendlein and A. Sisson), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

    Google Scholar 

  • Urayama K, Taoka Y, Nakamura K, Takigawa T (2008) Markedly compressible behaviors of gellan hydrogels in a constrained geometry at ultraslow strain rates. Polymer 49:3295–3300

    Article  CAS  Google Scholar 

  • Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (2009) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Vimal S, Abdul Majeed S, Taju G, Nambi KSN, Sundar Raj N, Madan N, Farook MA, Rajkumar T, Gopinath D, Sahul Hameed AS (2013) Chitosan tripolyphosphate (CS/TPP) nanoparticles: preparation, characterization and application for gene delivery in shrimp. Acta Trop 128:486–493

    Article  CAS  Google Scholar 

  • Wach RA, Mitomo H, Yoshii F, Kume T (2001) Hydrogel of biodegradable cellulose derivatives. II. Effect of some factors on radiation-induced crosslinking of CMC. J Appl Polym Sci 81:3030–3037

    Article  CAS  Google Scholar 

  • Wan Ngah W, Endud C, Mayanar R (2002) Removal of copper (II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React Funct Polym 50:181–190

    Article  Google Scholar 

  • Wang R, Kreuzer H, Grunze M (1997) Molecular conformation and solvation of oligo (ethylene glycol)-terminated self-assembled monolayers and their resistance to protein adsorption. J Phys Chem B 101:9767–9773

    Article  CAS  Google Scholar 

  • Wang T, Turhan M, Gunasekaran S (2004) Selected properties of pH sensitive, biodegradable chitosan poly (vinyl alcohol) hydrogel. Polym Int 53:911–918

    Article  CAS  Google Scholar 

  • Winnik F, Tamai N, Yonezawa J, Nishimura Y, Yamazaki I (1992) Temperature-induced phase transition of pyrene-labeled (hydroxypropyl) cellulose in water: picosecond fluorescence studies. J Phys Chem 96:1967–1972

    Article  CAS  Google Scholar 

  • Wondraczek H, Kotiaho A, Fardim P, Heinze T (2011) Photoactive polysaccharides. Carbohydr Polym 83:1048–1061

    Article  CAS  Google Scholar 

  • Yakup Anca M (2000) Immobilization of polyphenol oxidase on carboxymethylcellulose hydrogel beads: preparation and characterization. Polym Int 49:775–781

    Article  Google Scholar 

  • Yashima E, Noguchi J, Okamoto Y (1995) Photocontrolled chiral recognition by [4-(phenylazo) phenyl] carbamoylated cellulose and amylose membranes. Macromolecules 28:8368–8374

    Article  CAS  Google Scholar 

  • Yin R, Wang K, Han J, Nie J (2010) Photo-crosslinked glucose-sensitive hydrogels based on methacrylate modified dextran-concanavalin A and PEG dimethacrylate. Carbohydr Polym 82:412–418

    Article  CAS  Google Scholar 

  • Yoshii F, Zhao L, Wach RA, Nagasawa N, Mitomo H, Kume T (2003) Hydrogels of polysaccharide derivatives crosslinked with irradiation at paste-like condition. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater Atoms 208:320–324

    Article  CAS  Google Scholar 

  • Zhai C, Yuan J, Gao Q (2012) Stimuli sensitive chitosan based systems for biopharmaceuticals. In B. Sarmento, J.D. Leves (eds), Chitosan-Based Systems for Biopharmaceuticals: Delivery, Targeting and Polymer Therapeutics, John Wiley & Sons Ltd, UK, 319–332

    Google Scholar 

  • Zikakis J (1984) Chitin, chitosan, and related enzymes. Elsevier, Oxford

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Showalter Research Trust Fund and the National Institutes of Health through CA129287 and GM095879.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinam Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Garner, J., Park, K. (2015). Chemically Modified Natural Polysaccharides to Form Gels. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-16298-0_31

Download citation

Publish with us

Policies and ethics