Skip to main content

Explosion Physics of Thermonuclear Supernovae and Their Signatures

  • Reference work entry
  • First Online:
Handbook of Supernovae

Abstract

This article deals with the thermonuclear explosions of White Dwarf stars. The goal is to study the underlying principles which help to understand the interplay of often complex physics with the hydrodynamics of the explosion and the origin of the apparent homogeneity and diversity.

In the first part, we will discuss in a “nutshell” why basic physics leads to homogeneity and how it can be broken. What may lead to the differences between SNe Ia and SNe Iax? Why do we expect more than one scenario? How can we distinguish the alternatives by their signature? In the second part, we will show how the initial conditions and physics of flames influence the hydrodynamics of the explosion. Finally, the physical principles will be applied to the large zoo of explosion scenarios. We will evaluate the basic characteristics, range of solutions, and differences between them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Argast D, Samland M, Gerhard OE, Thielemann FK (2001) Element abundance patterns of metal-poor halo stars. Astrophys Space Sci Suppl 277:193–193. doi:10.1023/A:1012762012834

    Article  ADS  Google Scholar 

  • Beaudet G, Petrosian V, Salpeter EE (1967) Energy losses due to neutrino processes. ApJ 150:979. doi:10.1086/149398

    Article  ADS  Google Scholar 

  • Benz W, Cameron AGW, Press WH, Bowers RL (1990) Dynamic mass exchange in doubly degenerate binaries. I – 0.9 and 1.2 solar mass stars. ApJ 348:647–667

    Article  ADS  Google Scholar 

  • Brachwitz F, Dean DJ, Hix WR, Iwamoto K, Langanke K, Martínez-Pinedo G, Nomoto K, Strayer MR, Thielemann FK, Umeda H (2000) The role of electron captures in Chandrasekhar-mass models for Type IA supernovae. ApJ 536:934–947. arXiv:astro-ph/0001464

    Google Scholar 

  • Branch D (1999) Physics of Type Ia supernovae. ARAA 36:579–600

    Google Scholar 

  • Bruenn SW (1972) The effect of URCA shells on the density of carbon ignition in degenerate stellar cores. ApJ 177:459. doi:10.1086/151723

    Article  ADS  Google Scholar 

  • Choudhuri AR (1998) The physics of fluids and plasmas: an introduction for astrophysicists. Cambridge University Press, New York

    Book  Google Scholar 

  • Clayton DD (1983) Principles of stellar evolution and nucleosynthesis. University of Chicago Press, Chicago

    Google Scholar 

  • Colgate SA, McKee C (1969) Early supernova luminosity. ApJ 157:623

    Article  ADS  Google Scholar 

  • Di Stefano R, Orio M, Moe M (eds) (2013) Binary paths to Type Ia supernovae explosions (IAU S281). IAU symposium, vol 281. Cambridge University Press, Cambridge

    Google Scholar 

  • Diamond TR, Hoeflich P, Gerardy CL (2015) Late-time near-infrared observations of SN 2005df. ApJ 806:107. doi:10.1088/0004-637X/806/1/107, 1410.6759

  • Diehl R, Siegert T, Hillebrandt W, Krause M, Greiner J, Maeda K, Röpke FK, Sim SA, Wang W, Zhang X (2015) SN 2014J gamma rays from the 56Ni decay chain. A&A 574:A72. doi:10.1051/0004-6361/201424991, 1409.5477

  • Eriguchi Y, Mueller E (1993) Structure and circulation of self-gravitating toroids. ApJ 416:666

    Article  ADS  Google Scholar 

  • Fesen RA, Hoeflich PA, Hamilton AJS, Hammell MC, Gerardy CL, Khokhlov AM, Wheeler JC (2007) The chemical distribution in a subluminous Type Ia supernova: hubble space telescope images of the SN 1885 remnant. ApJ 658:396–409. arXiv:astro-ph/0611779

    Google Scholar 

  • Gamezo V, Khokhlov A, Oran E (2004) Deflagrations and detonations in thermonuclear supernovae. Phys Rev Lett 92(21):211102

    Article  ADS  Google Scholar 

  • Gamezo VN, Khokhlov AM, Oran ES (2003) Three-dimensional delayed detonations in Type Ia supernova explosions. APS division of fluid dynamics meeting abstracts, p 7

    Google Scholar 

  • Hansen JP, Torrie GM, Vieillefosse P (1977) Statistical mechanics of dense ionized matter. VII. Equation of state and phase separation of ionic mixtures in a uniform background. Phys Rev A 16:2153–2168. doi:10.1103/PhysRevA.16.2153

    Article  ADS  Google Scholar 

  • Hoeflich P (1995) Remarks on the polarization observed in SN 1993J. ApJ 440:821

    Article  ADS  Google Scholar 

  • Hoeflich P, Khokhlov A (1996) Explosion models for Type IA supernovae: a comparison with observed light curves, distances, H 0, and Q 0. ApJ 457:500. arXiv:astro-ph/9602025

