Skip to main content

Hierarchical Spatial Models

  • Reference work entry
  • First Online:
Encyclopedia of GIS
FormalPara Synonyms

Hierarchical dynamic spatiotemporal models; Geostatistical models

Definition

A hierarchical spatial model is the product of conditional distributions for data conditioned on a spatial process and parameters, the spatial process conditioned on the parameters defining the spatial dependencies between process locations and the parameters themselves.

Historical Background

Scientists across a wide range of disciplines have long recognized the importance of spatial dependencies in their data and the underlying process of interest. Initially due to computational limitations, they dealt with such dependencies by randomization and blocking rather than the explicit characterization of the dependencies in their models. Early developments in spatial modeling started in the 1950s and 1960s motivated by problems in mining engineering and meteorology (Cressie 1993), followed by the introduction of Markov random fields (Besag 1974). The application of hierarchical spatial and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banerjee S, Gelfand AE, Finley AO, Sang H (2008) Gaussian predictive process models for large spatial data sets. J R Stat Soc: Ser B (Stat Methodol) 70:825–848. doi:10.1111/j.1467-9868.2008.00663.x

    Article  MathSciNet  MATH  Google Scholar 

  • Banerjee S, Carlin BP, Gelfand AE (2015) Hierarchical modeling and analysis for spatial data, 2nd edn. CRC, Boca Raton

    MATH  Google Scholar 

  • Berliner LM (1996) Hierarchical Bayesian time series models. In: Hanson K, Silver R (eds) Maximum entropy and Bayesian methods. Kluwer Academic, Dordrecht/Boston, pp 15–22

    Chapter  Google Scholar 

  • Besag J (1974) Spatial interactions and the statistical analysis of lattice systems (with discussion). J R Stat Soc Ser B 36:192–236

    MathSciNet  MATH  Google Scholar 

  • Besag J, York JC, Mollie A (1991) Bayesian image restoration, with two applications in spatial statistics (with discussion). Ann Inst Stat Math 43:1–59

    Article  MATH  Google Scholar 

  • Carlin BP, Banerjee S (2003) Hierarchical multivariate CAR models for saptio-temporally correlated survival data (with discussion). In: Bernardo JM, Bayarri MJ, Berger JO, Dawid AP, Heckerman D, Smith AFM, West M (eds) Bayesian statistics, vol 7. Oxford University Press, Oxford, pp 45–63

    Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data. Wiley, New York

    MATH  Google Scholar 

  • Cressie N, Huang H-C (1999) Classes of nonseparable spatio-temporal stationary covariance functions. J Am Stat Assoc 94:1330–1340

    Article  MathSciNet  MATH  Google Scholar 

  • Cressie N, Johannesson G (2008) Fixed rank kriging for very large spatial data sets. J R Stat Soc: Ser B (Stat Methodol) 70:209–226. doi:10.1111/j.1467-9868.2007.00633.x

    Article  MathSciNet  MATH  Google Scholar 

  • Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, Hoboken

    MATH  Google Scholar 

  • Diggle PJ, Tawn JA, Moyeed RA (1998) Model-based geostatistics (with discussions). Appl Stat 47(3):299–350

    MATH  Google Scholar 

  • Givens GH, Hoeting JA (2005) Computational statistics. Wiley, Hoboken

    MATH  Google Scholar 

  • Hanks EM, Schliep EM, Hooten MB, Hoeting JA (2015) Restricted spatial regression in practice: geostatistical models, confounding, and robustness under model misspecification. Environmetrics. doi:10.1002/env.2331

    MathSciNet  Google Scholar 

  • Higdon D (1998) Space and space-time modeling using process convolutions. In: Quantitative methods for current environmental issues. Springer, London, pp 37–56

    Google Scholar 

  • Hodges JS, Reich BJ (2010) Adding spatially-correlated errors can mess up the fixed effect you love. Am Stat 64(4):325–334

    Article  MathSciNet  MATH  Google Scholar 

  • Huang H-C, Cressie N (1996) Spatio-temporal prediction of snow water equivalent using the Kalman filter. Comput Stat Data Anal 22:159–175

    Article  MathSciNet  Google Scholar 

  • Lindley DV, Smith AFM (1972) Bayes estimates for the linear model. J R Stat Soc Ser B 34:1–41

    MathSciNet  MATH  Google Scholar 

  • Paciorek CJ (2010) The importance of scale for spatial-confounding bias and precision of spatial regression estimators. Stat Sci 25(1):107–125

    Article  MathSciNet  MATH  Google Scholar 

  • Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc Ser B 71:319–392

    Article  MathSciNet  MATH  Google Scholar 

  • Stein ML (2005) Space-time covariance functions. J Am Stat Assoc 100:320–321

    Article  MathSciNet  Google Scholar 

  • Waller LA, Xia BP, Gelfand AE (1997) Hierarchical spatio-temporal mapping of disease rates. J Am Stat Assoc 92:607–617

    Article  MATH  Google Scholar 

  • West M, Harrison J (1989) Bayesian forecasting and dynamic models. Springer, New York

    Book  MATH  Google Scholar 

  • Whittle P (1954) On stationary processes in the plane. Biometrika 41(3):434–449

    Article  MathSciNet  MATH  Google Scholar 

  • Wikle CK (2010) Low-rank representations for spatial processes. In: Handbook of spatial statistics. pp 107–118

    Google Scholar 

  • Wikle CK, Berliner LM (2005) Combining information across spatial scales. Technometrics 47:80–91

    Article  MathSciNet  Google Scholar 

  • Wikle CK, Cressie N (1999) A dimension-reduced approach to space-time Kalman filtering. Biometrika 86(4):815–829

    Article  MathSciNet  MATH  Google Scholar 

  • Wikle CK, Hooten MB (2006) Hierarchical Bayesian spatio-temporal models for population spread. In: Clark JS, Gelfand AE (eds) Hierarchical modelling for the environmental sciences. Oxford University Press, Oxford, pp 145–169

    Google Scholar 

  • Wikle CK, Hooten MB (2010) A general science-based framework for dynamical spatio-temporal models. Test 19(3):417–451

    Article  MathSciNet  MATH  Google Scholar 

  • Wikle CK, Berliner LM, Cressie N (1998) Hierarchical Bayesian space-time models. J Environ Ecol Stat 5:117–154

    Article  Google Scholar 

  • Wikle CK, Millif RF, Nychka D, Berliner LM (2001) Spatiotemporal hierarchical Bayesian modeling: tropical ocean surface winds. J Am Stat Assoc 96:382–397

    Article  MathSciNet  MATH  Google Scholar 

Recommended Reading

  • Wikle CK (2015) Modern perspectives on statistics for spatio-temporal data. Wiley Interdiscip Rev Comput Stat 7(1):86–98

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Arab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Arab, A., Hooten, M.B., Wikle, C.K. (2017). Hierarchical Spatial Models. In: Shekhar, S., Xiong, H., Zhou, X. (eds) Encyclopedia of GIS. Springer, Cham. https://doi.org/10.1007/978-3-319-17885-1_564

Download citation

Publish with us

Policies and ethics