    Google Scholar 

  • Hoeflich P, Stein J (2002) On the thermonuclear runaway in Type Ia supernovae: how to run away? ApJ 568:779–790. doi:10.1086/338981, astro-ph/0104226

  • Hoeflich P, Gerardy CL, Marion H, Quimby R (2006) Signatures of isotopes in thermonuclear supernovae. New Astron 50:470–473. doi:10.1016/j.newar.2006.06.074

    Article  Google Scholar 

  • Hoeflich P, Dragulin P, Mitchell J, Penney B, Sadler B, Diamond T, Gerardy C (2013) Properties of SN Ia progenitors from light curves and spectra. Front Phys 8:144–167. 0906.4148

    Google Scholar 

  • Hoflich P (1991) Asphericity effects in scattering dominated photospheres. A&A 246:481

    ADS  Google Scholar 

  • Howell DA, Sullivan M, Nugent PE, Ellis RS, Conley AJ, Le Borgne D, Carlberg RG, Guy J, Balam D, Basa S, Fouchez D, Hook IM, Hsiao EY, Neill JD, Pain R, Perret KM, Pitchet CJ (2006) The Type Ia supernova snls-03d3bb from a super-Chandrasekhar-mass white dwarf star. Nature 443:308

    Article  ADS  Google Scholar 

  • Hoyle F, Fowler WA (1960) Nucleosynthesis in supernovae. ApJ 132:565

    Article  ADS  Google Scholar 

  • Iliadis C (2007) Nuclear Physics of Stars. Wiley-VCH Verlag, Weinheim

    Book  Google Scholar 

  • Kasen D, Nugent P, Wang L, Howell DA, Wheeler JC, Hoeflich P, Baade D, Baron E, Hauschildt P (2003) Analysis of the flux and polarization spectra of the Type Ia supernova SN 2001el: Exploring the geometry of the high-velocity ejecta. ApJ 593:788

    Article  ADS  Google Scholar 

  • Kashi A, Soker N (2011) A circumbinary disc in the final stages of common envelope and the core-degenerate scenario for Type Ia supernovae. Mon Not R Astron Soc 417:1466–1479. doi:10.1111/j.1365-2966.2011.19361.x, 1105.5698

  • Khokhlov A (1991) Delayed detonation model for Type Ia supernovae. A&A 245:114

    ADS  Google Scholar 

  • Khokhlov AM (1995) Propagation of turbulent flames in supernovae. ApJ 449:695

    Article  ADS  Google Scholar 

  • Kippenhahn R, Weigert A (1990) Stellar structure and evolution. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Kittel C, Kroemer H, Scott HL (1998) Thermal physics, 2nd ed. Am J Phys 66:164–167. doi:10.1119/1.19072

    Article  ADS  Google Scholar 

  • Krisciunas K, Suntzeff NB, Candia P, Arenas J, Espinoza J, Gonzalez D, Gonzalez S, Hoeflich PA, Landolt AU, Phillips MM, Pizarro S (2003) Optical and infrared photometry of the Nearby Type Ia Supernova 2001el. AJ 125:166–180. arXiv:astro-ph/0210327

    Google Scholar 

  • Landau LD, Lifshitz EM (1959) Fluid mechanics. Pergamon/Addison-Wesley Pub. Co., London/Reading

    Google Scholar 

  • Landau LD, Lifshitz EM (1971) The classical theory of fields. Pergamon Press, Oxford

    MATH  Google Scholar 

  • Li W, Filippenko AV, Chornock R, Jha S (2003) The Katzman automatic imaging telescope gamma-ray burst alert system, and observations of GRB 020813. PASP 115:844–853. doi:10.1086/376432, astro-ph/0305027

  • Lira P (1996) Light curves of the supernovae 1990N and 1990T. Masters thesis, University of Chile

    Google Scholar 

  • Livne E (1990) Successive detonations in accreting white dwarfs as an alternative mechanism for type I supernovae. ApJ Lett 354:L53–L55. doi:10.1086/185721

    Article  ADS  Google Scholar 

  • Livne E, Asida SM, Hoeflich P (2005) On the sensitivity of deflagrations in a Chandrasekhar mass white dwarf to initial conditions. ApJ 632:443–449. arXiv:astro-ph/0504299

    Google Scholar 

  • Niemeyer JC, Woosley SE (1997) The thermonuclear explosion of Chandrasekhar mass white dwarfs. ApJ 475:740–753. astro-ph/9607032

    Google Scholar 

  • Nomoto K (1982) Accreting white dwarf models for type 1 supernovae. ii – off-center detonation supernovae. ApJ 257:780–792. doi:10.1086/160031

    Article  ADS  Google Scholar 

  • Nomoto K, Thielemann FK, Yokoi K (1984) Accreting white dwarf models of Type I supernovae. III – carbon deflagration supernovae. ApJ 286:644–658. doi:10.1086/162639

    Article  Google Scholar 

  • Nomoto K, Uenishi T, Kobayashi C, Umeda H, Ohkubo T, Hachisu I, Kato M (2003) Type Ia supernovae: progenitors and diversities. In: Hillebrandt W, Leibundgut B (eds) From twilight to highlight: the physics of supernovae. Springer, Berlin/Heidelberg/New York, p 115. arXiv:astro-ph/0308138

    Google Scholar 

  • Penny B, Hoeflich P, Gerardy C (2012) Thermonuclear supernovae: probing magnetic fields by late-time IR line profiles. ApJ

    Google Scholar 

  • Phillips MM (1993) The absolute magnitudes of Type Ia supernovae. ApJL 413:L105–L108

    Article  ADS  Google Scholar 

  • Piersanti L, Gagliardi S, Iben I Jr, Tornambé A (2003) Carbon-oxygen white dwarf accreting CO-rich matter. II. Self-regulating accretion process up to the explosive stage. ApJ 598:1229–1238

    Google Scholar 

  • Poludnenko AY (2015) Pulsating instability and self-acceleration of fast turbulent flames. Phys Fluids 27(1):014106. doi:10.1063/1.4905298, 1501.01206

  • Remming IS, Khokhlov AM (2014) The classification of magnetohydrodynamic regimes of thermonuclear Combustion. ApJ 794:87. doi:10.1088/0004-637X/794/1/87

    Article  ADS  Google Scholar 

  • Röpke FK, Bruckschen R (2008) Thermonuclear supernovae: a multi-scale astrophysical problem challenging numerical simulations and visualization. New J Phys 10(12):125009. doi:10.1088/1367-2630/10/12/125009

    Article  Google Scholar 

  • Röpke FK, Niemeyer JC (2007) Delayed detonations in full-star models of Type Ia supernova explosions. A&A 464:683–686. doi:10.1051/0004-6361:20066585, astro-ph/0703378

  • Sim SA, Fink M, Kromer M, Röpke FK, Ruiter AJ, Hillebrandt W (2012) 2D simulations of the double-detonation model for thermonuclear transients from low-mass carbon-oxygen white dwarfs. Mon Not R Astron Soc 420:3003–3016. doi:10.1111/j.1365-2966.2011.20162.x, 1111.2117

  • Slattery WL, Doolen GD, Dewitt HE (1982) N-dependence in the classical one-component plasma Monte Carlo calculations. Phys Rev A 26:2255–2258. doi:10.1103/PhysRevA.26.2255

    Article  ADS  Google Scholar 

  • Stein J, Wheeler JC (2006) The convective Urca process with implicit two-dimensional hydrodynamics. ApJ 643:1190–1197. doi:10.1086/503246, astro-ph/0512580

  • Suntzeff NB, Phillips MM, Covarrubias R, Navarrete M, Pérez JJ, Guerra A, Acevedo MT, Doyle LR, Harrison T, Kane S, Long KS, Maza a, Miller S, Piatti AE, Clariá aJ, Ahumada AV, Pritzl B, Winkler PF (1999) Optical light curve of the Type IA supernova 1998BU in M96 and the supernova calibration of the hubble constant. AJ 117:1175–1184, arXiv:astro-ph/9811205

    Google Scholar 

  • van de Hulst HC (1981) Light scattering by small particles. Dover Publications, New York

    Google Scholar 

  • Wang B, Han Z (2012) Progenitors of Type Ia supernovae. New Astron 56:122–141. 1204.1155

    Google Scholar 

  • Wang L (2014) Polarimetry of SN 2014J in M82 as a Probe of Its Dusty Environment. HST Proposal

    Google Scholar 

  • Wang L, Strovink M, Conley A, Goldhaber G, Kowalski M, Perlmutter S, Siegrist J (2006) Nonlinear decline-rate dependence and intrinsic variation of Type Ia supernova luminosities. ApJ 641:50–69. doi:10.1086/500422, astro-ph/0512370

  • Whelan J, Iben IJ (1973) Binaries and supernovae of Type I. ApJ 186:1007–1014

    Article  ADS  Google Scholar 

  • Woosley SE, Kasen D (2011) Sub-Chandrasekhar mass models for supernovae. ApJ 734:38. doi:10.1088/0004-637X/734/1/38, 1010.5292

  • Zingale M, Woosley SE, Rendleman C, Day M, Bell J (2005) Three-dimensional numerical simulations of Rayleigh-Taylor unstable flames in Type Ia supernovae. ApJ 632:1021–1034

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank all my collaborators and colleagues for many fruitful discussions and the generous funding by the NSF and NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hoeflich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hoeflich, P. (2017). Explosion Physics of Thermonuclear Supernovae and Their Signatures. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-21846-5_56

Download citation

Publish with us

Policies and ethics